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PREFACE TO THE FIRST EDITION
I

In teaching for the Final Honour School of Physics in Oxford the

authors have long felt the need for an up-to-date text on Electricity and
Magnetism which would cover the whole field, both the theory and the

practice. This book is an attempt to supply this need, and to make it as

comprehensive as possible chapters have been included which may form
part ofa graduate course rather than an undergraduate course. The plan

ofthe book is as follows : the first eight chapters cover the fundamentals of
the theory and include accounts of electrical conductors and magnetism
at an elementary level ; chapters 9 to 11 deal with the theory of alternat-

ing currents and waves ; the next five chapters cover the experimental

aspects of generators, radio, and alternating current measurements ; the

final section is devoted to fuller accounts ofnoise, dielectrics, conduct ors,

and magnetism, and a chapter on magnetic resonance, with particular

reference to measurements of some fundamental constants.

The writing of any book on electricity and magnetism is bedeviled

by the question of units. The authors were brought up on the two
centimetre-gramme-second systems, and the practical system. To t iese

is now added the metre-kilogramme-second system, making four

systems at present in use. General adoption of the m.k.s. system w^uld
reduce this to one system, which is such an obvious advantage that the

rationalized m.k.s. system has been adopted in this book. Unfortun-
ately no general agreement on the definition of magnetization obtained

while this book was in preparation ; the authors have therefore adopted
the definition which is closest to the c.g.s. systems, which has the

advantage that magnetostatics is closely parallel to electrostatics. tThis

choice has been made to simplify as far as possible the transition from
c.g.s. systems to the m.k.s. system, since many students who may wish
to use this book will have been brought up on the former. For these

students, a chapter on units has been included where methods are

detailed for translating all the numbered equations into their equiva-

lents in one of the c.g.s. systems. The choice of the rationalized m.k.s.

system makes this translation more cumbersome, and the rather mlinor

advantages of 'rationalization' are outweighed by the disadvantages
of changes in the defining equations of a number of the fundamental
quantities. These will disappear when the c.g.s. systems fall out of use,

and the authors have therefore adopted the rationalized m.k.s. system
to conform with present practice.
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The authors are much indebted to their colleagues—in particular

Drs. D. M. S. Bagguley, A. H. Cooke, J. H. E. Griffiths, H. G. Kuhn,
and G. W. Series—who have criticized parts ofthe manuscript and made
many helpful suggestions ; to M. H. W. Gall, Esq., of Messrs. H. Tinsley

& Co. Ltd., Professor L. F. Bates, F.R.S., and A. Hart, Esq., ofNotting-

ham University, and to Messrs. L. J. Arundel and R. A. Kamper of the

Clarendon Laboratory, for the considerable trouble they took in obtain-

ing the photographs for Figs. 7.3, 21.6, 17.3, and 22.7 respectively; and
to a number of pupils who have read various chapters and eliminated

numerous errors. The authors are not so sanguine as to believe that

no errors remain in other parts of the book, and they will be grateful

to readers who inform them of any errors.

B. I. B.

B. B.
Clarendon Laboratory

Oxford

April 1955



PREFACE TO THE SECOND EDITION

Since the first edition of this book appeared in 1957 there has been
considerable progress, both experimental and theoretical, in under-

standing the electrical and magnetic properties of materials. Much of

this is too advanced in approach for a book intended primarily for

undergraduates or graduates starting research, but the authors have
attempted to distil a suitable fraction of appropriate density for

presentation at this level in the second edition. This is not always
easy, and the authors apologize both to those who find sections lacking

in the simple clarity which the ideal textbook should possess, and to

those who find that over-simplification has resulted in a lack of accuracy.

The plan of the book is substantially the same as in the first edition.

The first eight chapters cover the fundamentals of the theory and
include accounts of electrical conductors and magnetism at an elemen-

tary level; Chapters 9-11 deal with the theory of alternating currents

and waves ; the next four chapters cover the experimental aspects of

radio and alternating current measurements ; the final part is devoted
to fuller accounts of noise, dielectrics, conductors, and magnetism,
ending with a chapter on magnetic resonance. This part, which overlaps

with solid state physics, has been considerably rewritten; the section

on semiconductors has been expanded into a separate chapter, with
some account of the principles of junctions but stopping short of
transistor circuitry ; that on anti-ferromagnetism has been incorporated

in a new chapter which also includes ferrimagnetism and the rare-earth

metals. The discussion of conduction in metals, paramagnetism and
ferromagnetism, and magnetic resonance, has been considerably revised

and somewhat enlarged. Material elsewhere has been pruned wherever
possible to minimize the increase in overall size ; in particular the chapter
on electrical machines has been omitted, except for low frequency trans-

formers, whose equivalent circuit is discussed at the end of Chapter 9

on alternating current theory.

In the first edition the electromagnetic dipole moment of an elemen-
tary current circuit was defined in such a way as to retain H as the force

(couple) vector on a magnetic dipole, while B is the force vector on a
current. This was a compromise, intended to reduce the gap between
the older c.g.s. system and the new m.k.s. system. However, the
definition m = ju,/* 1 dS had obvious difficulties in ferromagnetic
media, and led to inconsistencies between dia- and paramagnetism,
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where the atomic formulae contained ju, in the numerator in one case

and in the denominator in the other. In common with other books

using the m.k.s. system, the authors have therefore adopted the

definition m == I dS in the second edition, which gives a more logical

treatment in which B is the force vector both for currents and magnetic

dipoles. This has necessitated considerable changes in Chapter 5, and

the opportunity has been taken to revise the treatment to give a more

rigorous approach. Amongst other minor changes a fuller treatment

of spherical harmonics is included in Chapter 2, together with the

multipole expansion.

The authors are much indebted to Drs. B. V. Rollin, R. J. Elliott,

and R. A. Stradling, who read part of the manuscript and made

suggestions for improvements ; also to many colleagues in Oxford and

readers elsewhere who took the trouble to send comments on the first

edition. With their help the authors have endeavoured to eliminate the

errors that remained, but no doubt a fresh crop has been sown in the

second edition, and the authors will be grateful to readers who inform

them of such errors.

B. I. B.

B.B.
Clarendon Laboratory

Oxford

April 1964
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ELECTROSTATICS I

1.1. The electrical nature of matter

The fundamental laws of electricity and magnetism were discovered by
experimenterswho had little or no knowledge of the modern theory ofthe
atomic nature of matter. It should therefore be possible to present these

laws in a textbook by dealing at first purely in macroscopic phenomena
and then introducing gradually the details of atomic theory as required.

In this way the subject might be developed almost in the historical order

of discovery, and these opening sentences would talk ofamber and cat's

fur. It is more interesting, however, to discuss here and there throughout
this book the interpretation of the macroscopic laws in terms of present

atomic theory. In the later chapters a considerable knowledge of such

theory will be assumed, since to give an adequate account of it would
greatly increase the size of the book. This will not be attempted, but
in the following paragraphs a summary is presented of what may be
regarded almost as common knowledge of the nature of the atom.

On modern theory the atom consists of a central core, or nucleus, of

diameter about 10-12 cm, surrounded by a number of electrons. These

electrons move round the nucleus in orbits whose diameter is about
10~8 cm, and these determine the size ofthe atom. The nucleus contains

two kinds of particles: protons, which are particles roughly 1836 times

as heavy as electrons, but with a positive electric charge +e, and neu-

trons, of very nearly the same mass as protons, but with no electric

charge. The number of electrons surrounding the nucleus is equal to

the number of protons, and each electron has a negative charge — e, so

that the atom as a whole is electrically neutral. The physical and
chemical properties of the atoms are determined by the number of

electrons they contain, and hence the number of protons in the nucleus

is characteristic of a particular element. The number of neutrons is

roughly equal to the number of protons in light elements but is over
1-5 times as great in the heaviest elements. The mass of the nucleus is

determined by the total number of protons and neutrons, and a given
element may have several stable forms of different nuclear mass, corre-

sponding to nuclei with different numbers of neutrons, but the same
number of protons. These are called isotopes. Thus the oxygen nucleus

851110 B



2 ELECTKOSTATICS I [1.1

has 8 protons, and there are three stable isotopes, oxygen 16, 17, and 18,

with 8, 9, and 10 neutrons respectively, although the percentage of

isotopes 17 and 18 occurring in nature is very small.

It is now established that the electronic charge is the fundamental

unit of charge, and all charges are integral multiples of -f e or — e. It is

therefore assumed that the electron is indivisible, and is a fundamental

particle of matter ; so also is the proton. We may summarize the pro-

perties of electron, proton, and neutron as follows:

Particle Charge Mass

Electron

Proton
Neutron

— e

+ e

m
1836m
1838m

e = 1-602 X KT1B coulomb; m = 0-911 x 10-2' g.

Since charges of opposite sign attract one another, the electrons are

bound to the atom by the electrical attraction of the protons in the

nucleus. The forces which hold the nucleus together are of different

character, and operate only at very short ranges, of the order of the

nuclear diameter.

Conductors and insulators

For the purpose of electrostatic theory all substances can be divided

into two fairly distinct classes: conductors, in which electrical charge

can flow easily from one place to another; and insulators, in which it

cannot. In the case of solids, all metals and a few other substances such

as carbon are conductors, and their electrical properties can be explained

by assuming that a number of electrons (roughly one per atom) are free

to wander about the whole volume of the solid instead of being rigidly

attached to one atom. Atoms which have lost one or more electrons in

this way have a positive charge, and are called ions. They remain fixed

in position in the solid lattice. In solid substances of the second class,

insulators, each electron is firmly bound to the lattice of positive ions,

and cannot move from point to point. Typical solid insulators are

sulphur, paraffin wax, and mica.

When a substance has no net electrical charge, the total numbers of

positive and negative charges within it must just be equal. Charge may
be given to or removed from a substance, and a positively-charged

substance has an excess of positive ions, while a negatively-charged sub-

stance has an excess of electrons. Since the electrons can move so much
more easily in a conductor than the positive ions, a net positive charge
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is usually produced by the removal of electrons. In a charged conductor

the electrons will move to positions of equilibrium under the influence

of the forces of mutual repulsion between them, while in an insulator

they are fixed in position and any initial distribution of charge will

remain almost indefinitely. In a good conductor the movement of

charge is almost instantaneous, while in a good insulator it is extremely

slow. While there is no such thing as a perfect conductor or perfect

insulator, such concepts are useful in developing electrostatic theory;

metals form a good approximation to the former, and substances such

as sulphur to the latter.

1.2. Coulomb's law and fundamental definitions

The force of attraction between charges of opposite sign, and of repul-

sion between charges of like sign, is found to be inversely proportional

to the square of the distance between the charges (assuming them to be
located at points), and proportional to the product of the magnitudes

ofthe two charges. This law was discovered experimentally by Coulomb
in 1785. In his apparatus the charges were carried on pith balls, and the

force between them was measured with a torsion balance. The experi-

ment was not very accurate, and a modern method of verifying the

inverse square law with high precision will be given later (§ 1.3). From
here on we shall assume it to be exact.

If the charges are qx and q2 , and r is the distance between them, then

the force F on q2 is along r. If the charges are of the same sign, the

force is one of repulsion, whose magnitude is

r2

The vector equation for the force is

F==Cf £i|2 r /L1 )
r3

Here F, r are counted as positive when directed from qx to q2 . Equation

(1.1) is the mathematical expression of Coulomb's law.

The units of F and r are those already familiar from mechanics; it

remains to determine the units of C and q. Here there are two alterna-

tives: either C is arbitrarily given some fixed numerical value, when
equation (1.1) may be used to determine the unit of charge, or the unit

of charge may be taken as some arbitrary value, when the constant C is

to be determined by experiment. The electrostatic system of units

(e.s.u.) makes the use of the first method. The force F is in dynes, and
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the distance r in centimetres (i.e. both are measured in the centimetre-

gramme-second system), and the constant G is set equal to unity. Then

qv q2 are measured in e.s.u. of charge, the unit being denned as that

charge which repels an equal charge at a distance of 1 cm in vacuo with

a force of 1 dyne. In the metre-kilogramme-second-coulomb system

(m.k.s.), which will be used throughout this book, the unit of charge is

the coulomb, the standard practical unit of charge (equal to one-tenth

of the unit of charge in the electromagnetic system of units). For the

present purpose it may be regarded as denned by the charge required

to deposit a certain mass of silver in a silver voltameter, being thus

denned in an arbitrary manner in the same way as the standard metre

and standard kilogramme. Equation (1.1) for Coulomb's law is then

analogous to that for gravitational attraction, except that it deals with

electrical charges instead of masses, and the unknown constant of pro-

portionality must be determined by experiment. In the 'rationalized'

metre-kilogramme-second-coulomb system, the constant G is written

as l/47re , the factor in being introduced to simplify certain equations

which appear later in the theory. Equation (1.1) therefore becomes

F = -LM?r, (1.2)
47re r3

where F is in newtons, r in metres, and q in coulombs. The quantity

€ is known as the 'permittivity of free space' (see § 1.5); its experi-

mental value is found to be (see § 7.4) 8-85 X 10~12 coulomb2 newton-1

metre-2 (this unit can be more conveniently called farad metre-1 (see

§ 1.6)). Since 1 newton = 105 dyne, and 1 metre = 102 cm, it may
readily be shown that 1 coulomb = 2-998 X 109 e.s.u.

Electric field and electric potential

The force which a charge q2 experiences when in the neighbourhood of

another charge qx
may be ascribed to the presence of an 'electric field' E

produced by the charge qx . Since the force on a charge g2 is proportional

to the magnitude of q%, we define the field E by the equation

F = Eg,. (1.3)

From this definition and Coulomb's law it follows that E does not

depend on q2 , and is a vector quantity, like F. From equation (1.2) we
find that

E = -^r (1.4)

is the electric field due to the charge qx .
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If a unit positive charge is moved an infinitesimal distance ds in a
field E, then the work done by the field is E.ds, and the work done

against the field is —E.ds. This follows from the fact that the force

on unit charge is equal to the electric field E. The work done against

the field in moving a unit positive charge from a point A to a point B
will therefore be B

V = -J E.ds.
A

This is a scalar quantity known as the electric potential. If the field E
is due to a single charge q at 0, as in Kg. 1.1, then the force on unit

Fig. 1.1. Calculation of the potential difference between points A and B due to the field

of a point charge q at O.

charge at an arbitrary point P is along OP, and ds is the vector element

PXPZ . Now E.ds = E cos 6ds = Edr, and hence

VB-YA = - f**= --*- f * = JL(I_I).
J 47re J r5 47re \r-2 rj

ri

Thus the difference of potential between A and B depends only on the

positions ofA and B, and is independent ofthe path taken between them.

The potential at a point distance r from a charge q is the work done
in bringing up unit charge to the point in question from a point at zero

potential. By convention, the potential is taken as zero at an infinite

distance from all charges, that is, 7=0 for r = oo. Therefore the

potential at a point distance r from a charge q is

7 = <7/(477e r). (1.5)

The difference in potential dV between Px and P2 (Fig. 1.1) distance

ds apart is dy = _E ds = - {Exdx+Eydy+Ez dz).
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Hence E = -grad V = -VV, (1.6)

where in Cartesian coordinates grad V = idF/dx+J dVjSy+^.8Vldz and

i, j, k are unit vectors parallel to the x, y, and z-axes. The components

of E along the three axes are

E*-—te' E*
= ~W E'-~Tz'

The negative sign shows that of itself a positive charge will move from

a higher to a lower potential, and work must be done to move it in the

opposite direction. (For vector relations, see Appendix A.)

Fig. 1.2. The work done in taking an electric charge round a closed

path in an electrostatic field is zero.

The work done in taking a charge q round a closed path in an electro-

static field is zero. This can be seen from Fig. 1.2. The work done in

taking the charge q round the path ABCA is

W = -qj E.ds = q(VB-VA)+q{Vc-VB)+q(VA-VJ = 0,

and is independent of the path taken provided it begins and ends at the

same point. Therefore the electric potential is a single-valued function

ofthe space coordinates in any stationary distribution ofelectric charges;

it has only one value at any point in the field.

Since potential is a scalar quantity the potential at any point is

simply the algebraic sum of the potentials due to each separate charge.

On the other hand, E is a vector quantity, and the resultant field is the

vector sum of the individual fields. Hence it is nearly always simpler to

work in terms of potential rather than field; once the potential distribu-

tion is found, the field at any point is found by using equation (1.6).

Units

From equation (1.3) we obtain the definition of electric field. An
electric field of 1 unit exerts a force of 1 newton on a charge of 1 cou-

lomb. Electric fields can therefore be expressed in newton/coulomb.
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The unit of potential is defined as follows: When 1 joule of work is

done in transferring a charge of 1 coulomb from A to B, the potential

difference between A and B is 1 volt. From equation (1.6) E can be
expressed in volts/metre, and this is the unit which is customarily used.

It is easily verified that the two alternative units for E are equivalent.

Fig. 1.3. (a) Lines of force between equal charges of opposite sign. (6) Lines of force
between equal charges of the same sign.

Lines offorce

A line drawn in such a way that it is parallel to the direction of the

field at any point is called a line of force. Figure 1.3 shows the fines of

force for two equal charges. Lines of force do not intersect one another
since the direction of the field cannot have two values at one point; they
are continuous in a region containing no free charges, and they begin
and end on free charges. The number of lines of force drawn through
unit area normal to the direction ofE is equal to the value of E at that

point.

If a series of curves is drawn, each curve passing through points at

a given potential, these equipotential curves cut the lines of force ortho-

gonally. Equipotential curves are generally drawn for equal increments
of potential; then E is greatest where the equipotentials are closest

together.
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1.3. Gauss's theorem

Let S be a closed surface surrounding a charge q, and let q be distant

r from a small area dS on the surface S at A (Fig. 1.4 (a)). The electric

intensity E at A has the value

E = _?_

.

477e r2

Fig. 1.4. Illustrating Gauss's theorem.

The number of lines of force passing through an element of area dS is

E.dS = Ecos6dS q cos 6dS
47re„r2

where the outward normal to the surface element makes an angle 9

with E. Now the solid angle subtended by dS at is da> = cos 6 dSjr2
,

and the value of EcoaddS is therefore qda>l(4:TTe ). Hence the total

number of lines of force passing through the whole surface is

t Eooa6dS = -!L- f dco = —

,

(1.7 a)

since a closed surface subtends a total solid angle of 477 at any point

within the volume enclosed by the surface. If there are a number of

charges qlt q2 ,..., qn inside S, the resultant intensity of E at any point

is the vector sum of the intensities due to each separate charge, and the

integration of equation (1.7 a) may be carried out separately for each

charge. In this way it is found that
J
E cos dS = 2 ?/eo- On the other

hand, the contribution of any charge outside S is zero, as may be seen
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from Fig. 1.4(6), since in this case

We may summarize these results in the form

j E cosd dS = JE.dS = % qle , (1.7b)

where the summation is to be taken only over the charges lying within
the closed surface S. This is known as Gauss's theorem. We see that
the integral of the normal component of E over the surface is equal
to the total charge enclosed, divided by e , irrespective of the way in

which the charge is distributed.

If there exists throughout a volume enclosed by a surface S a charge
distribution of varying density p, we have

-
J

pdr = f E.dS =
j
divErfr, (1.7c)

where dr is an element of volume. The two volume integrals must be
equal whatever the volume over which the integration takes place, and
it therefore follows that the integrands themselves must be equal.

and this is the expression in differential form of Gauss's theorem. The
transformation from a surface to a volume integral used above is due
to Gauss (see Appendix A).

One of the consequences of Gauss's theorem is that there can be no
field within a conductor, nor can there be any volume distribution of
charge within it. For, if there were such a charge distribution, a field

would exist within the conductor, which would act on the charges. Since
they are free to move in a conductor, they cannot then be in a state

of equilibrium. Thus no electrostatic field can exist within the body of
a conductor, and all parts of it must be at the same potential. If the
conductor has a total charge different from zero, then this charge must
reside entirely in a thin layer on the outer surface.

The fact that there can be no electric field within the body of a con-
ductor has an important consequence in the case of a hollow closed

conductor. If we apply Gauss's theorem to a surface S lying entirely

within the conducting substance, as in Fig. 1.5(b), then f E cos 9 dS = 0,

since E = everywhere over the surface. Hence the net charge inside

the surface must be zero. This can be realized in two ways: (a) if there
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is a total charge q in the hollow space within the conductor, the lines

of force from the charges comprising q must end on a distribution of

charge on the inner surface of the conductor, and the total charge in

this layer must he equal to —q; (6) if there is no charge in the hollow

space, then there can be no field in this space. This last result is im-

portant, for many proofs of the inverse square law (see below) depend

Fig. 1.5. Distribution of charge on a hollow conductor.

(a) A hollow conductor with a point charge +g inside, and induced

charges —q and -\-q on the inside and outside surfaces.

(6) The same conductor with no charge inside, and total charge +g
on the surface.

on it. It means that if we put a closed conductor into a field, a charge

distribution on the outer surface will be set up such that the field inside

remains exactly zero.

Experimental proof of the inverse square law

Coulomb's attempts to check the inverse square law using a torsion

balance were not capable of great accuracy, and most subsequent at-

tempts have relied on the fact that the field inside a closed conductor

is only zero if the inverse square law holds. We shall prove this for the

special case of a spherical conductor.

In Fig. 1.6 let an elementary cone of solid angle dco be drawn with

vertex at the point within the sphere. This cone intersects the surface

of the sphere in the elementary areas dSv dS2 at distances rx , r2 from O.
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If the charge on the sphere has a uniform density a per unit area, then

the field at due to the elements dSx and dS2 will be

dE _ a pm dSJ

/Element of
area dS^

Element of^ P

Solid angle da)

Fig. 1.6. The field inside a spherical conductor at a point O. Distances OP =
OQ = r2 . From the geometry of the circle, L.OPC = COQC = 0. Hence

dS, cos 8 dS, cos 9

•i ~ A

assuming that the field of a point charge falls off as r~n . But the solid

angle dw — d^ cos Q\r\ = dS2 cos6lrl, and we can therefore write

dE = ado> P LI
4weo cos0LrJ-

2 r^-2J"

This gives a resultant field towards the nearer element if n < 2, and
towards the further element if n > 2. Clearly, the whole surface of the
sphere can be divided into elementary areas in this way, and the vector
resultant of the fields at will not be zero unless all the individual dE
are zero, since there will be a resultant towards the nearer portion of
the spherical surface if n < 2, and vice versa. Thus, if it is shown
experimentally that there is no field inside a charged sphere, it follows

that the power of n in the inverse power law must be exactly 2.

This result was used to test the validity of the inverse square law by
Cavendish and, later, by Maxwell. Maxwell had a spherical air con-
denser consisting oftwo concentric insulated spherical shells. The outer
sphere had a small hole in it so that the inner one could be tested for

charge by inserting through the hole an electrode connected to an
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electrometer. The two spheres were initially connected by a wire and
charged to a high potential, and then insulated from one another. After

earthing the outer sphere, the inner one was tested and found to have

no charge. In this way Maxwell found that the value of n did not differ

from 2 by more than one part in 21 600.

The experiment has been repeated by Plimpton and Lawton (1936)

with a more sensitive detector, the electrometer being replaced by an

Galvanometer
A
Light beam

X
Salt solution

To alternating

voltage generator
*

6 Voltmeter

Fro. 1.7. Apparatus of Plimpton and Lawton for verifying the inverse square law.

amplifier and galvanometer. The detecting apparatus was placed inside

the sphere A (see Fig. 1.7), and its conducting case, together with the

hemisphere B, formed the inner conductor (it was shown that this

does not necessarily have to be spherical in shape). The galvanometer

deflexion was observed through a small hole in the sphere A, covered

by a wire grid immersed in salt solution so that A was effectively a

closed conductor. It was found that this was essential for the field

inside to be rigorously zero when n = 2. The galvanometer was un-

damped so that it could swing at its natural period (| sec), and an

alternating voltage of 3000 V, whose frequency was adjusted to syn-

chronism with the galvanometer, was applied to the outer sphere. Ndy

potential difference between the inner and outer spheres was found,

though a voltage of 10-6 V could have been detected. It was found that

this was only true if the hole in A was covered with the salt solution.

The galvanometer deflexion observed if this was removed was used to

check that the frequency of the alternating voltage was equal to the

natural period of the galvanometer. From this experiment, Plimpton
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and Lawton concluded that n did not differ from 2 by more than one

part in 109.

1.4. Electric dipoles

An electric dipole consists of two charges equal in magnitude but of

opposite sign, separated by a small distance.

Figure 1.8 shows such a dipole with charges

+q and —q separated by a distance a. Then
the potential at a point P is

F-JLfl-I), (1.9)

and if a <^ r, so that quantities of the order

(a/r) 2 may be neglected,

4ire [r— fa(-Jacos0 r+|acos0j

qaoosOj 1
)

qa cos djsflf 1 \

e \r2—-|a2 cos20j 4776 r2

pcosd Fig. 1.8. The electric poten-
tial and the field due to an

electric dipole.
477e (r

(1.10a)

Here the product qa has been written as p, and is known as the dipole

moment. If r is a vector drawn from O as origin to P, then

p cos 6 = (p . r)/r,

where p is a vector whose magnitude is equal to the dipole moment and
whose direction is from the negative charge to the positive charge. Then

p.rV =
47re r3

(1.10b)

If is a fixed point and P is regarded as a variable point, then

rjr3 = —grad(l/r),

so that the formula for the potential may also be written as

1V =
4tt€,

(p.gradP (l/j-)}. (1.11a)

Here the subscript P is added to the operator grad to denote that

differentiation is with respect to P as the variable point. If we regard

P as fixed, and move from A to B, then equation (1.9) could have been
written in the form

V = t— {p.grad (l/r)}, (1.11b)
vnen
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since the vector r in (1.10 b) is now drawn in the opposite sense, where

the subscript O denotes that is now the variable point, and there is

a change of sign from equation (1.11a) because r is now measured in

the opposite direction.

The components of the electric field at P can be calculated by

+1 a -1

+2q

II

b

n~q
+1

P

P
b.

p p

Fig. 1.9. Two quadrupole moments represented as an assembly of charges or a pair of

dipoles; note that the net charge and net dipole moment are zero in each case.

differentiating the potential given by equation (1.10a). The radial and

azimuthal components are

V - _ffi __l_/2pcos_0\*~
\8r}B

-^\ r* j,
(112)

"*
r\8d) r 4™ \"

'p sin 6\

These equations show that the electric field of a dipole falls off as ljr3
,

and its potential as 1/r2, whereas the corresponding laws for a single

pole are 1/r2 and ljr. The significance of this difference is that at large

distances the fields of the two equal and opposite charges which com-

prise a dipole cancel one another in the first approximation (that is,

terms varying as 1/r2 vanish), but terms in the next order (1/r3 in the

field) remain. Similarly, if two dipoles are placed end to end, giving a

set of charges as in Fig. 1.9 (known as a quadrupole), their fields annul

one another at large distances, and the potential of a quadrupole falls

off as 1/r3 (see Problem 1.1), and its field as 1/r4.

If a dipole consisting of two charges —q and -\-q & distance a apart

is placed in a uniform field, its potential energy UP is (see Fig. 1.10)

Up = q(VB-l£) = -qacosBE = —qa.E = -p.E, (1.13)

where p is the dipole moment. This shows that the energy depends

only on the angle which p makes with E, and not on the position of the
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dipole. Hence there is no translational force acting on the dipole, but
there is a couple

T = ~{dUPjdd) = pEsmd = p aE, (1.14)

which tends to turn the dipole into a position parallel to the field.

Fig. 1.10. Dipole formed by two charges —q, +q separated by a
distance a, in a field E.

If the dipole is placed in a non-uniform field, a translational force is

exerted on it, and we shall derive an expression for the a;-component
of this force. IfEx is the value of the a;-component of the field at A, its

value at B may be written as

where ax , ay , az are the components of a along the three axes. The
^-component of the force on the dipole is therefore

dy dy\ 8x) 8x\ dy)
Now dEy

dx
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since the order of differentiation is immaterial, and similarly

BEX _ 8ES
8z ~ ex'

Hence the force component may be written as

with similar expressions for the other components.

1.5. The theory of isotropic dielectrics

Faraday found that if a slab of insulating material was inserted

between two metal plates across which a constant voltage was applied

by means ofa battery, the charge on the plates increased. If the insulator

entirely filled the intervening space, the charge increased by a factor e,

where e is called the dielectric constant, relative permittivity, or specific

inductive capacity of the insulator. It varies between 1 and 10 for most

solid substances, being 1 for vacuum and 1-00057 for air at room tem-

perature and pressure. To find how e is related to the intrinsic properties

of the material, or dielectric, it is necessary to consider what happens

inside a dielectric when an electric field is applied to it.

Dielectric substances are insulators, and therefore do not contain free

electrons. Each electron is bound to the ionic lattice by the electro-

static attraction between the negative electronic charge and the positive

charges on the nuclei. In the absence of any external field, the electrons

are distributed symmetrically with respect to the nuclei, but when a

field is applied, the electrons are displaced in the direction opposite to

that of the field, while the more massive nuclei are slightly displaced in

the direction of the field. (The centre of gravity remains fixed, since

there is no translational force on the system as a whole.) Each ion thus

acquires an electric dipole moment which is parallel to and in the same

direction as the applied field. If a slab of dielectric is placed between

parallel metal plates as in Faraday's experiment and the voltage across

the plates is constant, there will be an induced negative charge on the

dielectric surface near the positive plate, Fig. 1.11, and a similar positive

charge on the surface near the negative plate. There will be no resultant

charge density at any point within the dielectric as all the individual

dipoles are aligned parallel to the field and hence each negative charge

of one dipole is next to the positive charge of the next dipole. The sur-

face charges on the dielectric will induce charges of opposite sign on

the plates, and the charge on the plates is increased when the dielectric
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is inserted, if the voltage is kept constant, as Faraday found in his

experiments.

The action of the electric field in giving each atom of the dielectric an
induced dipole moment is termed polarization. The polarization of the
substance P is defined as the electric dipole moment per unit volume,
and it is proportional in magnitude to the applied field E at all ordinary

+ v

+ + + 1 + + +
^/T7?"///?/?? I

/ \E = 2Vjd

Fig. 1.11. Effect of a dielectric in increasing the capacitance
between two parallel plates.

field strengths. P is a vector and in an isotropic substance it is parallel

to E so that we may write

P = Xe E. (1.16)

Here x is a constant for any given substance, known as the polarizability

or the electric susceptibility.

The resultant moment for an element of volume dr is Pdr, and the
potential of such an element a distance r away is, by equation (1.11 b),

dV = —L (P<Z-r).grad(l//-),
47re

where the differentiation is with respect to the coordinates ofthe volume
element containing the dipoles. The potential due to a finite volume of
dielectric is then »

F =
J
^{P-grada/r)}^.

But div(P/r) =idivP+P.grad(l/r).

Hence .
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where Gauss's theorem of divergence has been used in the transforma-

tion from a volume to a surface integral. These two terms in equation

(1.17) show that the resultant potential can be attributed to an apparent

surface charge of density P cos 6, where 6 is the angle which P makes

with the normal to the surface of the dielectric, and an apparent volume

distribution of charge whose density is

-divP = -(8Pj8x+8Pj8y+8Pj8z).

If x is uniform, isotropic, and independent of field, and there is no

volume distribution of real charge, div P = xeo^vE = 0, and there is

no volume distribution of apparent charge. The surface distribution

vanishes only when there is no applied field. These apparent charges

are often called 'polarization charges'. Note that in the derivation of

equation (1.17) it has not been assumed that the dielectric is isotropic.

Gauss's theorem in dielectrics

In § 1.3 it was shown by Gauss's theorem that the integral
J
E.dS

of the normal component of E over any closed surface is equal to the

total charge within the surface, divided by e . If the surface is within

a dielectric medium, the total charge must include both the free charges

and the polarization charges. The volume charge density is thus

p— (divP), so that

f E.dS = f divE dr = - f (p-divP) dr

so that f div(e E+P) dr = f p dr.

Comparison of this with equation (1.7 c) shows that, in effect, e E has

been replaced by (e E+P). We may define a new vector D, such that

D = e E+P. (1.18)

D is known as the 'electric displacement', and equation (1.18) is valid

even in an anisotropic medium where P is not necessarily parallel to E.

We may now write Gauss's theorem, in a dielectric medium, in the form

jD.dS = jdivDdr = jpdr. (1.19)

Since the volume integrals must be equal over any arbitrary volume, it

follows that their integrands must be equal, i.e.

divD = P , (1.20)

which is the differential form of Gauss's theorem. It is easy to see that

these equations reduce to those of § 1.3 in vacuo, where P = 0. An
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alternative way of deriving equation (1.20) directly for the special case

of Cartesian coordinates is given in Appendix A.

In an isotropic dielectric, P is parallel to E, and hence so also is D.

Since P = xeo E >
D = eo( 1+x)^i > an(i # we write

€=l+x (1.21)

we have D = ee E, (1-22)

where e is the 'dielectric constant' and x is the susceptibility; for vacuum
(or air, for most purposes), x = °> an(i e = 1. The ratio of D to E is

known as the 'permittivity'; in free space D/E = e , and thus e is the

'permittivity of free space'. When a medium is present D/E is increased

by the factor e, known also as the 'relative permittivity'.

Ifwe have a single point charge q in a uniform dielectric of constant e,

we may apply Gauss's theorem over a sphere of radius r with centre at q.

Then the surface integral reduces to 4irrzD = <brr2ee E = q, whence

-oE = D = £-3
. (1.23)

It follows that the force between two charges qx , q2 a distance r apart is

F== gl?2 f
477ee r3

and the potential at a distance r from a point charge is

F = -Mi.r (1.24)
477ee r*

'

y=j-^— (1.25)
47T€e r

Some properties of D and E
It is important to distinguish clearly between the two vector quantities

electric field E and electric displacement D. E is defined as the force

acting on unit charge, irrespective of whether a dielectric medium is

present or not. This definition is expressed in equation (1.3). The dis-

placement D is defined by equation (1.18). The quantity D .dS is some-
times known as the electric flux through the element of area dS. From
(1.19) the total flux is q through an area surrounding a charge q, and
this flux is unaltered by the presence of a dielectric medium. The unit

of flux is the coulomb, and the unit ofD is coulomb/metre2
.

Since D is a vector we may draw lines of displacement analogous to

lines of force, such that the number passing through unit area is equal

to the displacement. Also by Gauss's theorem lines of displacement are

continuous in a space containing no free charges; they begin and end
only on free charges. At the boundary of two dielectrics e± and e2 , if no
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free charge resides there, lines of D are continuous but lines of E are

not, because lines of force end on both free and polarization charges,

whereas lines of D end only on free charges. There is a polarization

charge on the surface separating two dielectrics, since the induced

moment per unit volume is different in the two media. Lines ofE begin

A I B iE t1 <-—" -"---,f^
U~~-.

n n^ —J
../<:.

A

Fig. 1.12. Boundary conditions at the surface between two dielectrics.

and end on this surface charge, but not lines of D. The rules governing

the behaviour of E and D at the surface of a dielectric, or the boundary

between two dielectrics, are embodied in two 'boundary conditions',

which will now be derived.

To find the boundary condition for D, we apply Gauss's theorem to

a small cylinder which intersects the boundary, as in Fig. 1.12, and

whose axis is normal to the boundary. If the height of the cylinder is

very small compared with its cross-sectional area, the only contribution

to [ D .dS over its surface will come from the components of D normal

to the boundary. Since there is no free charge on the boundary,

J
D .dS = 0, and hence ^ = J)n ,

(1.26)

where the symbols refer to the normal components of D on the two

sides of the boundary.

The boundary condition for E is found by considering the work done

in taking unit charge round a small rectangular circuit such as ABCDA
in Fig. 1.12. Ifthe sides BO, AD are very small compared with AB, CD,

then the work done will be 1^,—^) = 0. Hence

1% = *«», (1-27)

where the symbols refer to the tangential components of E on either

side of the boundary. Thus equations (1.26) and (1.27) are our two
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fundamental boundary conditions. It follows from them that lines of

D will in general be refracted at the boundary between two dielectrics.

A typical example is shown in Fig. 1.13.

Fig. 1.13. Refraction of lines of displacement at the boundary between two dielectrics

(ea > *i)- From equations (1.26) and (1.27) we have

Hence

D1 cos 6X = .Da cos 2 ,

E1 sin 9t = (DJcj e )sin X
— E2 sin 82

«i cot 6X = e2 cot 2 .

(X>8/ea « )sin 2 ,

Similar boundary conditions may be applied at the surface of a con-

ductor. Since there can be no field inside the conductor, the tangential

component of E just outside the conductor must also be zero, and any
field at the surface must be normal to the surface. If we apply Gauss's

theorem to an elementary cylinder intersecting the surface, as in Fig. 1.12

we have -findS = odS (since 2D„ = within the conductor), where a is

the charge density on the conducting surface. Since XD must be normal
to the surface, we have

2D = J)n , and hence (dropping the subscripts)

D = ee E=a (1.28)

at the surface of the conductor immersed in a medium of dielectric

constant e.

1.6. Properties of capacitors and systems of conductors
If a charge Q is given to an isolated conductor its voltage is increased

by an amount V. For a given conductor the ratio QjV is independent
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of Q and depends only on the size and shape of the conductor. The

ratio QjV is called the capacitance of the conductor, and is denoted by C.

If a second conductor which is earthed is brought close to the first one,

a charge of opposite sign is induced on it, and the potential falls. Since

Q is constant if the conductor is isolated, the capacitance has increased.

The two conductors together form a capacitor, and the capacitance of

the capacitor is defined as the ratio of the charge on either conductor to

the potential difference between them. A capacitor is an instrument for

storing charge, and a capacitor of large capacitance can store a corre-

spondingly large quantity of charge for a given potential difference

between the plates. The capacitance depends on the geometry of the

conductors and the dielectric constant of the medium separating them.

In general, calculation ofthe capacitance of a conductor or a capacitor

is difficult unless simple geometrical shapes are involved. The principle

of the calculation may be illustrated by the case of an isolated sphere,

of radius a, in an infinite dielectric. Suppose this carries a charge Q.

Then by applying Gauss's theorem over a spherical surface of radius r,

concentric with the sphere, we have

4t7T2.D = 47rr*ee E = Q,

since, by symmetry, D and E are constant over the spherical surface

and everywhere normal to it. Hence

QE =
47reen r

2

which is the same as equation (1.23) for a point charge Q . The potential

of the sphere is

Edr = Q
47T€€ a

Hence O = QjV = .4»r« a. (1.29)

If instead of an isolated sphere we have a capacitor formed by two

concentric spheres as in Fig. 1.14 of radii a, b (b > a), we may place a

charge Q on the inner sphere and a charge —Q on the outer sphere.

Then the formula given above for E holds in the dielectric-filled space

between the spheres, while everywhere else E is zero. Hence the poten-

tial difference between the two spheres is

Q
-I

1—-)
e \a b)47ree

and the capacitance is C = 47Tee a6/(6— a). (1.30)
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Another simple type of capacitor is formed by two plane parallel

plates of area S and separation t. If the lateral dimensions of the plates

are large compared with their separation (or if the plates are surrounded

by 'guard rings' at the same potential), then the field between them is

Fig. 1.14. A spherical capacitor.

uniform and normal to the planes, being given by equation (1.28) with

a = QjS. Since the field is uniform, the potential difference between

the plates is simply V = Et, and the capacitance is thus

C = QIV = ee Slt: (1.31)

This equation (and also equations (1.29) and (1.30)) shows that the

capacitance increases by a factor e if the space between the plates is

filled with a medium of dielectric constant e. This agrees with the

original definition of dielectric constant by Faraday, mentioned at the

beginning of § 1.5.

The unit of capacitance is called the farad (F) ; the plates ofa capacitor

of 1 F carry a charge of 1 coulomb if their potential difference is 1 V.
Reference to equations (1.29) to (1.31) above, or more fundamentally,

to equation (1.25), shows that a capacitance has the dimensions of e

multiplied by a length; hence the unit of e is the farad/metre. The
farad is a very large unit (a sphere the size of the earth would have
a capacitance of about 10_3 F), and the subdivisions microfarad

(fj?) = 10-6 F, and micromicrofarad (/x/*F or pF) = 10-12 F are com-
monly used instead.

A result often required is the net capacitance of a number of capaci-

tors joined either in series, or in parallel, as in Fig. 1.15. Ifn capacitors

C1} C2 Cn are joined in series, and a voltage V applied across them,
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a charge +Q appears on the plate A and —Q on the plate B. The plate

2 of the first capacitor will have charge — Q, and plate 1 of the second

capacitor must therefore have charge -\-Q since the two, though con-

nected together, are otherwise isolated and their total charge must
remain zero on connecting the battery. Thus each capacitor carries

Cx
3_

"W

4+i+ ...+^+ ...+i.. (1.32)

(«) (b)

Fig. 1.15. (a) Capacitors in series. (6) Capacitors in parallel.

the same charge, irrespective of its size, and the potential across the
n

jfcth capacitor is Q\Gk . Hence the total potential is 2 (QIGk), and this
i

equals QIC, where C is the net capacitance. Equating these two results

gives
j

G Q C2 uk

If the capacitors are joined in parallel, the voltage across each

capacitor is equal to V. The total charge carried by all the capacitors

is Q = Q1+Q»+...+Qk+:.+Qn = V(C1+C2+...+Gk+...+Cn) = VG,

where C is the net capacitance. Hence

G = C1+C2+...+Ck+...+Gn . (1.33)

The potential energy of a system of charges and charged conductors

A system of electric charges possesses potential energy, since work

must be done in bringing up any particular charge through the electro-

static field of the remaining charges. The energy depends only on the

final state of the system and not on how the charges are established.

We may therefore suppose that each charge is increased from zero to

its final value in infinitesimal steps so that at any given instant each

charge is ocqk , where qk is its final value and a is a number less than
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unity which is the same for all charges. Then if Vk is the final value of

the potential at the point occupied by qk , the instantaneous value of the

potential will be aVk , and the work done in increasing the charge by

qk da will be (aVk)(qk da). Thus the work done in increasing all the charges

by a corresponding amount will be a da. 2 <lk\- The total work done
k

is equal to the stored energy, which will therefore be
i

U = lqkVk \ada = i2qkVk . (1.34)
k

o
k

We may apply this result to a capacitor with two plates at potentials

Vlt V2 carrying charges +Q and —Q respectively. The energy of the

capacitor will be

U = IQVL-iQVt = IQV = \CV* = IQ'IC, (1.35)

where V = V^—V2 is the potential difference between the plates.

The energy of the system may be expressed in a different way which
implies that it is distributed over the space between the charges occupied

by their electrostatic field. Consider two nearby equipotential surfaces

in this space which differ in potential by a small amount V, and are a
distance ds apart. If two parallel conducting plates of area dS were
inserted so as to coincide with these equipotentials, they would not
alter the field distribution in any way. They would form a parallel plate

capacitor of capacity C and energy JCF2
. But G = ee dS/ds and

V = —Eds, where E is the electric field at this point. The capacitor

occupies a volume dr = dSds and its energy is fee E2(dSds) = %DE dr.

We may therefore regard the energy as distributed throughout the field,

the energy density at any point being \BE. This equation may be
derived more rigorously by vector analysis, as follows.

In Fig. 1.16 suppose there exists a volume distribution of charge of

density p per unit volume and a surface distribution of density a per
unit area. Then from equation (1.34), if the summation is replaced by
integrations, we have for the total energy

U = J J PV rfr+i j aV dS,

where the surface integral is taken over the surfaces of all the conduc-
tors present. By Gauss's theorem, p — divD, and hence, using a vector

transformation (see Appendix A), pV — FdivD = div(FD)—D.gradF.
Therefore

\ j pV dr = \ j div(FD)*r-J
J
D.gradFtZr

= i j VD AS+l j D .E dr.
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The first integral must be taken over a closed surface bounding the

whole volume, and also over the surface of each conductor. The first

surface may be taken at an infinitely large distance from all the charges,

and its contribution to the surface integral then vanishes. For, at large

distances, V varies as r
_1 and D as r

-2
, while dS increases with r2 ; thus

a

Fig. 1.16. Diagram to illustrate the calculation of the energy density

of a system of surface and volume charges.

the integral is proportional to r
-1 and tends to zero as r tends to infinity.

The total energy may now be written

U = | f D .E dr+l j VD .dS+i
J
aV dS,

where the surface integrals are taken over the surfaces of all the con-

ductors. Since the integration is over the surface of the medium, dS is

a vector drawn outwards from the medium and hence into the con-

ducting surface as in Fig. 1.16. But the normal component ofD in this

direction is —a, from equation (1.28), and hence D.dS = —adS, so

that the two surface integrals in our expression for U cancel. Our final

expression for U becomes

U = %JD.Edr. (1.36)

Since E is zero within any conductor, we may regard the energy as

distributed throughout the surrounding dielectric medium, with density

JD.E. This expression is valid in anisotropic dielectrics, where D is

not necessarily parallel to E, but it assumes that D is always propor-

tional to E.

1.7. Stress in the electrostatic field

It has already been shown that the charge on a conductor resides in

a thin surface layer. This is due to the mutual repulsion between charges

of like sign, so that each portion of the charge on the conductor is



K7] ELECTROSTATICS I 27

trying to get as far away as possible from the remainder. This results in

a tension acting on the surface of the conductor, whose magnitude will

now be calculated. We shall assume that the charge of surface density or

is in a thin layer just outside the conducting surface, in a medium of

dielectric constant e, as in Fig. 1.17. By applying Gauss's theorem to

a small cylinder with its axis normal to the surface, and with one end
inside the conductor and the other within the surface layer, the field E'

Elementary cylinder

Fig. 1.17. Deduction of the tension on a charged conductor.

at this latter point is found to be E' = (<joc)[ee , where aoc is the portion

of the surface charge density lying between the conductor and the end

of the cylinder. The force on the element of charge density a da. at the

end of the cylinder is therefore E'(o-afa) = a2<xd<xjee , and the total force

per unit area is x

T =— [ocd<x = -?—. (1.37)

o

At first sight the assumption that the charge layer resides in the

dielectric may appear rather artificial, but the same result may be

obtained by application of the principle of virtual work to special cases.

For example, consider a parallel plate capacitor with a medium of

dielectric constant e between the plates. If the separation between the

plates is x, and their area 8, the capacitance G = ee 8/x, and the stored

energy is J<2
2/C = ^a2

/S
2/C, where a is the charge density on the plates.

If a is kept constant, and the separation of the plates is increased, the

rate of change of the stored energy is

dU d . . o*S
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But (dU/dx) = —ST, where T is the tension per unit area on the plate,

and hence T = —

a

2/2«€ , where the minus sign denotes that the tension

acts in the opposite direction to the movement of the one plate, i.e. in

the direction of diminishing x.

It is interesting to derive the tension on the plates of this capacitor

if the voltage, rather than the charge, is kept constant. In this case we
must include the work done by the battery maintaining the constant

potential difference. If the capacitance increases by dC, the charge in-

creases by V dC, and the work done by the battery is V(V dC) = V2 dC.

The increase in the stored energy is dU = d(^CV2
) = \V*dC, and the

external work dW required is therefore

lV*dC-V2dC = -IV2dC = -dU.

Hence the tension on the plates is

T=- 1
-(

d-W)=.
S\8x

"K-W^fl-
e«E\

which is the same as before, as we should expect. The fact that the

work done by the battery in maintaining the system at constant poten-

tial is just twice the increase in the stored energy is generally true, and

our example is just a particular case. It is, however, probably more

instructive for the student to remember to put in the work done by the

battery in working a particular problem at constant potential rather

than avoiding the issue by making use of a general theorem.

Stresses in dielectric media

Both Faraday and Maxwell used the concept of tubes of force. A tube

of force contains an arbitrary but very large number of lines of force,

and the number of tubes crossing unit area is equal to the electric

intensity; similarly, the number of tubes of displacement per unit area

is equal to D. They imagined these tubes to be in a state of tension,

so that the force of attraction between two charges of opposite sign,

for example, was transmitted along the tubes of force. It was also

necessary to stipulate that there was a force of repulsion between tubes

of force in a direction normal to their length, otherwise the tubes would

all contract until they passed straight from one charge to another.

These forces can be expressed in terms of the 'Maxwell Stress Tensor',

and we shall quote the results (a complete treatment is given in Panofsky
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and Phillips, 1955). The a;-component dFx of the force dF transmitted

across a surface element dS is

dFx = Txx dSx+Txy dSy+Txz dSz (1.38)

with similar equations for dFy , dFz . The quantities Txx , Txy , etc., form
the nine components of a tensor T, which can be written as

f UExDx-EyDy-EzDz ) ExDy EXDZ \

\{JEyBy-EzBz-ExDx ) EyDz |.

EzDy i(EzDz-ExDx-EyDy)J

(1.39)

T EyDx

E,Dr.

Fig. 1.18. A surface element dS, and its stress components. From equation (1.40)
these are <W_ - \ED dS cosff, dFy .

dF= (dF£+dn)i--
Tvv dSv = —\ED dS sinff, so that
\ED dS.

Tyx , etc.), and by choosing aThis tensor is symmetric (that is, Txy
special set of axes, the off-diagonal terms can be made zero. Ifwe choose

the x-axis to be parallel to E, T takes the form

t\ED \

T = -\FD (1.40)

\ -\EDj
whose significance is that we have a force component = -\-%ED{dSx )

parallel to E, and components —%ED(dSy), —\ED(dSs) normal to E.
These are shown in Fig. 1.18 for a surface element for which dS is

normal to the z-axis, and in Kg. 1.19 for the special cases where E is

normal and parallel to the surface.

It must be realized that these stresses must be regarded as present

in the field irrespective of whether dS is an element of a real boundary
or not. If dS is not a real boundary, there will be equal and opposite

stresses on the other side, so that equilibrium is maintained. If, how-
ever, dS is part of a real boundary, and the vectors E, D are different
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on the two sides, there will be a net force acting at the bounding surface.

The charged conductor considered above is a special case where E, D
are zero on one side, and normal to the boundary on the other, and it

is easily seen that the tension given by equation (1.37) agrees with that

given by the Maxwell Stress Tensor. The tensor representation is of

course more general, and makes it possible to compute the stress on

+ T = £E . D 1E.D

(a) (b)

Fig. 1.19. The stress at a surface which is (a) normal and (6) parallel to a field E.

a dielectric boundary. This is equal to the difference AT of the Maxwell

Stress Tensors on the two sides of the boundary, and it is easy to show

that the resultant force is always normal to the boundary. For, if the

latter is taken to be normal to the z-axis, so that the only component

of dS is dSz, then we have

dFx = (Ar„)d», =
{xExrDz

-
%ExiDz)dSz = 0,

dFy = (&Tyz)dSz = {xEy J)z-^Ey J)z)d8z = 0,

which both vanish because the boundary conditions make Ex , Ey , Ds

continuous across the boundary.
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PROBLEMS
1.1. An electric quadrupole is formed by a charge — 2e at the origin and charges

+ e at the points (±a, 0, 0). Show that the potential Fata distance r large com-

pared with a is approximately given by V = +ea2(3cos20— l)/47re ''3
» where 6 is

the angle between r and the line through the charges.



ELECTROSTATICS I 31

1.2. Show that there is no translational force or couple on such an electric quadru-
pole in a uniform field. Prove that the couple on the quadrupole at a distance r

3ea*sin20 .q

47re r3

line through the charges. (Assume r ^> a.)

from a point charge q is C = —

—

-—^-^, where 6 is the angle between r and the

1.3. Show that the force on an elementary dipole of moment p, distance r from
a point charge q, has components

¥ gp cos 6 _ qpshaO

2nee r
3 ' *e ~ 4ire r3

along and perpendicular to r in the plane of p and r, where 6 is the angle which
p makes with r.

1.4. Show that the potential energy oftwo coplanar dipolespx and p 2 a distance r

apart is

-;—-A; (sin 0, sin0,-2 cos 9, cos 6„),
477€ r3

* i. ii

where 6lt 2 are the angles made by px and p2 respectively with the line joining

their centres.

1.5. A charge q is placed at each of the four corners (±a, 0, 0), (0, ±a, 0) of a
square. Show that the potential at a point (x, y, z) near the origin is

V = —^— [4+ (a;
2+ j/

2-2z2)/a2 +...].
47T€ a

Verify that a charge of the same sign placed at the centre of the square is in stable
equilibrium against a small displacement in the plane ofthe square, but is unstable
foradisplacementnormalto this plane. This is an example ofEarnshaw 's theorem,
which shows that a charge cannot rest in stable equilibrium in an electrostatic field.

1.6. The values of the vertical potential gradient of the earth at heights of 100
and 1000 metres above its surface are 110 and 25 V/metre respectively. What is

the mean electrostatic charge per cubic metre of the atmosphere between these
heights?

(Answer: 0-835 x 10~12 coulombs/metre3
.)

1.7. A parallel plate capacitor with plates of area S and separation d has a block
of dielectric, of constant e, of cross-sectional area S, and thickness t (t ^ d),

inserted in between the plates. Find the values of E and D in the space between
the plates, in both air and dielectric. Show that the capacitance ofthe capacitor is

G = ,_. _ 1
>. > and calculate the change in stored energy of the system when

the dielectric is inserted (a) if the plates have a constant charge Q, and (6) if they
are connected to a battery at a constant potential V.

(Answer: (a) AU = -«£=*>?; (6) AU = + 'o^-D*
,)

1.8. Find an expression for the capacitance per unit length ofa cylindrical capacitor
consisting of two concentric cylinders, radii a and b, separated by a medium of
dielectric constant e. (Neglect edge effects.)

(Answer: C = 2iree /log(b/a).)
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1.9. A capacitor is formed by two coaxial cylinders of radii a and 6. The axes

of the cylinders are vertical and the inner cylinder is suspended from a balance

so that it hangs only partly within the outer cylinder. Find an expression for the

mass which must be added to the other pan of the balance to maintain equilibrium

when a voltage V is connected between the two cylinders.

(Answer: mg = me F2/log(6/a).)

1.10. The electrometer is an instrument for measuring voltages by means of the

force on a charged conductor. An attracted disk electrometer has a moving plate

of area 100 cm2
, separated by a distance of 1 mm from the fixed plate. Calculate

the force between the plates when the potential difference across them is 100 V.

Calculate the sensitivity at this voltage in newtons per volt.

(Answer: F = 4-42 X 10"1 newtons, dF/dV = 8-85 X lO"6 newton/V.)

1.11. The upper disk of such an electrometer is suspended by a spring. In equili-

brium, the separation between the two disks is x when a voltage V is applied and
a when V = 0. Show that the equilibrium in the former case is stable provided

that x > 2a/3.

1.12. A sphere carrying a charge density tj per unit area is immersed in an infinite

dielectric medium. Verify equation (1.37) by using the principle of virtual work
and allowing the radius to change infinitesimally.

1.13. Assuming that the total charge Ze of an atomic nucleus is uniformly distri-

buted within a sphere of radius a, show that the potential at a distance r from the

centre (r < a) is ,„ ]/rt i,

Show that the electrostatic energy of such a nucleus is

u _ 3(Ze)2

^

2(hr€ a'

This electrostatic energy must be provided at the expense of a small decrease Sw
in the mass of the nucleus, such that U = Smc2

, where c = velocity of light, by
the Einstein relation. 8m is part of the 'mass defect'.

1.14. An atom with an electron in an s-state has a finite density — p of electronic

charge inside the nucleus. Using the formula for the potential inside the nucleus

given in the previous problem, show that the potential energy associated with

the electron density —p inside the sphere ofradius a is — 2Zepa 2/5£ , and that this

is greater by Zepa^j 10e than it would have been if the nucleus were a point charge.

Since isotopes of the same element have different nuclear radii, this energy

forms part of the 'isotope shift'; that is, the difference in frequency of spectrum

lines from different isotopes.
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2.1. The equations of Poisson and Laplace

In a region where there exists a charge distribution of density p per unit

volume, the differential form of Gauss's theorem is (equation (1.20))

divD = p.

Now E = —grad V, and in an isotropic dielectric D = ee E. Hence

V2F = div(gradF) = -divE = -/>/ee . (2.1)

This is known as Poisson's equation. If there is no free charge present,

p = 0, and we have Laplace's equation

V2F = 0. (2.2)

The operator denoted by V2 is a scalar operator, which has its simplest

form in Cartesian coordinates, where Poisson's equation becomes

ew 8W 8*V_ p
8x2+ 8y

2± 8z*~ ee
' ^^

Two other coordinate systems will be considered. These are spherical

polar coordinates, where Poisson's equation becomes

r2 8r\ 8r )
T

r2 sin Odd\ 86 J ^

r

2 sin2
df*

~
ee ' K

'

and cylindrical polar coordinates, where we have

\d_(8V
r 8r\ 8r

i

)r)
+
r*dez + 8z*

~
ee

' (2.5)

In principle, equation (2.1) enables us to calculate the potential distri-

bution due to any given set of charges and conductors. A formal solu-

tion of Poisson's equation can be found,

J
p dr

(2.6)

but this holds only in a vacuum or an infinite dielectric medium. If

there are conductors present we should have to allow for the effect of

the charge distribution on their surfaces, but we do not in general know
what this distribution is. We have therefore to resort to a number of

special methods, but we must be sure that any solution we obtain which
851110 D
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satisfies the boundary conditions is the correct and only answer. That

this is the case is shown by an important theorem, known as the Unique-

ness Theorem. This theorem (see Appendix B) shows that if two different

potential distributions are assumed to satisfy Laplace's equation and the

boundary conditions, their difference is zero. We now discuss a number

of methods for the case of no free charges, where the solutions needed

are of Laplace's rather than Poisson's equation.

The required solution may be a sum of a number of functions, each

of which satisfies Laplace's equation; for, if the functions Vx , V%,..., Vn
are each individual solutions of Laplace's equation, then

V = a1V1+aaV1+...+anVn ,

where a1; a2,.„, an are a set of numerical coefficients, is also a solution.

A series of functions, each of which is a solution of Laplace's equation,

may sometimes be found by making use ofthe fact that ifVx is a solution,

so also are any differentials of T^ with respect to the space coordinates.

Thus in Cartesian coordinates the functions dVJdx, dVJdy, dVJdz, dWJdx*

BWjBxdy, etc., all satisfy equation (2.2) ifVx does. The proof of this can

be seen from a single example. On partial differentiation of equation

(2.3) with respect to x, we have (setting p = 0)

= 1/^4.^1 -t-S
8z\dx*~

r
dy2

~
t
~dz*j

dx*\dx )

"*"

8y2\8x J

"*"
8z2\8x ) \8x}'

since the order of differentiation is immaterial when x, y, z are indepen-

dent coordinates. The value of this method lies in the fact that once

a series of functions which satisfy equation (2.2) is established, any linear

combination of these functions may be taken, and if they can be chosen

in such a way as to satisfy the boundary conditions by adjustment of

the coefficients, they give the unique solution to the problem.

In theory, any problem involving electrostatic fields may be solved

by finding a solution which satisfies equation (2.2) and gives the right

boundary conditions. In practice the problem is almost insoluble by
ordinary mathematical methods except in cases where there is a high

degree of symmetry. These may be handled by the use of a series of

known functions, and some examples of this method are given below.

We shall consider also another special method which can be applied to

the case of one or two point charges near to a conducting surface of

simple shape. Though a number of other problems may be handled by
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mathematical methods which are beyond the scope of this volume (see

the general references at the end of Chapter 1), most of the problems

met with in practice, such as the design of electron guns to give a focused

beam in a cathode ray tube, are dealt with either by use of approximate

solutions, or by plotting the lines of equal potential using a scale model

as described in Chapter 3.

2.2. Solutions of Laplace's equation in spherical coordinates

We shall consider first the case of spherical coordinates, and assume

initially that we have symmetry about the polar axis so that V is inde-

pendent of
<f>.

Then Laplace's equation reduces to

where /z. has been written for cos#. This has solutions of the form

V = r'Pj, where P
t
is a function of /* = cos 6 only, and I is an integer.

If we substitute such a function in equation (2.7), and divide through

by i*, we obtain Le^endre's differential equation for P
t

|((i-rtf}+W+Di!=o.

It is readily seen that replacing I by — (£+1) leaves this equation un-

altered, so that Pj = P_
ft+1) ; that is, V = t^Pj and V = r-f+^Pj are both

solutions of equation (2.7).

Solutions of Legendre's equation may be obtained by standard

methods, but a quick alternative method is as follows. We know that

V = 1/r is a solution, and hence so is any partial derivative of this such

as (BVjdz) under the conditions x, y constant. Since r2 = x2+y2+z2
,

we have 2r{8rj8z) = 2z when x, y are kept constant, so that

f-1

Hence -|^) (-|=^|^1 = _| = r
-2 COs0

if we take z to lie along the polar axis, so that z = r cos 9. The two
functions V = r

_1 and r~2 cos 6 are the first two types of solution in

the inverse powers r~fJ+v>
, and correspond to values of I = and 1

respectively. Thus P = 1, and Px
— cos0. Further functions may be

generated by successive differentiation; thus

(a/a2)(z/r3) = (1— 3z2/r>-3 = (1— 3cos20)»-3
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gives the next function, which is proportional to Pz . A general formula

*°rP
?
is

1 m ,

s-mkjv- 1 *' (2 - 8)

where the numerical coefficients are such that P
}
= 1 at /x = 1, i.e. at

= 0. The first few functions are given in Table 2.1, together with

the radial functions r~(Z+1) and r1 with which they combine to give solu-

tions of Laplace's equation.

Table 2.1

Some spherical harmonic functions

Legendre function Function of r

Po-l r-i 1

P1
= cos r-z r

P2
= i(3cosa0-l) r-3 r2

P3
= £(5coss0-3cos0) y—4 rS

P4
= $(35 cos40-3O cos20+3) p~5 ^.4

P5
= |(63 cos50-7O cos30+15) j.-6 r 5

P» = *(231 cos 60-315 cos40+lO5 cos80--5) r-7 r

Associated Legendre functions

Table 2.1 clearly does not contain all possible solutions of Laplace's

equation, since we can find others by differentiation with respect to

x, y. For example,

must also be a solution. The fact that it contains
<f>
shows that it is not

a solution of equation (2.7), but of the more general equation which

includes the dependence on <j>. This is

m+ihO- dW = o, (2.9)
8r) ' 3/4

x

fy\ {l—tj?)d<j>
2

where we have again written ju. for cos 9. As before, we assume that

there exists a solution of the form V = r1®®, where 0, <D are functions

only of 0,
<f>

respectively. Then the differential equation for 00 is

2(@O)
1 J. Uu I — > —T~ Ij I t,

—t— A 1 1 \"/V!^ I —+— .

dfxy 8/M J+^'Wi+r^-* <"°>

which can be written in the form

(W'-^h^H -*--*£ <2I1 >



2.2] ELECTROSTATICS II 37

where the variables are separated. The right-hand side has the solution

Om = (2ir)-him,f> (2.12)

and the equation for becomes

fi'-O+K 1'-!^ -
<

213
'

It is apparent that the functions listed in Table 2.1 are solutions of this

equation for the special case m = 0, where there is no dependence on
<f>.

The solutions of equation (2.13) are

The functions O defined by equation (2.12) are 'normalized'; that is

J"
<D* <Dm d</> =

I
(27r)-1e-im#eim^ &j> = 1 (2.15)

o o

and they are also 'orthogonal' ; that is (to' ^ to)

2w 2w

J
$«• $m <¥ =

J
(277)-1e-im'^eW cZ<£ = 0. (2.16)

o o

By using the Kronecker 8, whose properties are that S(m',m) — 1 if

m' = to, but S(to', m) = if to' =£ to, we can write these two equa-
tions in the short form

J**.*m «ty = 8(«i',»). (2.17)

o

The functions i£m are orthogonal but not normalized, and hence it

is often convenient to work in terms of 'spherical harmonics' denned by

\m = ®i,m®m > (2.18)

wfcere *._ (
-lr(<i^M)^ fot „, >0,

®?,m = (-l)"0««i for to < 0.

The functions Ylm are both orthogonal and normalized; that is

2tt it

j j Yf.<m.Yhm am.e d6d<j> = 8(Z',Z)S(to',to), (2.20)

o o
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where the integration is over the solid angle 477. Here the significance

of the 8 functions is that the integral is zero unless both I' = I and

m' = m, in which case it is unity.

Expressions for the first members of the series of spherical harmonics

are listed in Table 2.2 (note that the signs of the functions used by
different authors sometimes differ; we have followed the definition

adopted by Ramsey (1956) and Brink and Satchler (1962)). A general

proof of the orthogonality and normalization relations is tedious, but

the reader may verify that they are correct by evaluating the integrals

for some of the functions given in Table 2.2.

Table 2.2

Some spherical harmonic functions

rn + (3/477)* cos o10 + COS 6

r1+1 -(3/877)* sin 8 6** Ci+i — 2-*sin0e+i*

Ti-i + (3/877)* sin 0e-«* O1-1 + 2-*sin0e_i'*

* SO + (5/16t7)*(3coss0-1) ^20 + i(3cos20-l)

*S+1 - (15/877)* cos sin e+»* Ca+i — (3/2)* cos sin 6+**

*t-i + (15/877)* cos sin 0e~»* C2-l + (3/2)* cos sin ©e
-**

*8+8 + (15/3277)*sin20e+i2* c2+ 2 + (3/8)*sin20e+i2*

Y 2_j + (15/3277)* sin20e-» a* C«- a + (3/8)*sin20e~* 2*

*80 + (7/16t7)*(5 cos30-3 cos 0) ^80 + £(5cos80— 3cos0)
* 3+1

- (21/64t7)*(5 cos20- l)sin 9 e** ^3+1 -(3/16)*(5 cos 20-l)sin0e+»*

*t-l + (21/64t7)*(5 cos20- l)sin «"** C3-I + (3/16)*(5 cos 20-l)sin0e-**

*a+a + ( 105/3277)* cos 6 sin2 6+42<* Cs+a + (15/8)* cos 0sin 20e+i2*

I3-2 + ( 105/3277)* cos 8 sin^e-42* ^3-8 + (15/8)* cos 0siu20e-i2*

*8+s — (35/64tt)* sin8 e 1*** O3+3 — (5/18)* sin3 e+i3*

* a-s + (35/6477)* sin80e-*8* ^3-8 + (5/16)*sin30e- i3*

The functions Clm are related to Ylm by Clm = (gfTi)
Yl™- Note that °'° = Ff

The spherical harmonics have many applications, some of which are

discussed in the next section. From the atomic viewpoint, their parti-

cular interest is that Yl>m represents the angular variation of the wave-

function for an electron in an atom which has orbital angular momen-
tum J{l(l-\-l)}(hl27r), and a component m{hj2Tr) of angular momentum
along the z-axis (the polar axis), where h is Planck's constant.

2.3. The multipole expansion

If we have a charge distribution with density p in a region where the

potential V is varying, the potential energy is

Ur = j pV dr. (2.21)



2.3] ELECTROSTATICS II 39

If the charge extends only over a small volume, we can expand V in

a series

V = V +x(8Vl8x)+y(8Vldy)+z(dVldz)+
+$x*(8Wldx*)+\y\8W\8y*)+\z\8W\8z*)+

+^xy(8iV/8x8y)+iyx{8Wl8y8x)+etc. (2.22)

The potential energy then becomes

UP = j pV dr+ j Px{8Vl8x)dr+ j Py{8Vl8y)dT+ j Pz(8Vl8z)dr+ete.

(2.23)

Here the first term is simply qV , where q = j p dr is the total charge.

Since 8V\dx = —Ex , etc., we can write the next three terms as

px(8V/8x)+pv(8Vjdy) +pJ,8V\8z)

= - (Px E*+Pv Ey+P* E.) = -P • E, (2.24)

and by comparison with equation (1.13) we identify the quantities

Px> PyPz as *ne components of the electric dipole moment of the charge

distribution. This gives a general definition of the dipole moment of

a charge distribution, the components being

Px =
J*
Px dr> Pv = j PV dr, pz = j pzdr, or p =

J pr dr. (2.25)

If we have a number of point charges rather than a continuous distri-

bution, the integrals can be replaced by a summation (a dipole consist-

ing of two equal and opposite charges separated by a small distance,

as defined in Chapter 1, is thus a special case). Note that in equation

(2.24) we have implicitly assumed that the first differentials of V are

constant over the region occupied by charge, since only then can we
take them outside the integration.

If the charge distribution has reflection symmetry in the plane z = 0,

that is, if the charge density p at the point (x, y, z) is the same as that

at the point {x,y, —z), the component pz of the dipole moment will be
zero, since in the integral j pz dr the contributions from the points

(x,y,z) and (x,y, —z) will be equal and opposite. Thus in a diatomic

molecule, an electric dipole moment can exist parallel to the fine joining

the two nuclei if they are different (i.e. if the molecule is heteronuclear,

such as HC1), but not if they are identical, as in a homonuclear molecule

(H2,C12).

Similar considerations apply to px , py of course, and show that a
diatomic molecule can have no electric dipole moment perpendicular

to the internuclear axis. The method can be extended to more compli-

cated molecules, such as CH3C1, C2H6 , C6H6 .



40 ELECTKOSTATICS II [2.3

In an atom or nucleus the charge distribution is expected to have

reflection symmetry in three mutually perpendicular planes, so that

there will be no permanent electric dipole moment in any direction.

Note that three such reflections change the point (x,y, z) into

(

—

x, — y, — z) and are equivalent to inversion through the origin. The
assumption we have made about the charge distribution is equivalent

to assuming that the system is 'invariant under the parity operation',

i.e. that its properties are unaltered by inversion.

B = (S, Ojj, 4,IS )

^1b

(a)

Eia. 2.1. Expansion of the potential at A due to a point charge qB bAB (or of the potential

at B due to charge q^ at A) using spherical harmonics. In (b), the points A, B are not
necessarily in the plane <j> = 0.

Expansion in spherical harmonics

Similar considerations can be applied to the higher terms in equa-

tion (2.23), but it is obvious that the large number of terms makes
the expansion in Cartesian coordinates clumsy to handle. We there-

fore turn to another method ofexpanding the potential of a point charge

which makes use of spherical harmonics.

Assume that we have a charge at the point B and wish to know how
its potential varies in the neighbourhood of the point O, e.g. at the

point A (Fig. 2.1(a)). This requires evaluation of the quantity

(R2—2Brcosd-\-ri)~i
, which is the inverse of the distance AB. If r < B,

this function can be expanded in powers of (rjB):

1 = (Bs— 2JRrcos0+r2)-*
IR—

r

= B-+i*
pi+ip>+---+7^p<+--- <

2 -26
>
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Here the functions P
t
are the Legendre functions defined by equation

(2.8), as can readily be verified by direct expansion for the first terms.

A more general formula can be found where the points A, B in

spherical coordinates are at (r, 9A ,
<f>A) and (R, 9B> (f>B) respectively. In

Fig. 2.1 (b), Oz is the polar axis, and the lines OA, OB (which are not
necessarily coplanar) make angles 6A , 6B with it; the angle AOB is

denoted by AB . It can be shown that the Legendre function P
z
(cos dAB)

can be expressed in terms of A) <f>A and 6B ,
<f>B by the formula

pKoob^) =^fj-ir%tm{eA ,4>A)Ylt_m{eB,$B)

= I {~^m]
Oi,m{SA,<J>A)Ch_m(eB,<l>B), (2.27)

where the function Cl>m = U?L\\m (2.28)

is also listed in Table 2.2. By the use of equation (2.27) the potential

at the point A due to a charge qB at B may be written as

47r« |R-r|

= w"2 2 ^- l^4ri G^e^^ciMeB,<t>B)- (2-29)

°I=Om=-I

This shows that if we take iasa variable point, the potential at A due
to the charge qB at B has a series of components, and the magnitude
of the component which varies as rlGlm(dA ,

<f>A) is determined by the

value of R-<f+1>Ci
i
-m{0B, 4>b) at the point B. We may equally well take

B to be a variable point at which we wish to find the potential due to

a charge qA atA; this is given by equation (2.29) on replacing qB by qA .

The potential at B then has a series of components, where the magni-
tude of the component varying as R-Q+VQ

~

m(6B ,
(f>B) is determined by

the value of r*CUm(dA ,
<f>A ) at the point A.

Ifwe have a number of point charges qB at large distances, the magni-
tude of a given component in the potential at A near O can be found
by the summation 2 Qb •

B_a+1)Q,-m(^B, <1>b)> an example of which is given
B

in Problem 2.18. Conversely, if we have a number of point charges

qA close to 0, the magnitude of a given component in the potential

at a distant point such as B can be found by the summation

^,^A rl
^i,m(^A> (

l>A)- In either case the summation is replaced by an
A
integration if we have a continuous distribution of charge. Note that
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the series expansion for the potential does not assume that r <^.R, but

the terms will only converge rapidly if this is so.

The electrostatic energy of two charges qA , qB at the points A, B
may be written by means of equation (2.29) as

47ree z=o m=— I

(2.30)

which has the advantage that the terms involving the coordinates of

the two charges have been separated. Thus if we have distributed

charges with densities pA , pB at the points A, B the electrostatic energy

is

p W J J |R-r|

= z^r,i i (- 1 )'
m

' f^*W^>*J<^x
47ree z=o m=-i J

X j pB It-«+VC^m(9s ,<f>B)dT

,.A, R, ....

47ree i m
= 7Z7T 2 2 Am *i.-». (2.31)

where

Am = J
ft* ^,m(^> ^)^, (2-32)

Bi,-m = j {-l)™pBB-^Clt
-m(eB , fa) drB . (2.33)

The quantities Al>m may be regarded as defining the components of

the multipole moments of degree I, of the charge distribution near 0,

and it will be seen that they interact only with the conjugate com-
ponents B

l _m which have the same value of I, to. The monopole com-

ponent (I = 0) contains only one term, while the dipole (1=1)
components contain three terms which may easily be shown (Problem

2.15) to give the same interaction as equation (2.24). In general the

interaction energy involving r1 and R-Q+1> contains (2Z+1) terms, but

the advantage of the quantities Alm , Blm is that they can be expressed

in terms of functions Clm which are tabulated. We shall go no further

than the quadrupole terms (I = 2), which can be written out using

Table 2.2. It can then readily be verified that, for the particular case

where either charge distribution is symmetrical about the axis = 0,

all the terms in equation (2.31) vanish except that with m = 0. If pA
has such symmetry (i.e. it is independent of $), its quadrupole inter-
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action can be expressed in terms of a single component

Ao = j PaWouMa- 1) drA = frQ, (2.34)

where the quantity (writing r cos 6A = z)

Q = -^jpA{W-r%)dTA (2.35)

is called the 'quadrupole moment' of the charge distribution, and has

the dimensions of an area. It might be expected that one would take

q = j pA drA , the total charge in the distribution, but for a nucleus,

by convention, q is taken as the charge on a single proton (not the total

nuclear charge), and Q is expressed in terms of the unit of a 'barn'

= 10~24 cm2
. This unit is chosen because it is of the same order as the

square of the nuclear radius (for an atom the quadrupole moment would
be of order lO-16 cm2

).

It has already been shown that invariance under the parity operation

excludes the possibility of permanent electric dipole moments in atoms
and nuclei. This may be expressed more generally using spherical har-

monics. Inversion through the origin is equivalent to changing the

point (r,9,</>) into (r.w—0,tt+ <]>). Since

we have dJr-9, "+$) = (- 1)^(0, </>), (2.36)

and it follows that

| pr*Cl>m dr = Q if 2 is odd. (2.37)

Thus invariance under the parity operation excludes the possibility of

electric multipole moments of any odd degree.

The form in which the interaction energy is expressed in equation

(2.31) is very suitable to a case where one charge distribution (such as

that of a nucleus) is confined to a small volume, but interacts with
another charge distribution which is comparatively far away (such as

the atomic electrons). The series then converges very rapidly, since

(r/B) < 1 ; experimentally no interactions with nuclear electric multi-

poles higherthan the quadrupole have been detected. The convergence is

much less rapid in atomic cases, such as the interaction between electrons

within an atom, or between atomic electrons and the surrounding ions

in a solid (which strongly affects their magnetic properties, see Chapter

20). However, integrals involving all but the first few values of I can
be shown to vanish by means of orthogonality theorems, since the wave
functions are themselves spherical harmonics.
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2.4. Some electrostatic problems
Conducting sphere in a uniform field

Suppose an earthed conducting sphere of radius B is placed in a uni-

form field E . Then the field immediately around the sphere will become
distorted owing to the induced charges on the surface of the sphere

(Fig. 2.2), but the field at large distances will approach the value E .

Fig. 2.2. The lines of force near a conducting sphere in a
uniform electric field.

In general the potential distribution can be expressed as a sum of terms

of the type given in Table 2.1, with the condition that V = over the

surface of the sphere. If we take a whole series of terms, it would turn

out that the coefficients of most of them are zero. It is simpler to try

a possible solution with a few terms whose nature is suggested by the

symmetry of the problem; if it is then possible to satisfy the boundary

condition V = at r = B (taking the centre of the sphere as origin of

coordinates), then this is the only correct solution.

If the polar axis is taken parallel to the uniform field E , then the

potential at large distances is that of this field alone, so that

V = —E r cos 6 for r -> oo.

In order to make V = at r = B for all values of 6, it seems likely that

we can only add terms which vary with the same power of cos 8. Hence

we try as a solution

V = —E r cos 6+Ar-2 cos 9. (2.38)

It is clear that this satisfies our boundary condition if E B = AB~Z
;

that is, A = E B3
. Hence we have

V = —
JEo rcos0(l--.R3/r3).

This shows that the potential outside the sphere is that due to the uni-

form field together with that of a dipole of moment p = 47ree E B3

situated at the centre of the sphere. Inside the sphere a solution of the
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type (2.38) is not acceptable, since it would give an infinite potential

at the origin. Instead we must add a term E r cos 9, which will just

cancel the potential of the external field so that V = everywhere
inside the sphere.

The magnitude of the induced charge at any point on the sphere can
be found from the normal component of the field at the surface. This is

Er = —dVjdr = E cos6+2E (R3lra)coa8

= SE cos9 a,tr = B.

Hence the charge o- per unit area will be (from equation (1.28))

a = ee ET
= 3ee E cos 9,

where e is the dielectric constant of the medium surrounding the sphere.

(a) €X < <r2 .

Fig. 2.3. The lines of electric displacement D due to a dielectric sphere, «lt in a uniform
electric field, in a medium of dielectric constant e2 .

Dielectric sphere in a uniform field

A slightly harder problem is that of a dielectric sphere of radius R
and dielectric constant ev surrounded by a medium of dielectric con-
stant e2 , and placed in a uniform field E , as in Fig. 2.3. Two separate

potential functions must now be taken, one for inside and the other for

outside the sphere (in effect, this was also required for the conducting
sphere, but then inside we had just V = 0). We must also satisfy the
boundary conditions at the surface of the sphere, which are, from
equations (1.26) and (1.27),

eiEir=e2Eir and Eu = Eu ,

where subscripts 1 and 2 refer to inside and outside the surface, and
subscripts r and t refer to normal and tangential components respec-
tively. Guided by the potential function for the case of the conducting
sphere, we shall assume

V2 = —Eorcoae+A 2 r-
2 cos0,

Vx = Bx r cos 0+

B

2 r~
2 cos 9
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for outside and inside the sphere respectively. Clearly we cannot have

l^-^-oo for r -> 0, so that the coefficient B2 must be zero. It is also

obvious that V must be continuous at the boundary, since a discon-

tinuity would give an infinite electric field there. Thus Vx = V2 at r = jR;

this automatically satisfies our second boundary condition since

1/81
Ei = Ea =

i „ i' "
r\89j

and gives BxR cos 9 = —E R cos9+A 2 R~2 cos 9,

or B1 = A i R-*—E . (2.39)

The normal components of E at the surface are

Elr
= —{8V1l8r)r=B = —Bx cos9

and E^ = — (dV2jdr)r=B = E cos 9+2A 2 R~* cos 9.

Hence the first boundary condition gives

-Bt
= (eJei)(E +2A z R-3). (2.40)

The solution of equations (2.39) and (2.40) is

so that the potential functions inside and outside the sphere are

"--('-'SSh"-'- ("2)

These equations show that the field Ex inside the sphere is parallel to

E , and of magnitude „

Ei = -nS- Eo- (
2 -43)

If ex > e2 , Dx > D (see Fig. 2.3), but Ex < E , the reduction being due

to the reverse field of the polarization charges on the surface of the

sphere; this reverse field is known as the 'depolarizing field' . The poten-

tial distribution outside the sphere is that of a dipole of magnitude

47re2 e i?3E (e1
—

€

2)/(e1+2e2), situated at the centre of the sphere, super-

imposed on that due to the uniform field. If e2 = 1, the size of this

dipole moment is just equal to the volume of the sphere times the

polarization Px induced by the field within the sphere since then

Px
= 6 (ej— 1)EX = 3e (e1

— l)E l(e1+ 2). Note that as ex
->- oo, the solu-

tions tend to those obtained for the conducting sphere; this follows from
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the fact that the boundary condition then requires that the field in the

sphere be zero.

Problems with cylindrical symmetry—conducting cylinder in a uniform

field

In some three-dimensional problems the potentialmay be independent
of one coordinate, and the problem then reduces to a two-dimensional

one. It is often convenient to use cylindrical coordinates in such a case,

taking the z direction as that in which the potential is invariant. Then

Table 2.3

Some cylindrical harmonic functions

Cylindrical harmonic Corresponding solutions of Laplace's equation

Do

D3

logr 1

r~l(A cos6+B sin 0) r(A cos 6+B sin 6)

r~l(A cos 26+B sin 26) r*(A cos 26+B sin 26)

r-*(A cos 36+B sin 39) ^(A cos 36+B sin 30)

putting p = and S2F/0z2 = in equation (2.5), we have for Laplace's

equation ,

r
Tr[

rW]+W = °-
<
2 -44>

This is satisfied by a function of the form V = rnDn , where Dn is a func-

tion of 9 alone (known as a cylindrical harmonic) which must satisfy

the differential equation

^+n*Dn = 0. (2.45)

This equation is unchanged by the substitution of —n for n, so that if

V = rnDn is a solution of Laplace's equation, so also is V = r-nDn . One
solution is V = loge r, and other solutions may be obtained either by
partial differentiation with respect to x — r cos 9, or by direct solution

of equation (2.45).

A number of the simplest functions are given in Table 2.3; note that

the general form of Dn will be An cosnd+Bn smnd, where An and Bn
are constants.

The type of problem to which the solutions may be applied is illus-

trated by the case of a conducting circular cylinder, initially uncharged,

lying with its axis at right angles to a uniform field E . If the axis of

the cylinder is taken as the z-axis, it is clear that the potential distri-

bution will be independent of z. At large distances the potential will

tend to V = —EQ r cos 9, and we will assume that other terms required



48 ELECTROSTATICS II [2.4

must also vary as cos 0. Then the potential outside the cylinder will be
of the form T7 „ . . , aV = —

E

r cos 6-\-Ar~1 cos 6.

To satisfy the boundary condition V = at r = R for all values of 0,

we must have E R = ^li?-1 , so that the potential is

F= —.0o rcos0(l— i?2//-2). (2.46)

The first term is the potential of the external field, the second that of
an extended dipole consisting of two parallel lines of positive and
negative charge close to the z-axis.

In these problems, we have assumed a potential containing just the

required number of terms. This is a matter of intelligent anticipation

rather than guesswork or knowing the answer beforehand. If we had
taken any less terms, we could not have satisfied the boundary condi-

tions. If we had taken more terms, the coefficients of the additional

terms would have been found to be zero. In the case just considered,

terms such as cosnd or sin n9 could not satisfy the condition V = at

r = R for all values of 9, because the potential of the external field

varies only as cos 6. We are justified in assuming that the solution we
have found is the correct and only solution because of the uniqueness

theorem. This theorem also justifies the use of another special method,
which we shall now consider.

2.5. Electrical images

If we have two equal point charges of opposite sign separated by
a certain distance 2a, the plane passing through the midpoint of the

fine joining them and normal to this line is an equipotential surface at

zero potential. Therefore if the negative charge (say) is replaced by
a plane conducting sheet AB in Fig. 2.4, the field to the right of AB
will remain unaltered. Conversely, if a point charge is placed in front

of an infinite conducting plane, the resultant electric field to the right

of AB will be the same as that produced by the original charge plus

a negative charge an equal distance from the plane on the opposite side.

The negative charge is the 'electrical image' of the original charge in

the plane AB.
The method of images thus consists in replacing a conductor by a

point charge such that the conducting surface is still an equipotential

surface. Then Laplace's equation is still satisfied at all points outside

the conductor, and by the principle of uniqueness, the problem of a
point charge and its image is identical with that ofa point charge and an
infinite conducting surface as regards the region outside the conducting



ELECTROSTATICS II 492.5]

surface. Electrical images are entirely virtual; a field on one side of a
closed equipotential surface cannot be represented by an image on the
same side of the surface, since this would give a singularity at the point
occupied by the image charge. The field on the one side of the surface
is identical with that which would be produced if the surface were
replaced by an image charge on the other side of it.

\

\ /

^1/

///l\\

/
/

/A\

/
/ \ \.

\
\

/ /

Fig. 2.4. A point charge q and its image charge —q in an infinite conducting plane AB,
showing the lines of force from q on the right of the plane which end on the surface charge

on AB. XT = 2o.

Point charge and infinite conducting plane

The method ofimages will now be applied to a number of special cases,

the simplest of which is that of a point charge a placed a distance a from
an infinite conducting plane at zero potential. In this case it is obvious
that the image must be a charge —q at a distance a behind the plane,
as in Fig. 2.5. The potential at an arbitrary point P is then

= -£-11.
4Tree \r *HV {/

,2
-|-4a2+4arcos0}i

where e is the dielectric constant of the medium outside the conductor.
In order to calculate the charge density at any point on the plane, we
851110
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must find the component of the electric field normal to the plane. This

is (see Fig. 2.5)

8V 1 8VEx = Ercosd-E$sme= _—cos0+-^
r
sin#

q Tcoi

47ree L r

cos#

8r " ' ' r 86

rcos0+2a
47re€ [ r2 {>

2+4a2+4arcos0)*J

at the point P. At a point Q on the plane, roosd = —a, so that at Q

Ex = —qal2ire€ r3

Conductor

V =
Fig. 2.5. Image of point charge in a conducting plane.

(cf. Problem 2.6), where r is the distance of Q from the charge +<?• The

induced charge per unit area at Q is then

e0^x —qaj2Trr3
. (2.47)

The force exerted on the point charge by the induced charge on the

plane is just equal to the force exerted on the charge by its image.

That is, F = —q
2jl6iree a2

, where the negative sign indicates that the

charge is attracted towards the plane (see Problem 2.6).

Point charge and conducting sphere

A more difficult problem is that of a point charge q placed (in vacuo)

a distance a from the centre of a conducting sphere of radius R (Fig. 2.6).

We shall consider first the case where the sphere is earthed and at zero

potential. By symmetry, the image charge must be on the line through

q to the centre of the sphere O, and we will assume that it consists of a

single charge q' at a distance b from 0. The potential at a point Q on
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the surface of the sphere is then

= -!-[ I + t 1
477€e [(B*+a2+2aB cos 6)*^ (B2+b*+2bB cos 0)*J

'

It is only possible to make 7 = over the whole surface of the sphere
(i.e. for all values of 6) if the functions in the denominators are similar

Fig. 2.6. A point charge q and its image q' in a conducting sphere.

OA = a, OB = 6.

functions of 8. This requires that we choose b so that bjB = Bja; that
is, B is the inverse point to A in the sphere. Then the potential at Q is

v _ q+(alB)g'

4nee (B2+as+2Ba cos $)*

'

and this will be zero ifwe make q' = —q(B/a). Hence the image charge
is of magnitude —q(Bja) at the inverse point in the sphere, and the
reader may verify, by integrating the charge density on the sphere,
that the total charge on the sphere is equal to the image charge.

If the sphere is insulated and initially uncharged, the total charge on
it must remain zero. It is therefore necessary to add a second image
charge — q' at such a point that the surface of the sphere remains an
equipotential surface. This is accomplished by placing a charge +q(B/a)
at the centre of the sphere in addition to the charge;'—q(Bja) at the
inverse point. If the sphere is insulated but carries an initial charge Q
the total charge at the centre would of course be Q+q(Bja).
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2.6. Line charges

Just as we have considered the mathematical abstraction of a point

charge, so we may postulate a 'line charge' in which charge is uniformly

distributed along an infinite straight line. Its strength is denoted by A,

the charge per unit length. To find the field of such a line charge, im-

mersed in a medium of dielectric constant e, we apply Gauss's theorem

to a section of length t of a cylinder of radius r whose axis coincides

with the line charge. This gives

6€ E(2TTTt) = Xt,

since by symmetry the field E is everywhere normal to the axis. Hence

E = A/(27ree r), and the potential at a distance r from the axis is

'--skJT—sk 1*-'*7* (2-"8)

Here the constant T^ cannot be defined by assuming V = at r = oo

since the line charge itself extends
P to infinity.

^^
J

If we have two parallel line

^^ } charges of equal strength but

^ % opposite sign, as in Fig. 2.7, the

s* ' potential at a point whose perpendi-

—Av^ i+x cular distances from the line charges

are rv r2 respectively is

Fig. 2.7. Two parallel line charges normal \

to the plane of the paper, with charge +

A

V = log(f9 'V-. ) -\-V . (2.49)
and —A per unit length. 2ireeQ

The equipotential surfaces given by this equation are shown in Fig. 2.8.

They have the form of cylinders whose cross-sections form a set of

coaxial circles with limiting points at the line charges. The surface

whose potential is V is the median plane (for which r
x
= r2) between

the two line charges. From this it follows that the problem of a fine

charge parallel to a conducting plane can be solved by the method of

images, using a fine charge of opposite sign as image. We shall apply

our results to a more realistic problem.

Capacitance between two parallel infinite circular cylinders

Consider first an infinite line charge of strength A which is parallel to

an infinite cylinder of radius a. In the cross-section shown in Fig. 2.9,

the line charge is at P and the axis of the cylinder at O. We imagine
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Fig. 2.8. The lines of constant potential for two parallel infinite line charges A and —A,
normal to the plane of the paper. They form systems of coaxial circles with limiting

points at the charges.

Fig. 2.9. The image of an infinite line charge in an infinite conducting cylinder.
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an image line charge of strength —A to be placed at P', the position of

P' being chosen so that the circle formed by the cross-section of the

conducting cylinder coincides with one of the family of coaxial circles

which are the equipotentials of the line charge and its image. Then

the potential at any point Q on the surface of the cylinder is

V =
27ree,

log9L
QP'

-v .

Fig. 2.10. Two infinitely long parallel conducting cylinders.

Since P and P' are the limiting points of the family of coaxial circles,

it follows that they are inverse points with regard to any one of these

circles. Hence QPjQP'

and the potential at Q is

V =
2ne€,

OPjOQ = OP\a,

1
0P

, 17log ^F ,

a

which is independent of the position of Q on the surface of the cylinder,

showing that this is an equipotential.

We turn now to the case of two infinite parallel cylinders, each of

radius a, whose axes are a distance 2d apart. Then in Fig. 2.10 the

distance 00' is 2d, and P, P' are the limiting points of a family of

coaxial circles. P and P' are chosen so that two of the circles coincide

with the surfaces of the cylinders, making each of these an equipotential

ifline charges of strength A and —A were placed at P and P' respectively.

Then the potential at an arbitrary point whose distance is rx from P

A
and r2 from P' is

F =
2tT€€.

tog(»i/r»)>

where the constant V is zero if we take the median plane {r1 = r2)

between the cylinders to be at zero potential. Then the potentials of

the two cylinders are

A , ,«„, v , „ .A
VQ

2tt€€,
log(OPja) and VQ.=

2tT€€,
log(OPja)
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respectively. But OP+OP' = 2d, and OP. OP' = a2
, since P, P' are

inverse points in the circle of radius a, centre 0. Hence

OP = d+J(d*-a*),

and the capacitance per unit length between the two cylinders is

C = A/(FG,-FQ )

~lQg[{d+V(*-a«)}/a]-
(2 -50)

When d > a, this approaches the limiting value

C = 7ree /log(2d/a). (2.51)

A similar problem is the capacitance of a horizontal telegraph wire
with respect to the earth. This may be treated as an infinite cylinder
of radius a a distance d above an infinite conducting plane. It is clear

that the potential distribution will be the same as in the case of the
two parallel cylinders if we assume that the conducting plane coincides
with the median plane between the cylinders, which is the equipotential
surface 7 = 0. Then the charge on the wire per unit length is A, and
the potential difference between it and the plane is just half that be-
tween the two cylinders in the previous problem. Hence the capacitance
per unit length will be (assuming d > a)

.-, 2ireenG=^m- <
2 -52

>

Note that the approximation d > a is tantamount to assuming that the
wire behaves as if it had a line charge A per unit length along its axis,

since as (a/d) approaches zero the point P' moves towards in Fig. 2.10

and OP -> 2d.

2.7. Images in dielectrics

The potential distribution due to a point charge near a dielectric

surface may sometimes be found by the method of images. We shall

illustrate this type ofproblem by considering the case ofa point charge q
a distance a from a semi-infinite dielectric bounded by a plane surface.

This problem is more complex than that of a point charge and conduct-
ing plane since a second image system is required to represent the field

within the dielectric. It is not obvious that the field can be represented
by that ofa single point charge, but we shall assume that this is possible

(if our assumption is wrong we shall not be able to satisfy the boundary
conditions). We take therefore a single charge q2 at a point B, as in
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Fig. 2.11, and the potential at a point Q in the dielectric will then be

Vn = ?2

47re r2
(2.53)

The field of the point charge q will polarize the dielectric and there will

therefore be a surface charge on the dielectric which affects the field

outside. We assume that this can be represented by an image charge qx

Fig. 2.11. Image systems for a point charge q and a semi-infinite

dielectric. The field outside the dielectric is that of q and qx ; the field

inside the dielectric is that of qa .

at C in the dielectric, and the potential at a point P outside the dielectric

is then

(2-54)

By symmetry, q, qx , and q2 will all Me on a normal to the dielectric

surface. Note that the dielectric constant e does not appear in these

equations since the effect of the dielectric is replaced by two image

systems in vacuo.

To avoid an infinite electric field at the boundary we must assume

that VP = VQ at the boundary, and this automatically satisfies our first

boundary condition, that the tangential components of E must be the

same on either side of the boundary. It is clear that the condition
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VP = VQ everywhere on the boundary can only be satisfied iff, rv and r2

vary at the same rate as we move along the boundary, and we must
therefore have r = rx = r2 , so that B coincides with A, and C is as far

behind the surface as A is in front. In addition, q+qx
= qz . Our second

boundary condition is that the normal components of D must be con-

tinuous at the boundary; i.e. (dVPj8z) = e(8VQldz) at the surface, which

we take to be the plane 2 = 0. Now at an arbitrary point (x, y, z),

r2 = {x2+y2+(a+z)*f, and rx = {x2+t/2-f(a—z)
2
}*, so that

8z\rj ~ 8z\rJ ~ r3 ' dz\r^
~~

r\
'

Using these relations for the case 2 = 0, our second boundary condition

becomes . >

«(«—?i) _ eaq2
4tt€q r

z 4ne r3

Hence we have the relations

ff+ft = Sz and q—qx = eq2 ,

which give g2 = 2q/(e+l) and qx = —g-(e— l)/(e+l) for the image

charges. The force of attraction on the charge q towards the dielectric

is therefore 2/ , >

F= Mi = g'(«-l)
(2S5\

477€ (2a) 2 167T€ a2(€+l)" v ' '

The lines of displacement for the case ofa point charge and an infinite

dielectric are shown in Fig. 1.13.

REFERENCES
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PROBLEMS
2.1. The polarization charge on the surface of a spherical cavity is — cro cos0, at

a point whose radius vector from the centre makes an angle with a given axis Oz.

Prove that the field at the centre is o- /3e , parallel to Oz.

Ifthe cavity is in a uniform dielectric subject to a fieldE parallel to the direction

6 = 0, show that <r = 2E e (e— 1)/( 1+ 2e), where e is the relative permittivity of

the dielectric. Verify that this gives the correct value for the field at the centre

of the cavity (equation (2.43)) and note that <j is not simply (e—l)e JE because
of the distortion of the field in the dielectric caused by the presence of the cavity.

2.2. A dipole p is situated at the centre of a spherical cavity of radius a in an
infinite medium of dielectric constant e. Show that the potential in the dielectric

medium is the same as would be produced by a dipole p' immersed in a continuous
dielectric, where „

/ "£
P = P 2Tfl'
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and that the field inside the cavity is equal to E,j+Er, where E ((
is the field which

the dipole would produce in the absence of the dielectric, and

E _ 2 (£
~ 1

) P
' 2e+l 47TC a3

'

Ef is known as the 'reaction field'. These formulae are used in the theory of

dielectrics (see Chapter 17).

2.3. Show that the field inside a cylindrical cavity in a dielectric of constant e is

2e E , when the axis of the cylinder is at right angles to a uniform field E .

2.4. Find an expression for the surface density of charge on an infinitely long

conducting cylinder of radius a, placed with its axis at right angles to a uniform

electric field E , as a function of the polar angle 9.

(Answer: a = 2e E oos6.)

2.5. A uniform electric field E is set up in an infinite dielectric. Show that

(a) if a long needle-shaped cavity, whose lateral dimensions are very small com-

pared with its length, is cut in the dielectric with its axis parallel to E, then the

field in this cavity is E; (6) if a fiat disk-shaped cavity, whose lateral dimensions

are very large compared with its thickness, is cut with its plane normal to the

direction of E, then the field in the cavity is D/e , where D is the displacement

in the dielectric.

Verify that the field in an intermediate shape of cavity (such as in Problems 2.1

and 2.3) lies between these extreme values.

2.6. A point charge g is placed near an infinite conducting plane. Verify that the

total charge on the plane is — g by integrating equation (2.47), and calculate the

total force on the plane by integration ofthe tension per unit area (equation (1.37))

over the area of the plane. Verify the expression given in the text for the field at Q
(Fig. 2.5) by vector addition of the fields of the point charge and its image.

2.7. Show that the work done in bringing up a charge q from infinity to a distance

a from a conducting plane at zero potential is — g
2/167ree a. Verify that the same

result is obtained using equation (1.34) (remember that the induced charge on the

plane is at zero potential).

2.8. Show that the force on a charge q distance a in vacuo from the centre of an
insulated and uncharged conducting sphere of radius -R is (a > R)

g
2 IR Ra \

±ne<\a3 (a2-iJ2
)
2/'(a2-.R2

)
2

2.9. A point charge is placed in a hollow metal sphere of radius R. If the charge

is q and is a distance 6 from the centre of the sphere show that the force on it is

g
2 Rb

4tt€ (i?2-62
)
2

'

(Hint: Find the image of q outside the sphere such that the sphere is an equi-

potential surface.)

2.10. A point charge q is placed at a distance ZR from the centre of an isolated

conducting sphere of radius R which already has a charge equal to g. Prove that

the surface densities at points on the sphere nearest to and farthest from the

point charge are in the ratio 8:29.
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2.11. An elementary dipole of strength p is placed at a point P, outside and at
a distance a from the centre C of an earthed conducting sphere of radius R. The
axis of the dipole is in the direction CP. Prove that its image system consists of
a point charge pR/a* and a dipole of strength pR3/a3, both situated at the point
P' which is inverse to P in the sphere.

2.12. Show that if an infinite line charge A per unit length is at a distance d from
an infinite conducting plane in a medium of dielectric constant e, the surface
density of charge in the plane is a = — dX/m2

, where r is the shortest distance
from the line of charge to the point in question.

2.13. Calculate the force per unit length on the infinite line charge of the last

question.

{Answer: F = — X1/iTT€€ d.)

2.14. Electric charge is distributed over a thin spherical shell with a density
which varies in proportion to the value of a single function P;(cos 6) at any point
on the shell. Show, by using the expansions (2.26) and (2.27) and the ortho-
gonality relations for the Legendre functions, that the potential varies as r!P,(cos 6)
at a point (r, 9) inside the sphere and r-Q+VP^cos 0) at a point {R, 6) outside.

2.15. Show that, for 1=1, the quantities defined by equation (2.32) are

^1,0 = Pz, ^1,1 = ~2-i{p
x+ ipy ), Au_t = 2-i(p

x-ipy ),

while for a point charge at B in Fig. 2.1 (6),

and verify that this gives the same interaction energy as equation (2.24).

2.16. For an atom in ap-state, the wave function is ifi = f(R)Ylfi , and the charge
density is —et/i2 . Show that the atomic quadrupole moment (as defined by equa-
tion (2.35)) is |<P2

>, where <P2> is the mean square distance of the electron from
the nucleus.

2.17. The isotope ofmass 35 of chlorine has a nuclear electric quadrupole moment
Q. Show that if it were in a chlorine atom whose wave function x/i = f(R)Y1 B,

the energy of interaction between the nuclear electric quadrupole moment and
the electron is

^ = -(isJtt*«<**>>.

where <P_3> is the mean inverse cube of the distance of the electron from the
nucleus, and e the electronic charge.

If Q = -0-079 barns = -7-9x lO"30 m2
, and<P~3> = 5x 1031 m"3

, show that
the energy of interaction (UP/h) expressed in frequency units (h is Planck's con-
stant) is about 27 Mc/s.

2.18. Six equal charges q are placed at the points (±P,0,0), (0, ±P,0),
(0,0, ±P). Show that the terms of lowest degree in the potential at a point
(x, y, z) = (r, 6,

<f>)
near the origin are

v - idjp +(ii7)(£)©^.»+(5/14 )
i

(c'M+c,._ 1 )},
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where (7
4i0
= P4 (which is given in Table 2.1), and

G4>±4
= (35/128)isin40e±i4*.

[Hints: Since the system has inversion symmetry through the origin, terms in

odd powers of r must vanish. Also V must have fourfold symmetry about the

polar (z-)axis, so that rotations changing <£ by %n must leave V unchanged: only

functions with m = or 4 satisfy this condition.]

Note that in Cartesian coordinates

'-i£s+(dy (*)(?)*'+•'+'-«'•>•

showing that the x, y, z axes are all equivalent (cubic symmetry).



STEADY CURRENTS

3.1. Introduction

In the previous chapters on electrostatics we have been concerned with

stationary electric charges. If a free charge is placed in an electric field

it will be acted on by a force, and will move in the direction of the lines

of force. Thus, if an initial difference of potential exists in a conductor,

the charges will move until they reach positions of equilibrium, and the

whole of the conductor becomes an equipotential surface. But by con-

necting a battery between two points of a conductor, a permanent

difference of potential may be maintained between these two points,

and there will then be a continuing flow of charge. This constitutes an
electric current, and the strength of the current / is defined by the rate

at which charge passes any given point in the circuit. If we are dealing

with a current extended in space, then we may define the current density

J as the quantity of charge passing per second through unit area of a

plane normal to the line of flow. The total current flowing through any
surface is found by integrating the normal component of the current

density: that is

J = J*J.dS. (3.1)

If the current is carried by particles of charge e with density n per unit

volume and velocity v, then the current density is

J = new. (3.2)

Thus J is a vector whose direction is that ofthe velocity v of the carriers.

In early experiments on electricity there was no evidence for the sign

of the charges forming the current, since there was no means of dis-

tinguishing between a flow of positive charges in one direction and a

flow of negative charges in the opposite direction. The positive direction

of current flow was therefore taken as that in which a positive charge

would move in an electric field. Thus in a circuit, the conventional

direction for the flow of current is from the higher potential to the lower

potential; i.e. from the positive pole of a battery round the external

circuit to the negative pole. It is customary to retain this convention,

although the modern theory of metallic conduction shows that the

positively charged ions are fixed, while a certain number of electrons
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are free to move about the body of the metal. Since the electrons are

negatively charged, their direction of movement is opposite to that of

the conventional current flow.

Measurement of e/m for carriers of electric current in a metal

The first direct experimental evidence that the carriers of electricity

in a metal are electrons was supplied by the measurements of Tolman
and Stewart (1917). The principle of this experiment depends on a
comparison of the electric current with the momentum carried by the
particles. If the current density is nev, and the particles have mass m,
then the momentum associated with the current crossing unit area of

a plane normal to the direction of flow is nmv. Thus the ratio of the

electric current density to the momentum 'current density' is simply
equal to the ratio of charge to mass (e/m) of the carriers. The sign of
e/m is obtained from comparison of the directions of flow of the electric

current and momentum current. The method we shall now describe is

that of a later experiment by Kettering and Scott (1944).

A circular coil is suspended by a thin fibre so that its plane is hori-

zontal and it forms a torsional pendulum with very small damping. The
coil, consisting ofN turns of radius r, carries a current I. If the number
of electrons per unit length of the wire is n, and they move with a mean
velocity v, their angular momentum about the axis of the coil is

T = mrvn(2iTrN),

since the total number of electrons in the coil is n(27rrN). The current

/ = nev, and hence we have

T = 2Trr*N(mle)I = 2AN(m/e)I,

whereA is the area of the coil. In the experiment, a current / is main-
tained in the coil, and then suddenly reversed. This imparts an impulse
2r to the coil, whose angular momentum is thus altered by AAN{mje)I.
In practice the amplitude of swing of the coil is observed with the current
flowing in one direction, and the current is reversed at the moment
when the coil passes through its equilibrium position. This changes the

amplitude of swing 6 by an amount

A0O = 2r(27

/27r3),

where 2r is the change of angular momentum due to the current

reversal, T is the time of swing, and 3 the moment of inertia of the coil.

The value of e/m can thus be determined by measurement of the change
in amplitude of oscillation for a given current /.
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Although the theory of the experiment is simple there were many
practical difficulties. Leads to the coil had to be brought in so that the

free suspension by the torsion fibre was not affected. To ehminate vibra-

tion and disturbance due to changing magnetic fields, the apparatus was
installed in an underground vault. The experiment was performed both
with coils made of copper and aluminium. The values of m/e obtained

were 5-64, 5-67, and 5-79 X 10"9 g/coulomb for three different copper

coils, and 5-66 x 10-9 g/coulomb for an aluminium coil. The mean of

these results, 5-69 x 10-9 , is in very close agreement with the reciprocal

(5-68 X 10-9 g/coulomb) of the most accurate determinations of e/m for

free electrons. The sign ofm/e, obtained from the direction ofthe change
of amplitude, corresponded to the carriers being negatively charged.

3.2. Flow of current in conductors

Since electric charge can neither be created nor destroyed, it follows

that the rate of increase of the total charge inside any arbitrary volume
must be equal to the net flow of charge into this volume. We have
therefore „ , . . . a ,

where the integrals are taken respectively over the volume and the

surface bounding it. On transforming the surface integral into a volume
integral, we have «

„

»

j¥^=-J divJ^

or /(**+£)*-*
This integral must be zero whatever the volume over whichwe integrate,

and this can only be true if the integrand is itself zero. We may there-

fore write

divJ = -^, (3.3)

which is known as the equation of continuity. In the steady state

dp/dt = 0, and therefore
div j = (3.4)

in any region of current flow which does not contain a source or sink

of current. Such a source or sink by which current may be injected into

or withdrawn from a conducting region is known as an electrode. The
total current flow to or from an electrode may be found by integrating

the current density over any surface which totally encloses the electrode.
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Ohm's law

It is found experimentally that in a metallic conductor at constant

temperature the current density is linearly proportional to the electric

field. This is expressed by the equation

J = aE. (3.5)

The constant a is known as the specific conductivity, and its reciprocal

as the specific resistance or resistivity. The latter is usually denoted

by p, and it is generally clear from the context whether this symbol is

being used to denote charge density or specific resistance.

If a conducting wire of cross-section A carries a current I, then

/ = JA; if the current enters at a point where the potential is Vx
and leaves at a point a distance I away where the potential is V2 , then

E = —(fr
a—Vj)Jl. Hence

I = <jEA = oA{Vx-V2)ll = (Vi-VJIB, (3.6)

where R = lj{Ao) = pljA is known as the resistance of the wire. Equa-
tion (3.6), which expresses the fact that the voltage between the ends

of a conductor is proportional to the current flowing in the conductor

is known as Ohm's law. In the m.k.s. system (see Chapter 24) V is

measured in volts, / in amperes, and the unit of resistance is the ohm.
Its reciprocal, the unit of conductance, is called the mho, or reciprocal

ohm. Since p = ARjl, the dimensions of specific resistance are those of

resistance X length, and the unit is therefore the ohm-metre.

Values of the resistivity p at room temperature are given in Table 3.1

for a number of metals, alloys, and insulators. All metals are good con-

ductors; silver is the best, but is expensive, so that copper is generally

used instead. The specific resistance of all metals is independent of the

current density over an extremely large range, but increases with

the temperature. IfR is the resistance at the ice-point T , the resistance

R at a temperature T can be written as

R = R [l+a(T-T )+b(T-T )*+c(T-Tor+...], (3.7)

where a, b, and c are constants which decrease rapidly in order of magni-

tude as the powers of the brackets increase. In the range between the

ice-point and the steam-point only a is appreciable except in very

accurate work. It is known as the temperature coefficient of resistance,

and some values are given in Table 3.1. It will be seen that manganin
and constantan can be considered to have a resistance independent of

temperature over the range for which b is negligible.
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There is another class of substances called semiconductors, examples
of which are carbon, germanium, silicon, and some compounds such as

zinc oxide. The conductivity depends on the purity of the specimen,

but can be represented in many cases by an equation of the form

a = an e -6/r or = Po*T,

where a , pQ, and b are constants.

Table 3.1

Specific resistance of some typical materials

(3.8)

Substance

Specific resistance

at 20° C
(ohm-metres)

Temperature

coefficient

(°C)-i

Pure metals

Alloys

(Silver

Copper
Aluminium
Platinum

(Constantan
Manganin

Semiconductors

Insulators

( Pure silicon

( Pure germanium

(Glass plate

Sealing wax
Sulphur
Fused quartz

1-6x10-8
1-72 XlO" 8

2-83X10- 8

10x10-'

44-2 XlO"8

44xl0-8

~2xl03

~0-5

2 x 10"

~1014

~ 1016

> 5 XlO16

3-8 X 10-a

3-9x10-8
3-9 X 10-8

3-9xl0->

~io-«
~io-«

negative

negative

By combining equations (3.2), (3.5) we find that

a = ne(v/E) = neu. (3.9)

Here u is a quantity known as the mobility, and is equal to the mean
drift velocity which the electrons acquire in unit electric field. It is

generally expressed in units of (cm/sec) per (volt/cm), or cm2/volt-sec;

in m.k.s. units it must be converted to m2/volt-sec, and the number then

obtained for the mobility will be smaller by a factor 10-4 than that

expressed in the more customary units. From equation (3.9) we see that

the conductivity depends on n, the number of carriers per unit volume,

and u, their mobility. In a metal n is virtually independent of tempera-

ture, but u varies roughly inversely as the absolute temperature except

at very low temperatures; in a semiconductor the very rapid change in

the conductivity with temperature is mainly due to the fact that n
varies exponentially with (1/T). The properties of metallic conductors

and of semiconductors are discussed further in Chapters 18 and 19.

851110 F
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Current flow in an extended medium

From equations (3.4) and (3.5) it follows that in a medium where a

is constant, adivE = 0. But since E = —grad V, we have

so that Laplace's equation holds, as in electrostatics. If two perfectly

conducting electrodes are immersed in an infinite medium of finite con-

ductivity, the potential distribution in the medium is the same as in

a condenser, whose plates are formed by the two conductors; for the

potential must satisfy Laplace's equation in each case with the boundary

conditions V = constant on the surface of the conductors. In the

medium, the lines of current flow are orthogonal to the lines of constant

V, and coincide with the lines of E. Since the resistance R of the solu-

tion between the conductors, and the capacity G of the condenser formed

when the solution is replaced by a dielectric, depend essentially on the

distribution of the lines of E, there is a simple relation between them.

The analogous equations for the two cases are:

D = €e E J = aE \

ee div(grad V) = a div(grad V) = 1

.

(3.10)

JD.dS = Q fj.dS = 7 J

Since C = QjV, and 1/i? = I/V, C/ee is equivalent to (l/-R)/<r; that is,

B=^- (3.11)

The fact that the potential distribution in a conducting medium is

the same as in the electrostatic case may be made the basis of a method

of finding experimentally the distribution in a case where it is not

amenable to calculation (see § 3.8).

3.3. The voltaic circuit

The mechanism by which a battery acts as the source of a constant

potential will be discussed in Chapter 4. For the present purpose the

battery will merely be regarded as maintaining a potential difference

between its two terminals. Fig. 3.1 illustrates the usual notation for

the case of a battery B which causes a current i" to flow through the

resistance B connected across the terminals P, Q. Since the battery

drives the current round any circuit attached to it, the potential differ-

ence it produces is often called the 'electromotive force' or e.m.f. The

total e.m.f. is equal to the line integral I E.ds taken round the circuit;
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since no work is done by any external agency we must have

= F-<fE.ds.
Hence, using equation (3.6),

V = j E.ds = El = I{lj<rA) = IB (3.12)

if the battery of e.m.f. V is connected to a single conductor of conduc-

tivity a, cross-section A, and length I. Equation (3.12) is the basis of

all calculations on resistance networks.

p I

Qi
Fig. 3.1. A battery B sending a

current I through a resistance R.

Fig. 3.2. Representation ofa battery

by an open-circuit e.m.f. V and an
internal resistance r.

When a current flows through a conductor of finite resistance, charge

is being transferred from a point at one potential to a point at a different

potential. The direction of positive current flow is to a place at a lower

potential so that there is a loss of electrical energy which appears as

heat in the conductor. If a charge dQ flows between two points differing

in potential by V in a time dt, the energy lost per second (power) is

W = V(dQldt) = VI = V*jR = I*R, (3.13)

where R is the resistance between the two points. The unit of power is

the volt-ampere, known as the watt. In an extended medium of con-

ductivity a, the power dissipated in an element of cross-section dS and

length ds is VI = (E ds)(oE dS) = oE2 dr, where dr is the volume of the

element. The total power dissipated is then found by integration over

the whole volume of the conductor.

In practice it is found that the e.m.f. produced by a battery is not

quite constant, but drops slightly when a current is drawn from it. The

variation is the same as would be produced by an ideal source of e.m.f. V
equal to that produced by the battery on open circuit, less the potential
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drop in a resistance r. The equivalent circuit is shown in Fig. 3.2, and
r is known as the 'internal resistance' of the battery. If the battery is

used to supply power to a load of resistance R, as in Pig. 3.2, the current

J which flows is given by the equation V = I(r-\-R). The power dissi-

pated in the load is therefore

W = IZR = V*BI(r+B)K

If the load can be varied, so that R is adjustable, then by differentiating

this expression for W it is found that it has a maximum value when
R = r. This is an example of the 'Maximum Power Theorem', which
states that, if a variable load is to be matched to a source of power so

that the maximum power is to be dissipated in the load, its resistance

must be adjusted to be equal to the internal resistance of the source.

The greatest value of W which can be obtained is thus F 2/4r, and this is

known as the 'available power' of the source. It should be noted that

with a given load, and a range of batteries of the same voltage but of

different internal resistance, maximum power is obtained with the bat-

tery of lowest internal resistance, so that the maximum power theorem
does not apply to the converse problem.

3.4. Resistance networks

In a complicated network of resistances containing many branches,

the calculation of the currents in the various branches is based on two
laws due to Kirchhoff . They are

:

(1) the algebraic sum of all the currents meeting at a point is zero;

(2) the algebraic sum ofthe potential differences across the resistances

in any closed circuit is equal to the total e.m.f. in that circuit.

The first law follows from the equation of continuity, since there can be
no accumulation of charge at any point. It can be written

The second law is an extension of equation (3.12), and can be written

k j

where Ik is the current in the resistance Rk .

These laws can immediately be applied to find the equivalent resis-

tance of a number of resistances Rx , R2 ,..., Rn in series or in parallel, as
in Fig. 3.3. In the former case the voltage across all the resistances is

V = IR1+IR^...+IRn = I{Ri+Rz+...+Rn ) = IR,
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where B is the equivalent resistance. Hence

B = B1+B2+...+Rn = 2 Bk .

k

When the resistances are in parallel, the voltage across each is the same.
The total current / is

(a)

*i Ri k
3 Jt.

Fig. 3.3. Resistance arranged (a) in series, (6) in parallel.

where B is the equivalent resistance. Hence in this case

b bJb^ ^Bn ^b;
If a network has many branches, the problem of finding the current

in each branch is best solved by the method of cyclic currents. Fig. 3.4

is part of a network in which there are n cyclic currents all flowing in

an anticlockwise sense. Such a system of currents satisfies the first of

Kirchhoff's laws automatically. Then the current through B1 is Ix , but
the current through i?12 is {Ix

— i"2). For circuit (1), for example, we have

\ = /1 i?1+(/1-/3 )
JR13+(/1-/2)i212 = hBxx-I% B^-IzBx% ,
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where Bn = B^B^+B^. In general, if B
qq
= B

q+ £ Rm»
v

\ — +-^ll-fl±-Kl2-4±-Sl3^3±"-±-Klg-'g±"-±^lm -fm ,

V2 = ±B21 I1-\-B22 Ii±R23 I3±... :̂R2q Iq±...±R2n In ,

Vq = ±-BglA±-^a2^2±-Ka3-^3±-"+ -K
gg^z

±---±-K
9M-f„,

Vn = ±Bnl I1±Bn2 I2 ẑBn3 I3±...±Rnq Iq±...+Rnn In .

[3.4

Fig. 3.4. A general network with cyclic currents.

VQ is the total e.m.f. in the <jth circuit, and is positive if it acts in the

direction of Ig . The subscripts to the resistances denote the currents

which flow through them. Then if Apq is the cofactor of Rpq in the

determinant

A =

+R-li

±Rpi

±*»

±B
:ia

±3pa

±Rn

±Ri

±Bpn

+Rn

Apq = Ajp, since Bpq is identical with B^.
If we solve these equations for the current I

q
when there is only one

source of e.m.f. Vp in the circuit, then we find

I
q
= Vp ApJA.

Similarly, the current Ip , when there is only the e.m.f. V
q
in circuit, is

Ip = V
q
AqpIA.

Since Apq = A^, we have the Reciprocity Theorem, which states that

a given e.m.f. in the pth. branch will produce the same current in the gfth
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branch of a circuit as the same e.m.f. in the qth. branch would produce

in the pth branch.

3.5. Wheatstone's bridge and the measurement of resistance

As an example of network analysis we shall take the arrangement

shown in Fig. 3.5, consisting of a battery and five resistances. It is

required to find the current through the resistance G. By making the

substitutions shown in the figure for I3 and 72 , the first of Kirchhoff's

(3.14)

Fig. 3.5. Wheatstone's bridge. The current J = ifRt Rt = Ra R3.

(In Callendar's notation, Bl = R, i?a = mR', R3
= nR',R

x
— nmR'.)

laws is satisfied and two unknowns are eliminated from the equations

at once. Then from the second of Kirchhoff's laws we have

V = 73 7?3+74 i?4 = (74+7)7?3+74 7?4

= I1R1-IG-I3 R3
= J1 iJ1-7G-(74+7)^3

= 72 7?2-74 7*4+IG = (71+7)7?2
-7

4 7?4+7Gj
Ehmination of 1^ and 74 from these equations gives

D+G(R1+B2)(R3+Ri
)' {

*- 10)

where D = R1 7?2 R3+R2 R3 R^+R3 7?4Rx+R^Rx Rz . Similar expres-

sions can be found for the currents through the other resistances.
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Inspection of equation (3.15) shows that 7 = provided that

7?x i?4 = B2 B3 ,

and this is the basis of the Wheatstone's bridge method of comparing

resistances or measuring an unknown resistance 7?4 in terms of three

known resistances B1; B2 , B3 . A galvanometer (see Chapter 7) is in-

serted in the arm BD to detect when 7 is zero, and G then represents

the galvanometer resistance. The resistance in one of the arms Blt B2 , B3

is varied until the balance point is found.

Wheatstone's bridge can be used to measure an unknown resistance

whose value can have a very wide range. The currents used must not

be large enough to heat the resistances and so alter their values appre-

ciably; the standard resistances are generally made of constantan or

manganin so that their values do not change with the external tempera-

ture. Like all bridge methods, it is a null method, and the galvanometer

is required only to detect the balance point so that its calibration is not

necessary. The bridge is accurate, and quick to use; a simple version is

the slide wire form described below. When measuring small resistances,

care must be taken to ensure that the resistances of leads and contacts

are not appreciable. For resistances of from 10_1 to 10-3 ohms the

Kelvin double bridge (see Problem 3.5) is more suitable.

Sensitivity of a bridge

The accuracy with which the null point can be determined in a bridge

depends on how rapidly the galvanometer current changes near the

balance point for a given fractional change of the resistance in one arm
of the bridge. Thus if B2 is variable, the sensitivity is defined as

B2(8lldB2)
at the point 7 = 0; this may be evaluated from the equa-

tions for Wheatstone's bridge, but the resulting expression is very

cumbersome. We shall follow a treatment due to Callendar (1910).

The resistances in the four arms of the unbalanced bridge of Fig. 3.5

are written in the form 724 = B (the unknown), B2
= mR', B3 = nR',

Bx
= nmB', where m and n are simple numbers and the currents are

as before. When B = B' the bridge is balanced, 7 = and 74 = 73 .

From equations (3.14) it can be shown that the ratio of the current

through the galvanometer (resistance G) to that through the unknown
resistance is

j B—B'
Z
=

G(l+ l/n)+B'(l+my
(3-16)

The ratio 7/74 is a measure of the sensitivity which is especially useful

when the current which can be put through the unknown resistance is
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limited; it is independent of the e.m.f. and resistance in the battery-

circuit. For a given value of (R— B'), 7//4 is a maximum when n is

made large and m small, the limiting value being

///4 = (R-R')I(G+R') (n = oo, m = 0).

This is, however, only twice as great as when n = m = 1, so that little

is gained by using a large value of n and a small value of m. On the

other hand, ifn is made small and m large, the sensitivity will be greatly

reduced (see also Problem 3.6).

To obtain the greatest accuracy in detection of the null point, the

galvanometer used must be as sensitive as possible. The sensitivity is

proportional to the number of turns on the galvanometer coil (see

Chapter 7), but if this number is greatly increased the resistance may
become too high. With a given size of coil, the cross-sectional area of

the wire used must be decreased in inverse proportion to the number
of turns, so that the resistance will increase with the square of the

number of turns. Hence the galvanometer deflexion will be propor-

tional to V6? for a given current, and the sensitivity of the bridge will

vary as JVC?. From differentiation of equation (3.16) (multiplied by V(?)

it is found that I*JG is a maximum at the balance point R = R' when

G = Rn(l+m)l(l+n) (3.17)

if G is treated as the variable. It is readily shown that this is just equal

to the net resistance of the branches BAD and BCD in parallel (see

Problem 3.3).

3.6. The potentiometer

If a pair of resistances Rlt i?
2 are connected in series to a battery of

potential Vv the potential across the first resistance is V1 R1I(R1+R2),

and this potential may be varied by adjusting Rx or R2 . Such a device

is called a potential divider and is the basis of a method of comparing
two potentials by means of a 'potentiometer'. The basic circuit of this

instrument is shown in Fig. 3.6, where a battery of potential V± is con-

nected across a slide wire AB. An unknown e.m.f. V2 is connected in

series with a galvanometer between the point A and a point C which
can be slid along the wire. The tapping point is adjusted until there is

no current through the galvanometer, and then, if the wire is uniform,

WGhaVe F.-W&+U.
The purpose of the large resistance R3 is to protect the galvanometer

from excessive currents during the initial stages of finding a balance.
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As the balance point is neared, B3 is reduced to give greater sensitivity

in finding the null. At the balance point no current is taken from the

battery V2 , so that its open-circuit e.m.f. is measured. Current is taken

from the battery Vv and its e.m.f. will depend on the amount of current

and also on other factors such as temperature and the time since

charging if Vx is an accumulator. The uncertainty due to this is elimi-

nated by comparison with a standard cell, whose e.m.f. is measured on

open circuit and is very constant with time, etc. The circuit for this is

3?ig. 3.6. The slide-wire potentiometer.

AC = L, OB = I,.

illustrated in Fig. 3.7, which shows a general type of potentiometer.

The slide wire is replaced by a resistance chain Bv B2 , whose total

resistance is constant and has tapping points every 10 ohms, say. This

is in series with a slide wire DB whose total resistance r is exactly

10 ohms. The total potential drop across the resistances Bv B2 and

the slide wire is first adjusted to a standard value in the following way.

B± is made zero, so that the tapping point C^ is at A. The standard

cell Vs is then brought in circuit by closing the keyKv and the resistance

Bt is adjusted until the potential across B is exactly equal to that of the

standard cell. The current supplied by V1 and flowing through B is then

exactly I — VJB. Kx is now opened andK% closed to bring the unknown

voltageV2 in circuit instead. The balance point is found first by adjusting

the position ofClt giving a course adjustment in steps, and then varying

C2 , the tapping point on the slide wire to give the ultimate balance. The
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potential V2 is then given by (writing DC2
= lx , G2B = l2)

V2 = IiBz+rlJ^+k)}.
By suitable choice of the values of B and the other resistances, a direct

reading potentiometer may be made. The accuracy of commercial
instruments ofthis type is ofthe order of 1 part in 10s

, so that a potential

of 0-1 V can be measured to a microvolt.

1
F,

MWM
7? 7?

-vNMA/WWWVV
c*

Fig. 3.7. General potentiometer circuit.

The potentiometer has many uses of which we shall mention here

only the calibration of a voltmeter and an ammeter. The circuits for

these measurements are shown in Fig. 3.8. To calibrate a voltmeter

a variable voltage is applied to it from a battery and potential divider,

and the voltage V2 on the voltmeter is measured by the potentiometer.

To calibrate an ammeter a known resistance B5 is connected in series

with it, and from the potential across this resistance, measured by the

potentiometer, the actual current through the ammeter is found.

3.7. Electron optics

In a conducting solid or liquid electrons make very frequent collisions

with the atoms, and the mean velocity whichthey acquire in the direction
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of an electric field is proportional to the field; the motion is similar to

that of a particle in a viscous medium (see Problem 3.9). In a rarefied

gas collisions with atoms are infrequent, and conduction phenomena are

quite different (see §4.8); at sufficiently low pressures collisions cease

to play any role in determining the motion of the electrons. This is the

-M

-0-

r^/WMWM KZ>
*«

MMMAW-

vWWA—

(«) (6)

Fig. 3.8. Calibration of (a) a voltmeter, and (6) an ammeter. The voltage V2 is applied

to the potentiometer as in Eig. 3.7.

position in thermionic vacuum tubes, where the electrons move directly

from one electrode to another. It is often necessary to direct the electrons

to a particular electrode, or to cause a beam of electrons to pass through

as small an area as possible, as in a cathode-ray tube, where the beam

must strike the fluorescent screen in a small spot. The principles em-

ployed in the design of such tubes are outlined below, without reference

to particular applications.

In an evacuated field-free space electrons travel in straight fines, and

a beam of electrons leaving an electrode will eventually diverge. Under

the action of a suitable electric (or magnetic) field the path of the elec-

trons is bent, and the beam may be made to converge. This is called

'focusing' the electrons: the use of the word 'focus' is borrowed from

optics and it may be shown that there is a very close analogy between

the behaviour of electrons in an electrostatic field and that of light in

a refracting medium. The basis of geometrical optics is Snell's law:

when a fight ray passes from a medium of refractive index % through

a plane boundary to another medium to2 , the angles of incidence and

refraction obey the relation

n1 smcx1
= w2 sina2 .
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In electron optics the corresponding case is that ofan electron in a field-

free space (i.e. a region of constant potential Vj) crossing into a region
at another potential V2 , as in Fig. 3.9. At the boundary there exists an
electric field which accelerates the electron in the direction normal to

the boundary, while the component of velocity parallel to the boundary
remains unchanged. If the initial and final velocities are vx and v2, the

N-

li

Fig. 3.9. 'Refraction' of an electron on crossing a boundary AB
between two regions of potential V^ and V^. NN is the normal to

this boundary.

components parallel to the boundary are vx sin olx and v% sin a2 , so that
we have

fljSinaj = v2 sina2 .

If the electron started from rest at a point where the potential is zero,

this may be written

V^sinc^ = VP£sina2 , (3.18)

since v is proportional to VF. Note that the electron velocity plays the
same role as the refractive index and does not correspond to the velocity

of light in the medium.
The example just given is a special case of a more general correspon-

dence based on Fermat's principle of least time in optics and Hamilton's
principle of least action in mechanics. The former states that the path
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of a light ray is such that the time taken between any two points of the

path is an extremum (generally a minimum). Thus we have

t= dt= — = - rids = minimum. (3.19)

Hamilton's principle states that the path of a particle is such that the

line integral of its momentum is a minimum; i.e.

I
mv ds = minimum. (3.20)

So long as the mass of the particle is constant (i.e. so long as relativity

corrections are negligible) the analogy between electron velocity and

refractive index is complete.

Although the formula for the focal length of a thin lens can be calcu-

lated quite simply in optics, the equivalent calculation for electron optics

is generally very difficult. We shall content ourselves by showing how a

focusing action can be obtained in a simple case. Fig. 3.10 shows a pair

of parallel conducting planes each with a small circular aperture. The

planes are at potentials Vt, V2 , and the potentials outside the planes away
from the aperture are constant and equal to Vx and V2 . Near the aperture

the equipotentials are curved and bulge out as shown. If an electron

travelling parallel to the z-axis (i.e. normal to the planes) enters the

aperture, it finds itself in a region where the fines of electric field, which

are normal to the equipotentials, have a radial component. This gives

the electron an acceleration normal to the axis, and it emerges into the

field-free region with a component of velocity to or away from the axis.

If the electron is in the xz plane as shown in the diagram, the x com-

ponent of velocity given to it is

If the electron enters the aperture at a small distance h from the axis,

then we may make the approximation

I8V\

\8xl t=h UL +*W"
Since the potential satisfies Laplace's equation

8W 8W 8W
8x*
+

8y*
+

8z*
~

'

where, by symmetry, BWjdx2 = dWjdy2
, and (8Vl8x) = {8V\8y) =
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on the axis, we have
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(8V\ _A/S2

2
"

(S)'
from which

^=-Jl^(S)*=-i^/(S)t'
where vz = dzjdt is the z component of the instantaneous velocity at

any point. On emerging from the aperture the electron has a velocity

v2 = (2epym)* which is independent of h, and it moves at an angle

-*•*

Fig. 3.10. A simple electron lens, consisting of two parallel conducting planes
at potentials Vv Vs with apertures. The bulging of the equipotential surfaces

near the apertures is shown.

with the axis where sin 6 = vjv2 . Since vx is proportional to h, for small

values of 6 (where the difference between sin 6 and tan 8 is negligible)

all electrons will move towards (or appear to diverge from) a particular

point on the axis, whose distance from the aperture is

—h/tand = —hv2lvx .

As the electrons were assumed to enter parallel to the axis, this is one
focal point of the lens. If vx is negative when h is positive we have a
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converging lens whose focal length is given by

1 _ _v^_ _ e/2m C I8W\ dz

% ~ ~W2
~ (2eF2/m)

}
J W) v

e/2m r/8*V\ dz _ 1 C I I^V\
d (3 22)

~(2eF2/m)*J [dz*) (2eVjm)* 4VF2 JVF\az2
j '

V
' '

where we have assumed that ve = v, the actual velocity at any point,

and substituted (2eF/m)* for it inside the integral.

If the electrons had entered the lens from the right, they would have

been brought to a focus at a pointfv where

1 kim^h 4VFjVF\8z2
/

Hence fjfe = — VpyVFj, a formula which is exactly analogous to the

optical case of a thin lens with initial and final media of different refrac-

tive indices % and n2 .

Inspection of equations (3.22) and (3.23) for the focal lengths shows

that they require a knowledge of the variation of the potential on the

axis of the lens. It is only possible in very simple cases to derive an

analytical expression for V in the aperture, and in general the variation

of V must either be calculated by numerical methods, by which an

approximate solution of Laplace's equation with the required boundary

conditions may be found, or experimentally by the use of an electrolytic

tank (see below). The variation of V always occupies a finite distance,

and if it occupies a distance comparable with either of the focal lengths

the electron lens is a 'thick lens' rather than a 'thin lens ' . The behaviour

of the system is again similar to that of an optical system, and is denned

if the cardinal points are determined. These can be found by tracing

the paths of a number of electrons through the system. One method

of doing this is to divide the potential field into thin slices along the

equipotential surfaces, and treat each slice as a thin lens.

The approximations made above in expanding (dVjcx) near the axis

and retaining only the first term are equivalent to the approximations

made in 'Gaussian optics' in treating only rays near the axis. It is to

be expected, therefore, that electron lens systems will suffer from defects

similar to those of optical systems, such as spherical aberration, etc.

The equivalent of 'chromatic aberration' arises when not all electrons

enter the system with the same velocity, since this corresponds to a

variable refractive index. If the spread in velocity is due only to the

Maxwellian distribution of velocity on emission from the cathode,
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chromatic aberration is small. An additional effect in electron lenses,

not present in optical systems, arises from the mutual repulsion of the

charged particles, which will cause a beam of electrons initially moving
parallel to each other to diverge.

3.8. The electrolytic tank

It was shown in § 3.2 that the equipotential lines in a conducting

medium between two conductors of fixed shape and position remain
unaltered if the conducting medium is replaced by a dielectric. The
electrolytic tank is a device for plotting the lines of constant V experi-

mentally using electrodes immersed in a conducting solution (tap water
is usually sufficiently conducting for this purpose). Such a device is

often used in cases where theoretical calculation of the potential distri-

bution is difficult; it is not usually feasible to construct a scale model
for a three-dimensional problem, but often the problem can be reduced

to a two-dimensional one. The simplest case is one where the conductors

extend indefinitely in one dimension (e.g. the z-axis) without change of

cross-section. A slab of conducting solution with parallel plane faces

may then be used to simulate a section normal to the z-axis. Since no
current can flow out of the sides of the slab, the equipotential surfaces

in the solution will always be normal to the sides, and it is essential

that these sides be normal to the equipotential surfaces in the three-

dimensional electrostatic problem of which the solution gives a model.

In the case under consideration the water can be contained in an insu-

lating tank whose bottom is plane and horizontal. The tank must be

sufficiently large in comparison with the region over which the potential

distribution is important so that the distortion of the equipotentials at

the sides of the tank does not affect the problem.

The apparatus is shown in Fig. 3.11. The tank contains two electrodes

A, G which are scale models of those in the electrostatic problem where

the potential distribution is desired. They are connected to a low-

frequency alternating-current generator to avoid polarization effects

and electrolysis of the solution (see Chapter 4), and also to two variable

resistances jRx , B2 in series. A detector of alternating current such as a

pair of headphones is connected between the mid-point B of the resis-

tances and a small vertical probe D immersed in the solution. The
resistances of the solution between the probe D and the electrodes A, G
then form a Wheatstone's bridge with Bx and B2 , so that no current

flows through the detector when the potential at B is the same as that

at D. If C is at zero potential, and A at potential V, then the potential

851110 Q
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at B is Fi?2/(i?1+.B2). The equipotential line in the solution with this

potential can then be traced out by moving the probe so that the detec-

tor current is always zero. The probe is fixed to a framework which

slides along two perpendicular guides with scales, and its position can

be read in terms of these two coordinates and plotted on graph paper.

Fig. 3.11. The electrolytic tank for plotting equipotential lines.
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PROBLEMS
3.1. Deduce equation (3.17) directly from equations (3.14) and (3.15).

3.2. In Fig. 3.5 show that if the galvanometer is removed (O = oo) the open
circuit voltage across the terminals BD is

v= V^R^R^R^R^+R^R^R,)



STEADY CURRENTS 83

while ifalso the battery is short-circuited, the resistance measured at the terminals

BD would be

Rl -\-Ri R3 -\-Ri

Show that with the galvanometer and battery in place, the bridge behaves as a
generator of e.m.f. equal to v, and internal resistance r, the galvanometer being the
load. This is an example of Thevenin's theorem, which may be stated as follows:

Fig. 3.12. Kelvin's double bridge.

If the open circuit voltage across terminals B, D of a network is v, and if when
B and D are short-circuited a current I flows between, them, then the resistance

of the network measured between B and D after all sources of e.m.f. have been
short-circuited is r = v/I. Thus the effect on any circuit connected across BD
will be the same as that ofa generator of e.m.f. equal to v and internal resistance r.

(For a proof of this theorem, see W. R. Smythe, Static and Dynamic Electricity,

McGraw-Hill.)

3.3. Derive equation (3.17) from the results of the last problem and the maximum
power theorem.

3.4. Resistances P, Q, .Reach of lOohmsareplacedinthreearmsofaWheatstone's
bridge, and a resistance S is adjusted in the fourth arm so that the bridge is

balanced. The resistance R is now replaced by a resistance X, and the balance
is restored by shunting /S with a resistance of 10 123 ohms. What is the value ofX ?

Discuss the advantages and disadvantages of this method of measuring resis-

tances when high accuracy is required.

3.5. In Fig. 3.12, show that no current flows through the galvanometer provided
that RJR2 = RzIRi = RJRt . This is Kelvin's double bridge for measuring small
resistances of the order of 0-01 ohm. The resistance r represents the contact
resistance between the two small resistances JBl( R2, and its value does not affect

the balance. If readings are taken with the currents flowing in both directions,

so that errors due to thermoelectric e.m.f.s at the junctions are avoided, an
accuracy of about 0-02 per cent can be achieved.
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3.6. The total amount ofpower W, which can be dissipated in the four arms of a

Wheatstone's bridge is fixed. Show from equation (3.16) that close to balance

{R-R') { mW \i

~ G(l+ l/n)+ R'(l+m)\R'(l+m)(l+n)f
'

Hence, by differentiation with respect to m and to n, and using equation (3.17),

show that the most sensitive arrangement of the bridge is when

n = m = 1, Q = R.

3.7. Six 1-ohm resistances are joined to form a regular tetrahedron, andapotential

of 1 V is maintained across one of the resistances. Find the current flowing in

each conductor.

(Answer: 1, £, £, £, \, and A.)

3.8. Two long parallel copper rods of radius of cross-section 0-25 cm are placed

with their axes 20 cm apart within a large tank of copper sulphate solution. If

the conductivity of the solution is 4-1 ohm-1 metre-1 , find the resistance per unit

length between the rods.

(Answer: 0-34 ohm/metre.)

3.9. A particle of mass m and charge e moves in a viscous medium where there is

uniform electric field E parallel to the *-axis. Show that the equation of motion

may be written as
dx . .

,

_

,

—+x/r = eE/m,

and that its solution, for a particle starting from rest at t = is

x = (eErlm){\—exp(— */t)}.

For an electron in a metal, the effect of collisions is similar to that of a viscous

force, and the value of r is « 10-14 sec (see § 4.1). Thus the exponential term in

the equation for x above quickly falls to zero and the velocity is proportional to

the electric field strength; t is known as the 'relaxation time', since it gives a

measure of the time required to reach the new equilibrium velocity when the field

strength is altered.

The mobility of the electron is u = xjE = (e\m)r, and hence the conductivity

ofa metal containingn electrons per unit volume is a = n(&lm)T (see equation 4.3).
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4.1. Free electrons in metals—classical theory

A simple explanation of metallic conductivity was put forward by
Drude in 1900, based on classical theory. It was assumed that in a metal
some electrons are free to move about the whole volume of the metal
like the molecules of a perfect gas in a container. In the absence of an
electric field the electrons move in random directions, making collisions

from time to time with the positive ions (which are fixed in the lattice)

or other free electrons. When an electric field E is applied to the metal,

the electrons are accelerated in the direction of the field and acquire an
average drift momentum p, parallel to E. The value of p can be cal-

culated as follows. In a time dt an electron of charge — e acquires an
additional momentum —eEdt through the acceleration by the field E.

In the time dt a fraction dn of the total number of electrons n per unit

volume make collisions, where

dn/n = dtJT. (4.1)

The parameter t is the mean time between collisions, as can be verified

by reference to textbooks on kinetic theory, or to Shockley (1950). We
now make the assumption that immediately after collisions the electron

velocities are completely random, so that the momentum gained under
the influence of the electric field is lost. The momentum gained in time
dt is —neEdt, while the momentum destroyed in collisions is

pdn = npdtjr.

For equilibrium these must balance, so that

npdtjr = —neEdt

or p = — eEr. (4.2)

The current density is

J = n(—ejm)p = w(e2/m)Er

and hence the conductivity is

a = J/E = n(e2jm)T. (4.3)

An estimate of the value of t can be found for copper if we assume that

there is just one free electron per atom; then from the specific resistance

given in Table 3.1, a value of t « 2 x 10~14 seconds is obtained at 20° C.
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As is obvious from equation (4.3), the conductivity is independent of

the sign of the charge on the carriers, since reversing this sign changes

the direction of their drift motion but not the direction of the current

flow. Equation (4.2) shows that the mean drift velocity v = p/m is

proportional to the applied field, and the ratio |v/E| (irrespective of the

sign) is defined (see equation 3.9) as the mobility u. This quantity is

a useful parameter, since it is directly proportional to t:

u = |v/E| = |e/m|T. (4.4)

The unit ofu is metres per second divided by volts per metre = m2
/V sec

;

however it is nearly always quoted in cm2/V sec. For copper at 20° C
we find u « 40 cm2/V sec, where again we have assumed one free elec-

tron per atom.

Since metals are much better conductors of heat than electrical in-

sulators, we may assume that the thermal conduction in a metal is also

mainly due to the free electrons. Ifwe apply the ordinary kinetic theory

formula for the thermal conductivityK of a gas to the 'electron gas' in

a conductor, we have
K = ^wHdWjdT), (4.5)

where c is the random electron velocity and W its kinetic energy = \mc2
.

Taking the mean free path I as equal to ct, we find a simple expression

for the ratio of thermal to electrical conductivity:

K _ mc*AW ^2WdW
a " 3c2 AT ~ 3e2 AT'

If the electrons obey classical statistics, then W = fync
2 = \hT, and

This equation shows that the ratio of the thermal and electrical conduc-

tivities should be proportional to the absolute temperature for a given

metal, and should be the same for all metals at a given temperature.

This is in accordance with an empirical law discovered by Wiedemann

and Franz in 1853, and the numerical value of (KjaT) given by equa-

tion (4.6) is in good agreement with the experimental values for copper,

silver, and gold over the limited temperature range of the experiments.

The experimental values ofK and a themselves and their variation with

temperature do not, however, fit with Drude's theory. From equation

(4.3), if I = ct is fixed, a should vary as T_i because of the variation

in the average velocity c of the electrons. Similarly, K should vary

as T*. In practice, at ordinary temperaturesK is found to be practically
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constant and a varies roughly as J7-1 . At low temperatures a varies

more rapidly still; Fig. 4.1 shows the resistivity of sodium at various

temperatures as a fraction of its value at 273° K. The thermal conduc-

tivity also varies at low temperatures but in a different way so that

10

0-8

0-6

P

/>273

0-4

0-2

100 200 300
T(°K.)

Fio. 4.1. The resistivity of sodium as a function of temperature.

(K/aT) is not constant. The chief objection to Drude's theory arises,

however, from the fact that the atomic heat of metals should be greater

than that of insulators by 3R/2, corresponding to the expression for the

average energy W assumed above. In practice the atomic heats of

metals at ordinary temperatures are not significantly greater than those

of insulators, showing that the contribution from the electrons is much
smaller than 3i?/2. This difficulty was not overcome until it was realized

that electrons should obey quantum statistics rather than the Maxwell-
Boltzmann statistics assumed in the classical model of a 'free-electron

gas'. In fact, since the electrons have an intrinsic spin angular momen-
tum of %K = \Qij2ir), where h is Planck's constant, they must be treated
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by the type of quantum statistics associated with the names of Fermi

and Dirac.

4.2. Free electrons in metals—quantum theory

On the free electron model the conduction electrons are confined to

the volume of the metal, but are quite free to move about inside this

volume, like gas molecules in a box. On classical theory the kinetic

energy of such a particle can have any value, and there is a continuous

distribution of values of the energy, though some are more probable

than others. When the temperature falls the average energy of the

particles decreases linearly with the temperature, becoming zero at 0° K;
at absolute temperature T the total translational energy ofN particles

is %NkT, and the differential of this gives the contribution 3i?/2 to the

molar heat. On quantum mechanics not every value of the energy is

allowed, and the continuous distribution of energies is replaced by a

discrete set of allowed energy levels. The spacing is extremely small,

however, and the difference between this and the assumed classical

continuous distribution produces no observable effect for real gases.

It would become appreciable only at temperatures so low that ordinary

substances have negligible vapour pressure, and at higher temperatures

it is always masked by deviations from the perfect gas laws owing to the

van der Waals forces. In the case of electrons in a metal, the spacing

of the energy levels is rather larger because of the smaller mass of the

electron, and the number per unit volume is much larger than in any

real gas. The result of this is to emphasize the role played by the Pauli

exclusion principle, which states that no two electrons in a given system

can have the same set of quantum numbers. When allowance is made
for the intrinsic spin angular momentum of the electron, this means

that only two electrons can occupy any given translational energy level.

Hence the kinetic energy of the electrons cannot be zero at 0° K, since

this would mean that all the electrons were in one particular energy level.

In fact the electrons occupy the lowest possible set of energy levels con-

sistent with the Pauli exclusion principle, and their mean energy is very

far from zero at 0° K. At a finite temperature the energy distribution

can only be found using the Fermi-Dirac statistics; i.e. the quantum
statistics which take account ofthe Pauli exclusion principle . At ordinary

temperatures it turns out that the energy distribution differs very little

from that at 0° K; the latter can be found when the values of the allowed

energy levels are known, and a simple method of computing the levels

will now be given.
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The fact that electrons and other particles have a wave-like aspect is

well established from experiments on electron and neutron diffraction;

the wavelength associated with a particle of linear momentum p is given

by the de Broglie relation

2-rrjlc = \ = hjp or k = p(277/A) = pjft, (4.7)

where k is the 'wave vector' which is parallel to the direction in which

the wave is travelling, and h is Planck's constant and ft = hj2ir. For

example, the wavelength is 12-3 X 10-8 cm for an electron of kinetic

energy equal to 1 eV. (One eV is the energy acquired by an electron in

falling through a potential difference of 1 volt.) Free electrons confined

within a metal rebound from the surface of the metal without losing

any energy; on the wave aspect this means that the waves are totally

reflected at the boundaries, and standing waves are set up. These stand-

ing waves are the allowed solutions of the wave equation for a particle

in a box, in the same way that standing waves of certain wavelengths

are allowed in a waveguide resonator (see § 11.7). By analogy with the

theory of heat radiation, the number di of allowed wavelengths in the

range A to X+dX is ,. T, . ,.. ... , . _.8 ^
d% = F47rdA/A4, (4.8)

where V is the volume of the box. For particles the wavelength is deter-

mined by the momentum, and from equation (4.7) the number di of

possible values of the momentum in the range p to p-\-dp is found to be

di = (Vlh3)±-!rp2 dp. (4.9)

This relation may be derived in another way by the use of the un-

certainty relation. The momentum of a particle is completely specified

in magnitude and direction by the components px , py , pz along three

Cartesian axes, and the square of the momentum is p2 = p%-\-Py-\-p%

A 'momentum space' may be constructed as in Fig. 4.2 where the co-

ordinates are the components of the momentum (px,py,pz) instead of

the components of position (x, y, z), and the momentum of a particle is

then specified by a point in this space; the magnitude and direction of

the momentum are given by the length and direction of a radius vector

drawn from the origin to the point. All values of the momentum which

he between p and p+dp are represented by points which He within the

spherical shell bounded by the radii p and p-\-dp, and the volume of

this shell is 4np2 dp. By the uncertainty relation, the momentum com-
ponent px cannot be determined more precisely than to an amount &px ,

where
&px Ax = h,
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where Ax is the uncertainty in its position coordinate; and similar rela-

tions hold for the other two axes. Hence

Apx Apy Apz = h3l{AxAyAz) = hsIV

if the particle is only constrained to be within the volume V. Now
&px Apy Apz is an element of volume in 'momentum space', and the

Pauli exclusion principle may be stated in the form that only one point

+ Px

Fig. 4.2. The momentum p of a particle is specified by its com-
ponents (px, pv , pz), corresponding to a point in 'momentum space'.

At 0° K all electrons are specified by points within the sphere of
radius p , since this makes the energy a minimum.

in momentum space is allowed in each element of volume of size hs/V.

Hence in the volume 4>njP(l/p of momentum space the allowed number
of points is ^np2 dpj{h3jV), which is the same as equation (4.9). In addi-

tion we have to consider the angular momentum of the electron JS due
to its intrinsic spin, which can have one of two components ±\H along

any axis (see § 20.2). The Pauli principle then allows two electrons,

with opposite values of these angular momentum components, to have
the same translational energy, i.e. we can assign a maximum of two
electrons to each point in the (linear) momentum space.

The translational energy W ofan electron ofmomentump and massm
is p2l2m, and the total kinetic energy will be smallest when J (p

2/2m)

has its minimum value. It is readily seen that this occurs when the

points in momentum space just fill a sphere of the least volume which
will accommodate all the electrons, since if we replace any point within



4.2] PROPERTIES OF ELECTRICAL CONDUCTORS 91

the sphere by one outside, the value of p and hence of the energy will

be larger. If the radius of this sphere is p , then its volume is %np% and
the number of possible points (i.e. allowed values of the momentum) is

(F/A3)(§7rpj}). Since we can have a maximum of two electrons per point,

if the total number of electrons in the volume V of metal is N, we must
haVe W = (F/A»)(J»3>8), (4.10)

and hence WF = p\\2m = —i (3tt%)». (4.11)

Here n = NjV is the number of electrons per unit volume of the metal

and WF is the energy of the highest level occupied at 0° K; WF is known
as the 'Fermi energy'.

It is convenient to express the distribution in terms of energy rather

than momentum. By using the relation W = p2j2m, and equations

(4.9-11), the number {2jV)di of states per unit volume which have
kinetic energy in the range W to W+dW is found to be

g(W)dW = (2/V)di = 8np2 dpjh3

=MW widW (4-12)

3nW*dW
(4.13)2WF

If the quantity g(W) is plotted against W, as in Fig. 4.3, a parabola is

obtained; at T = each state is occupied by an electron up to the

sharp cut-off at the Fermi energy WF . The mean energy W of the elec-

trons may be found in the usual way:

wF wF

W = ^ f Wg{W)dW = Wf* f W*&W = %Wr, (4.14)

o o

and the total internal energy U of n electrons at 0° K is then

U = §nWF . (4.15)

The great difference between this type of energy distribution and the

Maxwell-Boltzmann distribution can only be appreciated if numerical

values are considered. Equation (4.11) shows that WF depends on the

metal only in so far as n, the number of electrons per unit volume,

varies. If we take sodium as a typical example and assume that just

the one valence electron per atom is released in the metal as a free

electron, then
n = 2-5 X 1022/cm3 = 2-5 X 1028/m3

,
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and WF is found to be 3-1 eV. The mean energy W is f of this, or 1-9 eV.

This is very large indeed. On the classical Maxwell-Boltzmann statis-

tics, where the mean energy is §&T at an absolute temperature T, it

is equivalent to a temperature of 20 000° K. The values for other metals

calculated in a similar way are given in Table 4.1.

Table 4.1

Values of WF (the 'Fermi' energy), the work function
<f>

(as deduced from
measurements of the photoelectric effect and thermionic emission), and the

thermionic emission constant A

Work function
<f>

Photoelectric Thermionic
wp effect emission A

Substance (eV) (67) (eV) (amp cmr2 deg~ a
)

Li 4-7 2-2

Na 3-1 1-9

K 21 1-8

Cu 7-0 4-1 4-5 110
Ag 5-5 4-7 4-3 107
Au 5-5 4-8 4-25 100
Mo 5-9 4-2 50-115
W 5-8 4-49 4-5 20-60
Pt 6-0 > 6-2 5-3 30
Ni 7-4 4-9 4-5 120

Thoriated tungsten 2-6 60
(BaO,SrO) mixture 1-8 3

By way of comparison, we will calculate the value of WF for a mon-
atomic gas of the rare isotope of mass 3 of helium, atoms of which should

also obey the Fermi-Dirac statistics. The boiling-point of this gas is

3-2° K, and the number of atoms per cm3 at atmospheric pressure in

the gas at this temperature is 2-3 X 1021
. This gives WF = 1 • 15 x 10-* eV,

which is equivalent only to a temperature of 1*3° K. This is small com-
pared with the actual temperature, indicating that deviations from the

perfect gas laws due to quantum effects will not be large. It is obvious

that the low value of WF for this, or any other real gas, as compared
with the electron gas in a metal, is due primarily to the difference in

the mass of the particles (which comes in the denominator of equation

(4.11)), and also partly to the smaller number per unit volume. When
WF <^ kT, the particles have all energies up to those of order kT, and
the density of occupied points in momentum space is low; that is, the

chance of finding an occupied point in the fundamental volume (hzjV)

is small. Under these circumstances the classical statistics are a valid
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approximation. For an electron gas, on the other hand, WF > kT at all

ordinary temperatures, and every fundamental volume (h3jV) of mo-
mentum space contains an occupied point, only one such point (or two
electrons, allowing for the spin) in each such volume being allowed by
the exclusion principle. If we tried to use the classical picture, with the

average energy of the order kT, this would correspond to putting a large

number of electrons in each volume (h3jV) ofmomentum space, and the

exclusion principle would be violated.

The energy distribution at a finite temperature is given by Fermi-
Dirac statistical mechanics, and we quote the results. Each 'point' in

momentum space corresponds to a quantized state of translational

motion, and inclusion of the electron spin gives two quantum states

to each point. The number of such states g(W)dW per unit volume in

the energy range W to W+dW is known as the 'density of states', and
from equation (4.12)

g(W) = JL &£fw* = CnflW*, (4.16)

where C is a constant. If/ is the probability that an electron occupies

a given state, then the number dn of electrons with energy between W
and W+dW is dn =fg(W)dW. The quantity / is a function both of

energy and of temperature, being given by

*
=
exp{(W-WF)lkT}+l'

(4-17)

Hence dn = CnfiW*

exp{(W-WF)lkT}+l
K

'

and the total number of electrons per unit volume n is

00

n = Cm% f/w ursumi,-, dW. (4.19)
J exp{(JF—WF)jkT}-\-\
o

This integral can be evaluated numerically, but at temperatures where
kT <; ^approximate methods can be used. At T = the denomina-
tor is infinite for W > WF, and unity for W < WF, so that/ = in the

former case and 1 in the latter. This corresponds to the sharp cut-off

in the occupation of states already discussed. At a finite temperature/
is still very close to unity when W < WF and to zero when W > WF
except for the range of energies which he within a few kT of WF . The
distribution appropriate to a temperature of about 2000° K is shown
in Fig. 4.3.
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From equation (4.17) WF may be denned as the energy at which the

probability of a state being occupied by an electron is / = J, since the

denominator is then e°+l = 2. The actual value of WF can only be

Wr),

WF +$

dnjdW dnjdW

Fig. 4.3. The number of free electrons dn with kinetic energy between W and W+dW
in a metal, as given by the Fermi-Dirac distribution. At 0° K the electrons have energies

only up to the Fermi level (Wp) ; the distribution at 2000° K is shown on the right.

At room temperature the distribution is much closer to that on the left, since dnjdW is

only altered for electrons whose energy lies within RJ kT of W$.

found from equation (4.19); if we denote the value for T = denned

by equation (4.11) by (WF ) Q , it can be shown that

1 (kT)2
.WF = (Wr)

- (4.20)
12 WF

The difference is of order (kT)2jWF , and at ordinary temperatures can

be neglected for many purposes, but not in calculating differentials such

as the specific heat. The basic reason is that because of the Exclusion

Principle an electron can only move into an unoccupied state, and as

the temperature increases the extra energy available is of order kT.

Thus only the electrons with energies differing from WF by amounts of

this order can move to higher levels, and this is a fraction of order

kTjWF of the total number. Thus the increase in internal energy is

of order nkT(kT[WF), and the specific heat is smaller than the classical



4.2] PROPERTIES OF ELECTRICAL CONDUCTORS 95

value 3.R/2 per mole by a factor of order JcT/WF . The electronic specific

heat will be discussed further in § 18.4, but in the following paragraphs
we can usually neglect the difference between the actual Fermi-Dirac
distribution and that at 0° K, since at room temperature hT is equiva-

lent to 0-025 electron volts while WF is several volts.

4.3. Work function and contact potential

The energy required to remove an electron from the top of the energy
distribution out of the metal to infinity is called the work function,

<f>,

and values of
<f>
for different metals are also given in Table 4.1. The fact

that
<f>
varies from metal to metal gives rise to the phenomenon of 'con-

tact potential'. It has long been known that when two metals are placed
in contact, there is a potential difference between them, but it was not
at first generally accepted that this was a fundamental property of the
metals. From Fig. 4.4 it will be seen that if metal A has a smaller work
function than metal B, electrons from the top of the energy band in A
can flow into metal B when contact is made, since they will then have
a lower energy. This flow creates a potential difference between B and
A which increases until the tops of the two energy distributions reach
the same level, when no more electrons will be transferred, and equi-

librium is attained. The actual number of electrons transferred is only
an insignificant fraction of the total, so that the areas in Figs. 4.4 (a)

and (b) are equal. Hence the contact potential is equal to the difference

of the work functions.

In Fig. 4.4 the distributions are shown appropriate to T = 0, but in
fact the equilibrium condition at any temperature is WFA = WFB ; this

makes the distribution functions fA , fB match for every value of W,
since

f = I f
1

JA exp{(W-WFA)lkT}+l'
jB exp{(W-WFB)lkT}+l'

A detailed statistical treatment shows that WF is equivalent to the
'thermodynamic potential', which must have the same value for all

systems when they are in thermal equilibrium (see, for example, Dekker,
A. J., 1958, Solid State Physics (Macmillan)).

The work function of a metal, and hence also the contact potential
between two metals, is very sensitive to the state of the surface. For
this reason measurements of

<f>
show rather a wide scatter, and the

best determinations are made with metallic films newly deposited by
evaporation in vacuo (for metals with low boiling-points), or (for a high
melting-point metal such as tungsten) with a surface cleaned by 'flashing'
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If

W„

u
T

1 /
4>B

/ wFB
1

/ CO

Metal A Metal B

Wr
(?>)

Metal A Metal B

Fig. 4.4. Energy distribution of electrons in two metals, A, B.

(a) Before contact : <j>A , cj>B are the energies required to remove an electron to rest at

infinity.

(b) After contact : electrons flow to metal B, changing its potential relative to A until

the tops of the two energy distributions are level (the transfer of electrons required

is an insignificant fraction of the whole). The contact potential difference thus set

up is practically equal to 4>b—<I>j_, and an electron released from B (e.g. by the photo-

electric effect) would gain this amount of energy in moving from a point just outside

B to a point just outside A.

the metal at a temperature close to the melting-point in vacuo. Each

of these processes removes traces of absorbed gas from the metal which

affect the work function. The contact potential between two surfaces

is measured indirectly as follows (see, for example, Mitchell and Mitchell,

1951). A narrow beam of electrons from an electron gun is directed on
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to the metallic surface, and the current reaching the surface is plotted

as a function of the retarding potential applied to the surface. When
a second metallic surface is substituted, and the current to it plotted, a
curve of similar shape is obtained but displaced by an amount equal to

the contact potential difference between the two surfaces. The work of

Mitchell and Mitchell gave the following mean values for the contact

potential relative to a clean tungsten surface: copper —0-05±0-02 V;
silver +0-23±0-03 V; aluminium +0-31 ±0-03 V.

4.4. Emission of electrons from metals

If an electron can acquire an excess energy at least equal to the work
function, it can escape from the metal, and it will then travel to a nearby

electrode held at a positive potential with respect to the emitting sur-

face. A continuous flow of such electrons constitutes a current, and the

possibility of producing a continuous emission of electrons is the basis

of thermionic vacuum tubes. Electrons can acquire sufficient energy to

escape in two important ways; (a) if the metal is heated, the energy

distribution amongst the electrons changes, developing a pronounced
'tail' as in curve B in Fig. 4.3, in which an appreciable number of elec-

trons have energy greater than
(<f>-\-WF ) ; the escape of electrons from the

metal is then known as 'thermionic emission' : (b) if light ofa sufficiently

short wavelength shines on the metal, electrons acquire energy from
collisions with the photons and can escape ifthe photon energy is greater

than the work function
<f>;

this is known as 'photoelectric emission'.

Electrons can also be emitted if an intense electric field is applied at

the metal surface ('field emission'), or if the surface is bombarded by
electrons ('secondary emission' ) . We shall discuss these effects separately.

Thermionic emission

If a metal is heated in vacuo and an electrode at a positive potential

with respect to it collects the emitted electrons, as in Fig. 4.5, a con-

tinuous current of microamperes up to milliamperes may be obtained.

Such a device is known as a 'thermionic vacuum tube'. The magnitude

of the current depends on the work function of the emitter, and varies

very rapidly with temperature; copious emission can be obtained from

pure metals only at temperatures of the order of 2000° C (see Chapter

12). In order to escape, an electron must have an energy greater than

(<f>-\-WF), and at a given temperature the number represented by the

hatched area in Fig. 4.3 will be able to leave the surface. The close

parallel between thermionic emission and evaporation was recognized by
851110 H

jS~
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Richardson, who showed that the current emitted per unit area should

be given by the equation
J = AT*e-*"cT

,
(4.21)

where
<f>

is the work function, k is Boltzmann's constant, and A should

be a universal constant for all metals, equal to 120 amp cm-2 deg~2
.

(For the derivation of equation (4.21), see, for example, Slater, 1939,

-34

-38

10*jT

Fig. 4.5. Fig. 4.6.

Fig. 4.5. A thermionic vacuum tube. iJ2 is a battery of about 4 V for heating electrode C
(the cathode) : electrons flow from the cathode to the anode A maintained at a positive

potential by the battery Bx (« 100 V). The whole is enclosed in an evacuated glass or

metal envelope.

Fig. 4.6. Plot of log^J/2
18

) against VPjT for the thermionic emission from copper, silver,

and gold (after Jain and Krishnan, 1953).

or Zemansky, 1957). This equation has been verified experimentally,

though the variation of the exponential term with temperature is so

much more rapid than that of the T% term that in early experiments

it was difficult to be certain that the latter was correct. However, if

log(J/T2
) is plotted against IfT, a linear graph is obtained, as shown

in Fig. 4.6. Representative values of the constants A and </> are given in

Table 4.1; the values ofA vary considerably, an effect generally attri-

buted to a partial reflection of electrons attempting to leave the surface

of the emitter, though there will also be a slight variation in
<f>
with
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temperature, similar to that in WF (see Problem 4.6), which will affect

the value of A obtained from the use of equation 4.21). There is also

evidence that the emission is different from different faces of a single

crystal, and that the values ofA obtained from a polycrystalline surface

are too low. Thermionic emission will be considered in more detail in

Chapter 12.

Field emission

The emission of electrons from a metal under the influence of an
applied field is closely related to thermionic emission, so that we shall

discuss it next. As we should expect, it occurs only when the direction

of the applied field is such that electrons are attracted out of the metal,

and we must consider the effect of an applied field on the potential

barrier at the surface of a metal.

The potential energy jump at the surface is WF +<f>, since it represents

the energy which we should have to give an electron of zero kinetic

energy to extract it from the metal. The potential jump is not infinitely

sharp because ofthe 'image force' which acts on an electron just outside

the metal (§ 2.5). Ifthe electron is at a distance x from the surface it will

have potential energy W = —e2/(167re a;) when x is large compared with
atomic dimensions, but will deviate from this for small values oix. The
shape of the potential energy curve is shown in Fig. 4.7; when a field E
is applied, the potential energy outside the metal becomes

W = —e2/(1677e a;)— Eex, (4.22)

and this has a maximum as shown. Thus the apparent work function
is reduced by a large electric field, and at temperatures where the
thermionic emission is appreciable it will be correspondingly increased.

At any temperature field emission will occur also through the quantum
mechanical 'tunnel effect', by which an electron with insufficient energy
to surmount the potential barrier can 'leak' through it; this requires

fields ~ 108 V/metre to produce appreciable emission.

Photoelectric emission

The energy associated with a quantum of radiation of frequency v

(a 'photon') is hv, where h is Planck's constant, and in many respects
the photons behave like corpuscles with this energy. In an inelastic

collision the whole of this energy may be transferred to an electron. If
hv > <f>,

the electron may be ejected from a metallic surface with maxi-
mum kinetic energy w such that

hv = <j>-\-w.
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Measurement of the lowest frequency (longest wavelength) of light

which can just cause photoelectric emission therefore provides another

method of determining the work function
<f>,

assuming Planck's constant

to be known; the values of
<f>
given in Table 4.1 were obtained by this

method. The cut-off wavelength lies in the visible region only for the

(t + Wr)
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Fig. 4.7. Variation ofpotential energy W ofan electron with distance x from a conductor.

Curve A. No external field. Curve B. With external field (equation 4.22).

alkali metals and barium and strontium, which have low work func-

tions; for other metals it lies in the ultraviolet.

A device for detecting visible radiation (sometimes called a 'photo-

tube') makes use of the photoelectric current. A typical construction

is shown in Fig. 4.8. An electrode at a positive potential (the anode) in

the form ofa long thin rod is placed along the axis ofa cylindrical cathode

from which one section is removed so that light can enter and fall on the

inside of the cylinder, which is the photoelectric surface. The whole is

placed within an evacuated glass envelope. The current to the anode

reaches a value independent of the anode potential when the latter is

more than about 15 V, since all the emitted photoelectrons then reach

the anode. For a given wavelength of light, this saturation current is
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strictly proportional to the light intensity over a very wide range of

intensities, and the tube can therefore be used as an intensity meter.

The currents are of the order 10~5 A, and can be read either on a micro-

ammeter, as shown in Fig. 4.8, or, to obtain greater sensitivity, the

current can be passed through a

large resistance and the voltage de-

veloped across this resistance ampli-

fied by a vacuum tube amplifier (see

Chapter 13). This method is parti-

cularly useful for rapidly fluctuating

light intensities, since the response

ofthe photo-tube is virtuallyinstan-

taneous (the time delay in emission

of electrons after switching on a

source of light is less than 10-9 sec).

Gas-filled photo-tubes are also used.

They give a greater current, since

the initial photoelectrons give rise

to additional electrons and ions on

collision with gas molecules, but

suffer from the disadvantages that

the current is strongly dependent

on the anode voltage and the response is not as rapid as in the vacuum
type.

Secondary emission

When a solid surface is struck by electrons or ions of appreciable

energy, secondary electrons are emittedfrom the surface; ifthe bombard-
ing particles (primaries) are electrons, they must have an energy of at

least a few electron volts to eject an appreciable number of secondary

electrons, and, at higher energies, the number of secondaries may be

greater than the number of incident primaries. The phenomenon of

'secondary emission' is commonly encountered in thermionic vacuum
tubes with several electrodes, and also from the fluorescent screen of a

cathode ray tube. It is very sensitive to impurities and to contamination

of the surface; for pure metals the secondary emission ratio

S = (number of secondary electrons/number of incident primaries)

has a maximum value varying from 0-5 to 1-6. At low energies there is

an initial rise in S because the number of secondaries released within

the metal increases with the energy of the incident primary. However,

Fig. 4.8. An instrument using the pheno-
menon of photoelectric emission for the
measurement of light intensities.

A Anode.
G Negative electrode, whose inner

surface is the source of electrons.

Microammeter.
Incident light.

M
L
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the production of secondaries is most copious near the end of the primary

path, and their chance of escape declines rapidly as the primaries pene-

trate deeper into the metal at higher energies, causing S to fall again

after passing through a maximum at about 200-400 eV in the primary

energy. For composite surfaces (such as a layer of Cs2 on a base of

silver, with a surface film of absorbed caesium on the Cs20) 8 may rise

Fig. 4.9. A photo-multiplier tube, showing one
arrangement of the electrodes (a linear arrangement

is also used).

O Grill. O Final electrode.

S Shield. L Incident light.

to values as high as 10. There is still much uncertainty as to the me-
chanism of secondary emission, but there are reasons for believing that

the secondary electrons come from those tightly bound to the metallic

ions rather than from the free electrons. The shape of the curve of

secondary emission ratio against energy of the incident electrons is

similar for all substances, and resembles that for the probability of

ionization of a gaseous atom; high ratios can also be obtained from

insulators.

The chief use of secondary emission is for current amplification. For

example, the photoelectrons from a photo-sensitive surface may be ac-

celerated to strike a secondary emitting electrode, so arranged that the

secondary electrons are accelerated to another secondary emitting elec-

trode, and so on. The electrode arrangement in such a 'photo-multiplier'

tube is shown very schematically in Fig. 4.9. The current amplification

that can be obtained is very large indeed; with a secondary emission

ratio of 3 at each of 10 surfaces, the overall amplification is 310 or about
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6x10*. The main difficulty is the production of stable surfaces with a
high ratio; in practice there is generally some change in the amplifica-

tion with time. The potential of each successive electrode is about 75 V
higher than the previous one, and the necessary voltages are obtained

from a potentiometer system.

4.5. Thermoelectricity

When two metals are joined together, a contact potential difference

is set up between them. If a second junction is made between them,

so that a closed circuit is established, the contact potential difference

at the second junction is just equal and opposite to that at the first

junction, so that there is no net e.m.f. in the circuit provided that the

two junctions are at the same temperature. The work function of a
metal varies slightly with temperature, however (for tungsten it changes

at the rate of 6 to 7X 10~s eV/°K; compare Problem 4.6) and so also

will the contact potential. Hence, if the junctions are at different tem-

peratures, the contact potentials will be slightly different, and a net

e.m.f. will exist which can drive a current round the circuit. This is

known as the thermoelectric e.m.f., and was discovered by Seebeck in

1821; it is generally of the order of microvolts per degree temperature

difference between the junctions. The converse effect was discovered

by Peltier in 1834. If the Seebeck e.m.f. is from metal A to metal B at

the hot junction, an external e.m.f. applied in this direction will produce

a cooling at this junction and a heating at the other junction. Both
effects are entirely reversible.

Since the energy of the free electrons in a metal depends on the tem-

perature, the presence of a temperature gradient in a metal produces

a region at one end where the electrons have more energy than those at

the other end. Owing to their higher velocities, electrons from the end
with higher energy will diffuse down the metal faster than those from
the other end, and the flow will continue until a potential difference is

set up which is just sufficient to counterbalance this flow. This is known
as the Thomson effect. In general the e.m.f. is from the lower tem-
perature to the higher temperature, but it can have either sign. Like
the Seebeck and Peltier effects, the Thomson effect is reversible.

The Peltier coefficient II is defined as follows: the heat absorbed when
a charge Q passes from metal A to metal B is IIQ joules when Q is in

coulombs. The Thomson coefficient a is defined as such that the poten-

tial difference is aA dT (in volts) between two points in the metal A
where the temperature difference is dT (°K). In tables a is given as
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positive when the direction of the e.m.f. is from the cold to the hot

end.

Thermoelectric theory

When a charge is passed round a circuit such as that in Fig. 4.10,

there will be an irreversible heating throughout the circuit due to its

resistance, as well as thermal changes due to the Peltier and Thomson

Metal A

Metal B
Fig. 4.10. Figure to illustrate the thermoelectric effect.

effects. However, the irreversible heating is proportional to the square

of the current, and can be neglected for very small currents. If a charge

Q is passed, the external work done is QV, where V is the total e.m.f.

in the circuit; the net heat absorbed at the junctions is (UTi ~-IlTz)Q; and

the increase in internal energy is —Q \
(oA—oB)dT, since this repre-

sents the energy required to heat the electrons from temperature T2 to

Tx in metal A less that emitted in the reverse process in metal B. Hence

from the first law of thermodynamics (dividing by Q),

Ti

V = UT -nr.+ | (crA-aB) dT. (4.23)

In order to detect this e.m.f, the circuit must be broken and a volt-

meter introduced at, say X, in Fig. 4.10. Although the voltmeter may
contain metals different from A and B, the total e.m.f. in the circuit

will be unaffected provided that both junctions to the instrument are

at the same temperature. For, if the meter M has junctions at a tem-

perature T,

V = (UT -UTa)A^B+(UT)B^M+(UT)M^B+ j (*A ~-crB)dT

T-,

= (nTl-n2.,)+ 1 {oA-oB)dT,

which is the same as before. The same result holds if any number of

metals at different temperatures are connected in the circuit, provided

that each pair ofjunctions to a given metal are at the same temperature.
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Since no temperature changes occur in the circuit, the external work
QV is also the free energy of the system, so that we have from the

second law of thermodynamics

QV = U+TMP-, where U = Q j {vA-*B) dT.

T
Hence 7 = ] (aA-aB) dT+Td̂T
and differentiation with respect to T gives

dW
€rA-aB =-T^. (4.24)

Then elimination of aA—

a

B with the help of equation (4.23) yields

nr -nri = [T(dv/dT)fTi,

dV U
dT=T- (4 - 25)

Although the Peltier and Thomson effects are reversible, the applica-

tion of reversible thermodynamics to a thermoelectric circuit is open

to a number of objections, since irreversible effects such as resistive

heating and thermal conduction are always present. A better method
is to use irreversible thermodynamics (see Zemansky, 1957) or to con-

sider the change of entropy at a junction (see Cusack, 1958), and to

relate this to the net heat absorbed at that temperature. A more
rigorous treatment on these lines confirms that equations (4.24) and
(4.25) are valid, and they have been tested experimentally over a large

temperature range for many substances.

The quantity dVjdT is called the 'thermoelectric power', and from

equation (4.24) we have

dV/dT = - [
aA~°B dT+ constant.

By the third law of thermodynamics (see, for example, Wilks, 1961)

dV/dT -> as T -> 0, and we can therefore eliminate the constant by
taking the integral from to T (to avoid infinities in the integrand this

requires a to vary as least as the first power of T). Then
T T

dV\dT = j^dT- j^dT=SB-SA , (4.26)

o o

T

where the quantity S — ^ dT (4.27)
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is known as the 'absolute thermoelectric power' and is a property of

each substance separately. Our identification of the quantity Q f a dT
Ti

as the change in the internal energy suggests that

a = (\\Q){dU\dT) = (llQ)Ce ,

Table 4.2

Values of the thermoelectric coefficients a and j3 (equation (4.29)) with t in °C

Svbstance

a P

Aluminium . .

Bismuth (commercial) .

Copper ....
Constantan (60% Cu-40% Ni)

Gold

Palladium ....
Platinum ....
90% platinum-10% rhodium .

- 0-76

—43-7

+ 1-34

-38-1

+ 2-80

+ 17-2

- 7-4

- 304
+ 7-0

+0-0039
— 0-465

+ 0-0094
—0-089

+ 0-010

—0-048
-0-039
-0-033
+0-0064

where Ce is the specific heat of the electrons. Hence using equation

(18.16a) we have, since Q = —ne,

= — {n2k2l2eWF)T = j3T (4.28)

and the e.m.f. between a pair of metals A, B whose junctions are at

Tx , T2 should take the form (t = T
x—T^ $ = fiB—f$A )

v = jsB dT- jsA dT = mn-n) = «<+^. (4.29)

Though this relation is obeyed by many pairs of metals over a large

temperature range, our derivation not only predicts a = /3T2 , but also

that /? is negative (equation (4.28)), neither of which holds generally

(see Table 4.2).

The quantity S (see equation 4.26) is analogous to entropy per unit

charge since the free energy F per unit charge is V, and the entropy is

—dF/dT. Our simple theory predicts that 8 should be proportional

to T for a metal, and at temperatures above 100° K this is true to a large

extent. At lower temperatures S ceases to vary linearly with T, and
this cannot be accounted for by considering the energy distribution of

the conduction electrons alone. The vibrations of the crystal lattice
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must also be included, since these alter the potential fields through
which the electrons move and provide a mechanism by which energy
can be exchanged between electrons and lattice. This effect is parti-
cularly important at low temperatures and in semiconductors, where
thermoelectric effects are much larger. For germanium at room tem-
perature S is about 1 millivolt per degree (metals have values of order
10-6 V/deg: see Problem 4.7), and these high values, combined with
values of thermal conductivity which are much lower than in metals,
make refrigeration using the Peltier effect in a semiconductor a prac-
ticable possibility.

Thermocouples

If one junction is maintained at a fixed temperature, the thermo-
electric e.m.f. can be used to measure the temperature of the other
junction. The values of a, p can be found from the differences (taking
due account of sign) between the values given in tables (such as Table
4.2, where the one junction is assumed to be at 0° C). The values are
tabulated for each substance against lead, which is used as a reference
metal because its Thomson coefficient is very small. It is obviously
desirable to work on the steep part of the (V,t) curve, in order that V
shall vary almost linearly with t and that dVjdt shall be large. As
dV/dt = at the temperature t = — «/£, different pairs of metals are
used for different temperature ranges. A copper-constantan couple is

useful in the range -200° to 400° C, and a platinum-rhodium against
platinum couple is used up to 1700° C. For accurate work each thermo-
couple must be calibrated at two known temperatures to determine a.

and
ft, and then a calibration curve is drawn from which any unknown

temperature can be read off in terms of the e.m.f. V. It is possible to
obtain millivoltmeters which read off the temperature directly, but for
accurate work a potentiometer and standard cell should be used.
Thermocouples have the advantage that the junction has a very small
heat capacity, so that it rapidly reaches the required temperature with-
out altering the experimental conditions; they are therefore suitable
for measuring varying temperatures. It is also easy to ensure that the
junction is in good thermal contact with the substance whose tempera-
ture is required.

Measurement of the Thomson coefficient

The Thomson coefficient of one metal relative to another may readily
be found by making a thermocouple from the two metals, measuring
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the e.m.f. as a function of temperature, and applying equation (4.24).

The Thomson effect is a characteristic of each metal, however, and it is

desirable to know its absolute value. If this can be determined for one

metal, then all the others follow from thermocouple measurements. We
shall describe a method of Borelius, Keesom, and Johansson (1928)

which can also be used at low temperatures.

A
i'.,

y.

<•>
Fig. 4.11. Diagram of the apparatus used by Borelius, Keesom, and Johansson (1928)

to measure the absolute value of the Thomson coefficient of a metal.

T Platinum resistance thermometer for measurement at low temperatures.

G High resistance galvanometer.

A thin wire of the metal is stretched in vacuo between two heavy leads

maintained at a constant temperature. When a current i s passed through

the wire, the Joule heating raises the temperature at the centre so that

in one half of the wire the Thomson effect gives a voltage in the same
direction as the applied e.m.f., while in the other half it is opposed to

it. The temperature of the wire is measured at two symmetrical points

Pv P2 as in Pig. 4.11 by a pair of thermocouples which are electrically

insulated from the wire by means of thin paper. Two measurements

are made. First, the thermocouples are connected in series, so that the

mean increase of temperature at the two points is found; this gives the

temperature increase due to the Joule heating alone. Second, the couples

are connected in opposition to give the difference in temperaturebetween

the two points due to the Thomson effect. Temperature differences due

to asymmetry in the position of the points i\, P2 can be eliminated by
repeating the measurement with the direction of current flow reversed.
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In the theory it is assumed that heat is lost only by conduction along
the wire. The net heat flow into a section dx of the wire a distance x
from the centre by conduction is then

-KA{8Tldx)+KA{(dTldx)+(d*Tldx*)dx} = KA(d*T\dx*)dx,

where K is the thermal conductivity of the wire and A its cross-section.

The heat generated in the section is I(IRdx—adT), where / is the

current flowing and R the resistance per unit length. Hence the differen-

tial equation is „27T „„,

The exact solution of this equation is

T = c{e*x—cosh/a— (x/a)sinh/a},

where / = IojKA and c-1 = (or/IaR) sinh/a; the temperature at the
ends of the wire x = ±a is taken to be zero. If the thermocouple read-

ings are t when connected in series, and t when in opposition, then these

are proportional to the sum and difference of the temperatures at +6
and —b respectively. Hence

t (l//6)sinh/6-(l//a)sinh/a 1 , .

.

TFT = v-4t-^— ' v u ' J— = - when / is small.
tjb cosh/o—cosh/a 3

This gives a =
^WT- (

4 - 31
)

In this treatment the resistivity of the wire has been assumed indepen-
dent of temperature, and in practice a small correction must be made
for the slight change in temperature distribution due to the varying
resistance.

4.6. Conduction of electricity through liquids

Certain liquids, such as hydrocarbons, are extremely good insulators,

while others, such as water, have an appreciable conductivity. Solutions

ofsome salts in water have a conductivity ofthe order of 10"5 times that
of metals, and such salts are known as ionic compounds. An example
is sodium chloride, which in a simple picture is formed by the transfer

of one electron from the sodium atom to the chlorine atom, so that the
molecule consists of a positively charged sodium ion and a negatively
charged chlorine ion. Such a molecule has a permanent electric dipole

moment, and is called a 'polar molecule' ; in a non-polar molecule, such
as hydrogen, the electrons are shared equally between the two atoms,
and there is no permanent dipole moment. The water molecule is itself

strongly polar, and when a substance such as sodium chloride is dissolved
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in it, the electric fields of the water molecules are strong enough to

dissociate the solute molecules into separate sodium ions and chlorine

ions. There are also composite ions formed by groups of molecules which

have gained or lost an electron. The solution is called an 'electrolytic

solution', the solute being known as the 'electrolyte'. The degree of

dissociation of the electrolyte in solution is determined by the dynamic

equilibrium between recombination and dissociation. With 'strong

electrolytes', such as NaCl, the dissociation is practically complete at all

ordinary concentrations; for 'weak electrolytes', such as acetic acid, the

degree of dissociation is greatest at high dilution and falls steadily with

increasing concentration according to the law

<x
2/(l— a) = K\c,

where a is the fraction of solute molecules dissociated, c the concentra-

tion, and K is a constant which depends on the temperature.

If a potential difference is applied between two electrodes in an elec-

trolytic solution, a current will flow through the solution. The current

is carried by both positive and negative ions, which are produced by the

decomposition of the electrolyte; the hydrogen or metallic radical always

travels to the cathode, or negative electrode, and the acid radicals travel

to the anode, or positive electrode. This transfer of charged ions by an

electric current is called electrolysis. For example, if two copper elec-

trodes are immersed in copper sulphate solution, copper is dissolved off

the anode, and is deposited on the cathode. With carbon electrodes in

a brine solution, hydrogen appears at the cathode, and chlorine at the

anode. There are two fundamental laws, discovered by Faraday, which

are obeyed by all electrolytes.

Faraday's laws of electrolysis

(1) The mass of a given substance liberated at one electrode is pro-

portional to the total charge which has passed.

(2) The mass of a given substance liberated at an electrode by unit

charge is proportional to the chemical equivalent of that substance.

These two laws can be condensed into the following form: If the mass

liberated at an electrode is m when a current / passes for t seconds, then

m = ZIt, where Z is a constant for a given element, called the electro-

chemical equivalent. The chemical equivalent of an ion is the atomic

weight divided by the valency, the valency being equal to the number

of electronic charges carried by the ion. Then ifA is the atomic weight,

and v the valency, m = {A jv)ItjFf (4.32)
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where F is a universal constant known as the Faraday. The Faraday is

the charge of electricity which liberates one gramme equivalent {Aft) of
an ion in electrolysis. IfN (Avogadro's number) is the number ofatoms
in a gramme atom, the total charge carried by a gramme equivalent is

(Njv){ve), since each atom (more correctly, each ion) has a charge ve,

and this total charge Ne must just be equal to F. Hence we have the
important relation _, ,.

, „„,r F = Ne. (4.33)

Basically, the value of the Faraday is found by determining the mass
of electrolyte liberated when a known current is passed through a solu-

tion for a measured length of time. Some very accurate determinations

are those of Craig and Hoffman (1950). Using silver electrodes in a solu-

tion containing silver perchlorate and perchloric acid, they obtained

F = 96523-3±6-2 coulomb/g,

while in another experiment in which oxalate ions are oxidized to carbon
dioxide (C2Oi"

-

—

2e~ -> 2C02) at the anode in a solution of sodium oxa-
late in sulphuric acid they obtained

F = 96519-3±2-6 coulomb/g.

Although the primary reaction in electrolysis is simply the flow of
ions of positive and negative sign to the cathode and anode respectively,

secondary processes may occur at the electrodes so that different pro-
ducts appear there which do not correspond to the primary ions. The
first product may be unstable, as in the case

NH4+H2 ->NH4OH+H,
or it may react with the solvent, the solute, or the electrode in a chemical
reaction such as M lTin ,. ~ TT , „Na-f-H2

-+ NaOH-fH.
In these examples the hydrogen atoms or ions will combine to form
hydrogen molecules which appear as a mass of small bubbles of gas
covering the electrode. In a cell where gas appears at the electrodes,

the phenomenon of 'polarization' of the electrodes is generally observed.
For example, in the electrolysis of acidulated water using polished plati-

num electrodes, no electrolysis occurs until the applied e.m.f. V exceeds
a certain critical value V, known as the decomposition potential of the
electrolyte. If V > V, the current I flowing obeys a modified Ohm's
law relation T7 „,

V— V = IK,

but if V < V, no current flows. The cell therefore becomes irreversible

owing to 'polarization' of the electrodes. This is probably due to the
presence of positively-charged hydrogen ions in the gas bubbles, which
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repel other positive ions and so give the effect of a back e.m.f. Practical

cells incorporate a 'depolarizer' consisting of a substance which reacts

chemically with the hydrogen ions appearing at the electrode and so

prevents the formation of gas bubbles.

Fiq. 4.12. Alternating current bridge for measuring the conductivity of an electrolyte.

C is a small variable capacitor to balance out the capacitance between the electrodes.

Conductivity

Polarization effects do not appear instantaneously, but after current

has been passed in one direction for a finite time. They can be avoided

if alternating current is used, since the direction of the current is then

reversed before such effects can be established. The conductivity of

electrolytic solutions is therefore measured with alternating current and
a Wheatstone bridge, the detector being an amplifier with earphones or

cathode ray oscilloscope (see Chapter 15). The solution is contained in

a cell with two platinum electrodes; the geometrical arrangement is not

important ifonly relative measurements ofconductivity are required, but

should be such as to minimize the capacitance between the electrodes. In

general this capacitancewill requirebalancingwith a variable capacitance

in another arm of the bridge in order to obtain a balance with alternating

current, as in Fig. 4.12.

The current density at any point in the solution will be

J = (n1 v1 u1 -\-n2 v2 u2)\e\E = aE,

where nlt nz are the numbers of positive and negative ions per unit
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volume, vx ,
v2 their valencies, and ult u2 their mobilities; that is, the

mean velocity of an ion in a field of unit intensity. Hence the specific
conductivity a is ...

a = \e\{n1 v1 u1+n Si
v

!i
uz). (4.34)

a is found to be proportional to the concentration forvery dilute solutions,
but increases lessrapidlyathigher concentrations. Forweak electrolytes,
the conductivity is determined by the degree of dissociation, i.e. the
number of ions present, indicating that the mobility is independent of
concentration. For strong electrolytes, where dissociation is practically
complete at all concentrations, the mobility falls at high concentrations
because each ion attracts round itselfan 'atmosphere' ofions of opposite
sign which retard its progress through the solution when an electric field

is applied.

4.7. Voltaic cells

Iftwo metal electrodes are put into an electrolytic solution, it is found
that under certain circumstances a potential

difference exists between them. In the 'con-

centration cell', the two electrodes are of the
same metal but are immersed in two solu-

tions of the same electrolyte with different

concentrations, usually separated by a
permeable membrane which allows ions to

pass from one solution to the other. The
e.m.f. developed is normally of the order of

hundredths of a volt, and such cells are not
of practical importance. In the 'chemical

cell' the electrodes are of different metals,

and an e.m.f. is set up of the same order as

the contact potential difference between the
two metals. If a metallic contact is estab-

lished between the two electrodes a current

will flow, the energy required for this current being derived from the
chemical reactions which take place at the electrodes.

The essential processes involved may be illustrated by reference to
the simple Daniell cell, consisting of a zinc electrode immersed in dilute

sulphuric acid (or acidulated zinc sulphate solution) and a copper elec-

trode in copper sulphate solution, with a membrane through which
ions can pass from one solution to the other (Fig. 4.13). At the former
electrode Zn ions pass into solution, and at the latter copper ions are

851110 I

Fig. 4.13. The Daniell cell.

P is a porous pot containing
copper sulphate solution in

which the copper rod is im-
mersed. The zinc rod is in a
solution of dilute sulphuric

acid.
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deposited; thus the effective chemical change is essentially

Zn+++CuS04
-> ZnS04+Cu++.

The physical change at one electrode is the detachment of an ion from

the surface of the metal and its passage into solution where it is sur-

rounded by water molecules and becomes hydrated, and vice versa at

the other electrode. This may be treated in the following schematic

way. The potential energy curve of a positive ion near the surface

(i>)

x Water molecule

T

w
Fig. 4.14. Potential energy curves for a positive ion in the region of a metallic surface

or a water molecule. The minima marked M denote the equilibrium positions for the

ion at the surface of the metal ; those marked W, the equilibrium positions for the ion

in the solution.

of the metal is roughly as shown in Fig. 4.14 (a); the steep rise to the

left occurs when the ion overlaps with other ions in the metal lattice,

when strong repulsive forces are set up, while the slow rise to the right

is due to the image force attracting an ion just outside the metal back

to the metal. The normal equilibrium position of the ion will be in the

potential minimum. If we now take an isolated ion its potential energy

curve as it approaches a water molecule will be of the type shown in

Fig. 4.14(6); at large distances there will be an attractive force due to

induced polarization of the water molecule, while at short distances

repulsive forces will be more important. For an ion at the surface of a

metal immersed in a solution the combined potential energy curve will
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have one of the three forms shown in Fig. 4.14 (c), (d), and (e); in (c) ions
can pass readily from metal to solution and vice versa, since the two
potential minima are equal; in (d) an ion can only pass from the electrode
into solution, while in (e) an ion can pass only from the solution to the
electrode. With a single electrode in the solution the passage of charged
ions in one direction or the other will quickly set up a reverse potential
difference between electrode and solution, which displaces the two un-
equal potential minima of situations (d) or (e) until we reach situation
(c), the equilibrium situation.

Ifnow two electrodes are placed in the solution and an external junc-
tion is made between the metals, the usual contact potential difference

is set up at the metal-metal contact because electrons can pass very
much more readily across this contact than metal ions can move into
and out of the solution. Electrons move across the metal-metal contact
from the zinc to the copper (in our example), thereby lowering the
electron energy levels in the zinc, but raising the positive ion levels in
the zinc because of their opposite charge. The situation at the zinc-
solution junction will therefore be as in (d), and zinc ions will pass into
solution. The positive ion levels in the copper will be lowered and
situation (e) will prevail at the copper-solution junction, copper ions
being deposited on the electrode. At both these two junctions the move-
ment of the metal ion is towards lower energy, and this makes available
energy to drive the current round the circuit. Thus the contact potential
difference plays an essential role in determining the direction of current
flow, but the energy is derived from the chemical processes at each elec-

trode. Since heats of reaction are additive it is not necessary to consider
each chemical reaction in detail, and the available energy can be calcu-

lated from the heat of reaction of the effective chemical change, the
displacement of copper by zinc in the sulphate.

It is impossible to measure separately the potential difference set up
at each electrode, but it is convenient to have one standard electrode
against which the e.m.f. of other electrodes can be measured. This
standard is the 'hydrogen electrode', consisting of a piece of platinum
covered with platinum black saturated with hydrogen gas at atmospheric
pressure. Each e.m.f. listed in Table 4.3 is measured for the hydrogen
electrode against the metal electrode immersed in a standard solution.
The e.m.f. developed in a cell with any two metal electrodes immersed
in the standard solution is the algebraic difference of the potentials listed.

Thus the e.m.f. of the Daniell cell, copper against zinc, is approximately
(0-345+0-762) = 1-1 V.
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Application of thermodynamics to voltaic cells

Since in a reversible cell the chemical reactions taking place when a

current is passed through it in one direction may be reversed by sending

the current through it in the opposite direction, the standard equations

of thermodynamics may be applied to the cell. In an ideal case we may
suppose the current to be infinitely small so that Joule heat losses, which

Table 4.3

Standard electrode potentials in volts, with respect to

the hydrogen electrode, at 25° G

Li+ -2-959 Sn+++ -0-336

Rb+ -2-926 Pb++ -0-12

K+ -2-924 Pt,H2,H+ 0-0000

Na+ -2-715 Cu++ + 0-345

Zn++ -0-762 Hg++ + 0-799

Fe++ -0-44 Ag+ + 0-798

Cd++ -0-402

depend on the square of the current, can be made negligibly small in

comparison with the chemical energy changes which vary with the first

power of the current. Then the equatidn for the change in the free

energy F of a cell when a charge Q is passed at constant temperature is

F = U+T(8FldT)r ,

where U is the change in internal energy and F is the energy available

for external work provided the cell volume is constant (i.e. no gases are

liberated at the electrodes). If V is the e.m.f. of the cell, then F = VQ,

and we have 7 = {V/Q)+ T(8Vj8T)

= h+T(8Vl8T), (4.35)

where h = TJ\Q is the heat of reaction when unit charge is passed.

The reason why VQ is not just equal to U is because it may be necessary

for the cell to exchange heat with its surroundings in order to remain at

constant temperature, and this flow ofheat may be related, by the second

law of thermodynamics, to the temperature coefficient of the e.m.f.

4.8. Conduction of electricity through gases

Under perfect conditions a gas consists of uncharged molecules, and

therefore behaves as an insulator since there are no charged particles

present to carry a current. In practice, due to cosmic rays and radio-

active background (especially in the walls of the containing vessel), there

are always a few ions present, which are sufficient to initiate a spark
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discharge at sufficiently high electric fields (of the order of 30 000 V/cm
in air at atmospheric pressure), but at low fields the current passing is

negligibly small unless ions are deliberately produced in the gas, or elec-

trons are liberated at one of the electrodes (the cathode). The essential

distinction between the two cases is that at low fields the current is

Current

OA
BG
CD

* Voltage

Fio. 4.15. Current-voltage characteristic of a gas.

Ohm's law is obeyed; most ions formed are lost by recombination,
all ions formed are swept to electrodes before recombination can take place,
fresh ions are formed by collision when electrons can reach the ionization potential
of the gas molecules between collisions (Townsend discharge).

limited by the supply of ions through external action (X-rays or ultra-
violet light releasing electrons from the electrodes or from the gas mole-
cules) while at high fields new ions are created by collisions between
charged particles (accelerated by the applied electric field) and neutral
molecules. A typical current-voltage characteristic is shown in Fig. 4. 15.

At very low voltages the current is proportional to the voltage, but at
higher voltages it rises less rapidly and reaches a constant value, inde-
pendent of the voltage over a wide range.

At points on the initial part OA of this characteristic (corresponding
to currents of 10-13-10-" A) the situation is analogous to that in an
electrolytic solution, and equation (4.34) may be applied. The density
of ions is determined by the equilibrium between the rate of formation
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by the X-rays and the rate of loss by recombination within the gas and
diffusion to the walls. As the voltage increases the ions move propor-

tionately faster and appreciable numbers are lost to the electrodes so

that the ion density decreases. When the electric field reaches about

20 V/cm at atmospheric pressure, the ions reach the electrodes so quickly

that practically none is lost by recombination. The current then be-

comes independent of the applied voltage, being limited solely by the

rate of formation of ions by the X-rays. The saturation current is pro-

portional to the number of X-rays incident on the gas, and so forms a

convenient measure of the X-ray intensity.

The mobility of the ion is much greater than in a liquid, and may be

estimated in the following way. After collision with a gas molecule the

ion is initially moving in a random direction, and is then accelerated

by the external field E. The average velocity acquired in the direction

of the field can be determined in the same way as for the electrons in

a metal (see equation (4.2)). It is eETJM, where t is the mean time

between collisions, e the charge on the ion and M its mass, so that the

mobility is u = erlM = ellMv, (4.36)

where I is the mean free path, and v the random molecular velocity.

For ions of molecular dimensions, I and v have the usual values given

by kinetic theory: I = l/VS^wo-2, where n is the number of molecules per

unit volume of diameter a; and v = (SkTJTrM)*, where k is Boltzmann's

constant and T is the absolute temperature.

At atmospheric pressure, both positive and negative ions have mobili-

ties of the order of a cm/sec per V/cm, in fair agreement with values

calculated using equation (4.36). As the pressure is lowered, the mo-
bility increases inversely with the density for positive ions, correspond-

ing to the expected increase in mean free path, but for negative ions it

increases much more rapidly. This is due to the fact that at low pressures

most of the negative ions are electrons rather than heavy charged mole-

cules. At a given pressure, the ratio of electrons to heavy negative ions

varies markedly from gas to gas; some molecules, such as Cl2 , readily

attach electrons to form negative ions, while others such as H2 do not.

The mobility ofelectrons is much greater than that ofheavy ions, mainly

owing to their small mass, but also partly due to their longer mean
free paths. Since the diameter of an electron is negligible, its collision

diameter with a gas molecule is only \a, and since its velocity is much
greater than that of the gas molecules the factor V2 introduced by Max-

well to allow for the relative velocities is absent, so that the electron



4.8] PROPERTIES OF ELECTRICAL CONDUCTORS 119

mean free path is A/nna2
, or 4V2 times that of a heavy ion. In addition,

the average loss of energy by an electron in an elastic collision with
a molecule is very small (see Problem 4.4), and the average energy of
the electrons when a field is applied is much higher than that of the gas
molecules or heavy ions. We may express this by saying that the 'mean
temperature' of the electrons is higher than that of the gas. As the
pressure is reduced, and the mean free path increases, the energy gained
by an electron from the applied field increases and the effective electron
temperature rises. The energy gained is proportional to the product of
the mean free path and the applied field E, and since the mean free path
is inversely proportional to the pressure p it follows that the conditions
are a function of Ejp. At low values of Ejp the energy gained by an
electron between collisions is small, and it makes only elastic collisions

with the gas molecules, but at high values of Ejp the mean electron
temperature rises and the number of electrons in the high energy tail

of the energy distribution increases rapidly. Those which have a few
electron volts of energy can make inelastic collisions in which most of
the energy is transferred to the colliding molecule. The effect on the
molecule will now be discussed.

On quantum theory the total energy, kinetic plus potential, of an
electron bound in an atom can only have certain allowed values, and
in the normal state the electrons in an atom are in the lowest allowed
levels; this is the 'ground state' of the atom. The different energy levels

can be plotted on an 'energy level diagram' (such as Fig. 20.2). The
atom cannot exist with intermediate values of the energy, and if it is

in an excited state (one of the higher energy levels) it may return to
the ground state by emitting its excess energy as a quantum of light

whose frequency v is defined by the equation

Wl—Wz = hv. (4.37)

For a molecule the energy level diagram is similar to but rather more
complicated than that of an atom.

If an electron with sufficient energy collides with an atom or mole-
cule in its ground state, it may transfer some of its kinetic energy to
the molecule and raise it to an excited state. For this to be possible the
electron must have at least as much energy as the difference between
the ground state and the first excited state of the molecule, and the
potential through which the electron must be accelerated to obtain this

energy is called the 'resonance potential' of the molecule. In general
the molecule will get rid of this extra energy by emitting a photon (light
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quantum) within about 10-8 sec, and the gas thus becomes luminous
when the electrons gain sufficient energy from the applied electric field

to raise the molecules into these excited states. As the energy of the

electrons increases, the molecules are raised into higher excited states,

corresponding to a bound electron being in an orbit of larger radius, and
finally the molecule may be ionized; that is, an electron is completely

removed, leaving the molecule as a positively-charged ion. The energy

required to do this (expressed in electron volts) is called the ionization

potential of the molecule. This process of ionization through electron

impact increases the number of charged ions and electrons, and when
the value of E/p is large enough for it to occur, the current through

the gas is greatly increased. The steep rise in current CD with applied

voltage shown after the saturation plateau BC in Fig. 4.15 is due to

the formation of ions by collision; it was extensively investigated by
Townsend, and is known as the Townsend discharge. With specially

designed electrodes the voltage in this region becomes almost indepen-

dent of current, and small gas-filled tubes are used as voltage stabilizers.

Ionization by electron collision is the primary process in producing

fresh ions in the body ofthe gas. Experiments have shown that collisions

with positive ions are much less effective in causing ionization (owing

to their shorter mean free paths, heavy ions pick up less energy from the

applied field than electrons), and this process can be neglected in com-

parison. The most important secondary processes for producing further

charged particles occur at the cathode, from which electrons are emitted

under the action of (a) bombardment by positive ions, (b) the photo-

electric effect caused by photons emitted by excited molecules, (c) bom-
bardment by excited molecules. The relative importance of these three

processes varies with the conditions; in general (a) is more important

with cathode surfaces of high work function, and (b) with surfaces of

low work function. The main type of excited molecules reaching the

cathode are those in 'metastable states', i.e. molecules in certain excited

states which cannot return to the ground state by emitting a photon,

and so have much longer lives than the 10-8 sec mentioned above.

Secondary ionization processes occurring within the body of the gas,

which (except at high pressure) appear to be less important than those

at the cathode, are (d) photoionization, in which high energy photons

emitted by one molecule are absorbed by another, and may have suffi-

cient energy to ionize it. This occurs mostly with the high frequency

ultraviolet radiation which is found in high voltage discharge tubes;

(e) as the temperature of the gas rises owing to the conversion of elec-



4.8] PROPERTIES OF ELECTRICAL CONDUCTORS 121

trical energy to heat energy through collisions between molecules and
ions, neutral molecules may have sufficient kinetic energy of random
motion to ionize other molecules by collision. This process is sometimes
called thermal ionization.

The Townsend discharge

Suppose we have two plane parallel electrodes a distance d apart and
an electric field is applied between them. Let the negative electrode
(the cathode) be illuminated with ultraviolet light which causes n elec-

trons to be emitted per second. These electrons are accelerated, and if

the value of Ejp is sufficiently high, they will produce further ions by
collision. If n electrons cross a plane at a distance x from the cathode
per second, then the number formed by ionization in the next element
of distance dx will be proportional both to n and dx, so that we can

dn = Cx ndx,

which on integration gives n = n eClx, and the current at the anode is

therefore T „ . r n ,1= ne = n e.eCld = I eCld
, (4.38)

where I is the current due to the original n electrons alone. For low
currents this equation is in good agreement with experiment, but at high
currents the current shoots up rapidly towards infinity. This is due to
the secondary processes, which increase the supply of ions, principally
by causing the emission of more electrons from the cathode. If now the
total emission of electrons from the cathode is n' , the number of extra
electrons produced in the gas by primary ionization must be n' (eOld— 1),

and this will also be the number of positive ions. The number of excited
molecules emitting photons, and the number of molecules in excited
states, will also be proportional to this number, and hence so also will

be the number of secondary electrons emitted from the cathode, what-
ever the mechanism. Hence

K = n +C2 n'Q(e
c^~l), (4.39)

from which n' /n = {1—C2(e
Cid— l)}-1

,

and the total current will be
pCid

I = n'a e.e
Cld = L . u ±<\\

The total current will become infinite when the denominator is zero,

that is when
,Cid _ (C2+l)/C2 . (4.41)

This implies that a finite current will pass when this condition is satis-

fied, even if I is zero. The voltage at which this occurs is known as the



122 PROPERTIES OF ELECTRICAL CONDUCTORS [4.8

sparking or breakdown potential Vs . Experimentally it was discovered

by Paschen that for a given gas Vs depends only on the product pd of the

gas pressure p and the electrode separation d. This is known as Paschen's

law, and it holds up to very high pressures; it follows from the Townsend
theory (above), for the constant Gx is the number of ions produced by
an electron in going unit distance. This number must be proportional

V

2,000-

1,000-

01 0-2 0-3 pd

Fig. 4.16. Breakdown voltage V for air plotted

against pd. V in volts, p in cm of mercury, and
d in cm.

to the number of molecules per unit volume, and hence to the pressure,

and it also depends on the average energy gained by an electron between

collisions. This energy varies as El, where I is the mean free path, and

since E = V/d and I is inversely proportional to p, we have

Cx d = (pd)F(Vjpd), (4.42)

where F(Vjpd) is some single-valued function of (Vjpd). Since C2 is

a constant it follows from equation (4.41) that the sparking potential

Vs is a function only ofpd for a given gas.

Inspection of equation (4.39) shows that when the condition of equa-

tion (4.41) is fulfilled, C2(e
Cld— 1) = 1; that is, the secondary processes

produce all the electrons leaving the cathode. These electrons increase

at an exponential rate, and the discharge current rises very rapidly (in

a time of the order 10~ 7 sec at atmospheric pressure) and a spark passes.

A typical curve for the variation of Vs with the product (pressure X elec-

trode separation) is shown in Kg. 4. 1 6. The sharp rise at the low pressure

end is due to the low density, when the chance of an electron encounter-

ing a molecule is small and few ions are formed by collision. In the high

pressure region collisions are frequent, but the mean free path is small so

that few electrons gain sufficient energy from the field between collisions
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to cause ionization. Thus for any given electrode separation d, there is

always a certain pressure at which the sparking potential is a minimum.
Later work on the Townsend discharge (see Llewellyn Jones, 1953)

shows that the theory given above holds over a very wide range ofvalues

of pd. At the higher pressures (pd greater than about 20 cm Hg X cm
and sparking potentials of 10-100 kV) positive ions cannot reach the

cathode in the duration « 10~7 sec found experimentally for a spark,

and most of the secondary emission from the cathode is due to photons;

however, cathode emission is then probably less important than ioniza-

tion in the body of the gas. At pressures of the order of 100 atm, and

with gaps of the order of centimetres, Paschen's law breaks down. This

is due to the high fields at the cathode (~ 106 V/cm), which cause

appreciable field emission, a process which does not depend on the num-
ber of ions formed in the body of the gas, as assumed in equation (4.39).

Since both field emission and photoelectric emission depend on the work

function, the nature of the cathode surface becomes increasingly im-

portant at high pressures.

4.9. Plasma oscillations

Interest in gas discharge physics, under the modern title of plasma

physics, has been renewed in the quest for thermonuclear power.

A plasma may be defined as an assembly of charged and neutral particles

in static or dynamic equilibrium, but this equilibrium may be disturbed

locally. Suppose that at some instant a momentary excess of charge

occurs in one region ; the mutual repulsion of the charged particles pushes

them apart, so thatthe excess quickly disappears. However, the velocity

gained by the particles through their mutual repulsion may carry them
too far, and the excess is replaced by a defect in the charge density, and

the particles are attracted back. Repetition of this process sets up a

periodic disturbance known as 'plasma oscillations' ; these are a common
feature of gas discharges (where they may be visible as striations), and

electron or ion beams. We shall not discuss these phenomena (which

are very complex), but content ourselves with a simple derivation of the

frequency of such oscillations.

In a gas at low pressure the relative permittivity may be taken as

unity, so that from Gauss's theorem (equation 1.20) we have

e divE = p. (4.43)

Through the movement of charges a drift current J = pv occurs, and

the conservation of charge as expressed in the continuity equation (3.3)

gives -dpjdt = divJ = div(/3V). (4.44)
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Differentiation of equation (4.43) gives, together with equation (4.44),

e div(<ZE/rf«) = —div(pv)

or e E=-Pv=-J, (4.45)

where the constant of integration is zero since in the absence of particle

movement (v = 0) the time derivative of the electric field is also zero.

In a plasma where both positive and negative ions are present, the

negative ions are mostly electrons which move very much more rapidly

than the more massive ionized atoms, and we can assume that all the

current is carried by electrons; i.e. by one type of particle, of mass m
and charge q. The equation of motion of these particles is mv = qE, so

that (using equation (4.45))

dJjdt = pv = (p<7/w)E,

d2Jldt* = (pqlm)E = —(Pqlm€ )J.

If we assume that oscillations are of vanishingly small amplitude, the

departure of p from its mean value nq, where n is the average number

per unit volume, is negligible, and we can write

d2J/dt2 = -(nq*lme )J. (4.46)

This is the equation of simple harmonic motion, showing that the current

will oscillate at a frequency

V„ = (nqalme )*. (4.47)

This is known as the plasma frequency. We can estimate its magnitude

by taking as an example a plasma of fully ionized hydrogen at a pressure

of 10-5 atm (0-0076 mm Hg), for which » = 2-7x 1020 per cubic metre.

Then
fp = (we2

/477
2€ m)*

= 9-0»*

== 1-5 X1011
. (4.48)

This frequency corresponds to a wavelength of 2 mm for electromagnetic

waves, and its measurement is an important tool in plasma physics since

it gives the density of electrons. In ordinary gas discharges the degree

of ionization is relatively low, and the plasma frequency may lie in the

region 103 to 108 c/s. In metals, on the other hand, the electron density

is very much higher, and the plasma frequency is about 1015 c/s.
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PEOBLEMS
4.1. It is found that the thermoelectric power dV/dt of a copper-nickel thermo-

couple in the range 0° C to 100° C can be expressed as 20-4+0-0450</liV/oC, where

* is the centigrade temperature measured on a particular hydrogen gas thermo-

meter. The Peltier coefficient can be expressed as 1330+7-78«+0-0107«2 /teal/

coulomb. Verify that in this thermometer the hydrogen behaves as a perfect gas,

and deduce the absolute temperature of the ice-point.

4.2. Find the equation ofmotion ofa free electron in an electric field E = E sin cat.

If the field strength E is 104 V/metre, and the frequency is 100 Mc/s, show that

the amplitude of oscillation of the electron is 0-0045 m and that its maximum
energy is 22-5 eV.

4.3. A spark passes between two electrodes 1 cm apart in air at atmospheric

pressure when a uniform field of 10 kV/cm is applied across the gap. If the mean
free path of an oxygen molecule in air is 6 x 10~6 cm show that the time required

for a singly ionized oxygen molecule to cross the gap is 4-5 X 10-5 sec.

4.4. An electron of mass m collides with a molecule of mass M. Show that if the

molecule is stationary the fraction of the electron energy which is transferred to

the molecule in a head-on collision is 4Mm/(m+M)2 and evaluate this for the

case M = 200 X mass of the proton.

(Answer: wl-lxlO-5 .)

4.5. Calculate the neutral temperature (t = — <x//3) for the thermocouples

copper/iron and platinum/platinum-rhodium.

(Answer: +276 and —255° C.)

4.6. Use equation (4.20) to show that the temperature coefficient (dWF/dT) for

tungsten (T^ = 5-8 eV) at 3000° K is about — 0-6 X 10"5 eV per degree. WF will

also vary because of thermal expansion, since the number of electrons per unit

volume changes. If a is the linear coefficient of expansion, show that

dWF/dT = -2aWF .

For tungsten at 3000° K, a is about 6 x 10~6
, from which dWF/dT = — 7 X 10"5 eV

per degree, showing that the effect of expansion is considerably more important

than the second term in equation (4.20).

4.7. Calculate the value of the absolute thermoelectric power S for gold from

equation (4.28), taking WF = 5-5 eV, and compare it with the value obtained

from Table 4.2, at 273° K.

(Answer: — 1-9 and +2-7 juV/deg.)



THE MAGNETIC EFFECTS OF CURRENTS AND
MOVING CHARGES, AND MAGNETOSTATICS

5.1. Forces between currents

The first experimental investigation of the interaction between coils

carrying electric currents was performed by Ampere during the years

1820-5, and the work was continued by Oersted, Biot, and Savart.

They found that two long parallel wires carrying currents in opposite

directions repel one another, whereas when carrying currents in the

same direction they attract one another, so that the direction of the

force is reversed when the current is reversed. Ampere used circular

coils, the leads to the coils being twisted together, and as these leads

each carried equal currents in opposite directions they exerted no force

on other circuits, and any forces observed were due only to the coils.

He found that, if the dimensions of the coils were small compared with

their distance apart, one coil exerts a force and a couple on another

coil exactly similar to the force and couple which one electric dipole

exerts on another. The magnitude of this force and couple is propor-

tional to the current through the coil, the number of turns, and the area.

If the plane of each coil is normal to the line joining the centre of each

coil, the force is along this line. It is found also that if a coil carrying a

current is placed near a magnet it experiences both a force and a couple.

At distances large compared with the dimensions of either coil or magnet,

this force and couple are similar in nature to those due to a second coil

carrying a current. Thus both a magnet and a current-carrying coil are

said to produce a magnetic induction B, which exerts forces on other

coils or magnets. B is a vector quantity and lines of B can be drawn
whose direction at any point is that of B, in the same way as lines of

electric force are drawn in an electric field. The strength of B is shown

by making the number of lines per unit area normal to B numerically

equal to the value of B.

The force exerted on an element of wire ds! carrying a current I± at

a place where the magnetic induction is B can be expressed in the simple

form (see Fig. 5.1) dp = /i(dSi A B) . (5 1}

This equation then defines the unit ofmagnetic induction as that amount
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ofinduction which exerts unit force on unit length ofa wire carrying one
unit of current. In the m.k.s.a. system, the unit of force is the newton,
that of length the metre, and the unit of current the ampere. The unit
of B is then newtons (ampere metre)"1

; we shall see later that this can
be expressed as weber/metre2 (see § 5.5) and this is the more usual term
for the unit.

Fig. 5.1. Diagram to illustrate equation (5.1). dSj and B
are in the plane of the paper, the angle between them being
6. dF is normal to the paper, towards the reader, and has

magnitude dax B sin 6.

The experiments of Ampere and others showed that the force on an
element dsx carrying a current Ix due to another element ds2 carrying
a current I2 is

dFi=^{^iA(d82 Ar)}, (5.2)

where p is a constant, r is the vector joining the two elements, being
positive when drawn from ds

2 to ds^ as in Fig. 5.2. The force dF2 on
the element ds2 due to dsx is given by a similar expression with dsx
and ds2 interchanged, and r must then be taken as positive when drawn
from dsx to ds2 . The directions of the forces for the special case of two
coplanar elements are shown in Fig. 5.2, and it will be seen that they
are not equal and opposite unless the current elements are parallel. This
apparent violation of Newton's third law of motion has caused much
discussion, but Page and Adams (1945) have shown that there is no real
violation, since the electromagnetic field ofthe current elements possesses
momentum which is changing at a rate just equal to the difference of the
two forces. Ampere's original formulation of the law of force between
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two current elements was different from equation (5.2), but gave the

correct result when integrated over a closed circuit carrying a constant

current.

Comparison of equations (5.1) and (5.2) shows that we may say that

Fig. 5.2. Diagram showing the direction of the forces between two current elements.

ds t and ds 2 are in the plane of the paper. The vector (ds 2A r) is normal to the plane

of the paper, and the vector {ds^CdSaA 1")} Is m *ne plane of the paper, normal to ds t .

The magnetic field dB due to ds2 is parallel to (ds 2
/\r), an(i tne force dFx on ds t due

to it is parallel to {dSi/\(ds 2
/\r)}.

the current Iz in the element ds2 produces a magnetic induction dB at

a distance r given by the formula

dB =
(£^)/2(ds2 Ar). (5.3)

These equations may be used to calculate the field B produced by

a current in an infinite straight wire, and hence the force between cur-

rents in two parallel infinite straight wires. In Fig. 5.3 we have two

such wires a distance a apart, carrying currents Iv 72 ; we choose a coordi-

nate system where the first wire lies along the z-axis, and the second is

parallel to it but passes through the point x = a, y = 0. We first calcu-

late the field B at the point (0, 0, 0) due to the current I2 in the second

wire, using equation (5.3). Then the element ds 2 has components

(dx,dy,dz) = (0,0, dz) and r has components (

—

a, 0, — z) since it is

defined by the coordinates of the point (0, 0, 0) relative to the point

A(a, 0,2) at which ds 2 is placed. Then the components of (ds2 at) are

(0, —adz, 0), showing thatdB at is antiparallel to the ?/-axis, wherever

the point A lies along the second wire. Hence B =
J
dB will also be
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antiparallel to the y-axis, so that Bx = Bz = 0, and integration yields

for By the result

By = ^h f
-=i*L = -%>h (cotd dd =-*>!*, (5.4)

4tt J (a*+z2
)* 4t7« J 2t7« ' l ;

where we have used the substitution z — atanfl. Equation (5.4) shows
that the field of a current 72 in an infinite wire is proportional to 72 and

> A(a,0,z,)

(0,0,0)

Fig. 5.3. Parallel wires carrying currents.

inversely proportional to the distance a from the wire. B is normal to
the plane containing the wire and the radius vector r, so that fines of
constant B form closed circles centred on the wire.

We can now use equation (5.1) to find the force dF on an element
dSjt of the first wire. Since B is in the y-direction, and dsx in the z-direc-

tion, the force is in the a;-direction, its only component being

x
2na '

(5.5)

If the currents are in the same direction the force is one of attraction,

if the currents are opposed the force is one of repulsion, as stated above.
The value ofthe constant ju. depends on the system ofunits employed.

In the electromagnetic system /a /4tt is taken to be unity, the force in

dynes, and the distance in centimetres. This gives a c.g.s. system, where
the unit of current may be defined by the use of equation (5.5), being
that current which, flowing in a straight infinite wire at a distance of

1 cm from a parallel wire carrying an equal current, produces a force of
851110 K
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2 dynes per centimetre length. Similarly, 1 electromagnetic unit (1 gauss)

of magnetic field B exerts a force of 1 dyne on 1 cm of a conductor carry-

ing 1 electromagnetic unit of current (1 gauss = 10-4 weber/metre2
).

In the m.k.s.a. system, the forces are in newtons and lengths in metres,

and the currents in absolute amperes. Hitherto we have regarded the

ampere (or coulomb, since 1 A is a current of 1 coulomb/sec) as a standard

of current (or charge) defined in some arbitrary way, similar to the kilo-

gramme and metre. The value of fi is then a constant to be determined.

In practice /x is defined to be exactly 47rX 10-7 (newton/ampere2 ) since

this makes the unit of current exactly equal to one-tenth of the old

electromagnetic unit, and hence equal to the practical unit (the ampere)

as generally used in the past. Equation (5.5) then shows that for two

parallel wires 1 metre apart, each carrying 1 ampere of current, the force

per metre length of wire is 2 x 10~7 newtons. This may be regarded as

a convenient way of defining the ampere. The quantity fx is known as

the 'permeability of free space' (see § 5.4), and its unit is generally called

the henry/metre (see § 6.2) rather than newton/ampere2
; the two units

are equivalent.

5.2. Magnetic shells

The investigations of Ampere of the forces between two small coils

showed that they were similar to those between two dipoles. Compari-

son with equation (1.14) shows that we should expect such a dipole, if

placed in a uniform field, to experience a couple, and we shall now derive

this couple by use of equation (5.1). A small plane coil is placed in a

region of uniform magnetic induction B. We divide the area of the coil

into thin strips, as in Fig. 5.4, by drawing lines parallel to the a;-axis,

which is taken to be the projection of B on the plane of the coil. The
current / flowing round the coil may be regarded as made up ofa current

/ flowing round each of the rectangular strips in the same sense; for there

is then flowing along each line^such as CD two currents, from neighbour-

ing strips, of opposite sign so that they annul, leaving only the current

along the periphery. In order to compute the forces on the strip CDEF
we resolve B into a component B cos 9 normal to the plane of the strip

(where 6 is the angle between B and this normal) and a component

Bain 9 in the plane, parallel to the a;-axis. The force on each side of the

strip due to the normal component B cos 9 is in the plane of the coil,

normal to the side and proportional to the length of the side. It is

readily seen that they form a set of forces in equilibrium, for they can

be drawn as a set of vectors forming a closed figure similar to the strip,
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turned through a right angle. The forces due to the component 2? sin

are zero on CD and EF, while those on DE and FC are proportional

to the projections of these elements on the y-axis (being thus equal and
opposite), and normal to the plane of the coil. They therefore form a
couple of magnitude IxCDxSyxBsmd tending to turn the coil about

Fig. 5.4. Diagram showing the couple on a current circuit due to a field of magnetic
induction B which makes an angle 8 with the normal to the plane of the circuit, and

whose projection on the plane is parallel to the a;-axis.

the y-axis; but (GDxhy) is the area of the strip, which can be repre-

sented by a vectordS normal to the plane, whose sense is that of a right-

handed screw turned in the direction of the current. The couple can
then be written in the form

where

dr = JdSAB^dmAB,
dm = 7dS

(5.6)

(5.7)

is defined as the magnetic dipole moment ofthe strip CDEF. The couple

acting on the whole plane coil is proportional to the area, and so also

is the moment of the equivalent dipole. That is,

r = mAB, (5.8)

m = IS. (5.9)

Comparison of equation (5.8) with equation (1.14) shows that it is of
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the same form, the magnetic field B playing the same role as the electric

field E. We may therefore expect that it can be written as the gradient

of a scalar potential
<f>,

so that

B = —jn grad^. (5.10)

Although the derivation above was given for a plane coil, it is clear

that a coil ofany shape can be divided up in the same way (as in Fig. 5.5)

by using any surface which is bounded by the circuit formed by the coil.

Fig. 5.5. A large coil divided into a number of small magnetic shells.

Each element of area dS may be regarded as having a current / flowing

round its edge, and summation of the currents in all the elements com-

prising the entire surface leaves only the current in the circuit as the

resultant. If dS is taken as infinitesimal in both directions, rather than

the narrow strip assumed above, it can be regarded as a plane element

and will have an associated magnetic dipole moment given by equation

(5.7), and the couple on the whole circuit is obtained by integration of

equation (5.6). The surface forms a magnetic 'double layer', or 'mag-

netic shell', with a certain dipole moment per unit area. The potential

due to such a shell will now be calculated using equation (5.3).

The field at a point P due to the current circuit is found by integration

of equation (5.3) round the circuit. In Fig. 5.6 ifthe point P is displaced

a distance Ss the change in potential will be

(da a r) T C 8s . (da a r)
S<£= ——B.8s—'"•J^~'J :

477T3
(5.11)

where 8s can be taken inside the integral sign because it is a constant

during the integration. It is clear that we should obtain the same change

in potential ifthe point P were kept fixed and the circuit were displaced

by anamount—8s . In such a displacement the circuit element da sweeps
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out an area —(8s Ada), and this area subtends a solid angle at the point

r. (8s Ada) = 8s. (da at)

Hence the hne integral in equation (5.11) is the total solid angle sub-
tended at P by the area swept out by the circuit when it is displaced

Fig. 5.6. Displacement of a current element, in order to calculate
the potential at P due to a magnetic shell.

by —8s, and this is equal to the change Sou in the solid angle due to the
displacement ofP by 8s. Hence we may write the change in potential as

8<f>
= I

8cj

and the potential at P is f = -—, (5 j£)

where to is the solid angle which the circuit subtends at P. But

fdS.r

where dS is an element of area of any surface bounded by the circuit,
and hence

, C IdS.r fdm.r

Here the integration is over the surface of the magnetic shell, and the
potential of an individual dipole m must therefore be

* =
m.r
4ttts

' (5.14)
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This is of the same form as equation (1.10 b), except that [i ,
which we

might expect to replace the constant e , does not occur here but in

equation (5.10). The reason for this choice will appear later (see equa-

tion (5.28)).

The quantity </> is related to the line integral of B between two points,

since .

J
B.ds= -/i j

grad<£.ds= —/*o^- (
5J5 )

By analogy with electromotive force, which is the line integral of E (see

equation (3.12)), the quantity —
<f>

is sometimes known as the 'magneto-

motive force', or m.m.f.

In the electrostatic case, the work done in traversing a closed circuit

is zero, and this would also be the case for a true magnetic double layer.

If we take the integral j B .ds from a point P very close to a magnetic

shell round to a point P' just on the other side of the magnetic shell,

the difference in the solid angle which the shell subtends at these two

points is — 4a-, and the m.m.f. between these two points is

-A</> = — IAcu/477 = J,

from equation (5.12). With a real magnetic shell, if we now move from

P' to P through the shell, there would be a contribution to the m.m.f.

which would just make the total zero, but with a current circuit there

is no such contribution. We have therefore an important difference,

that the m.m.f. increases by I every time we go round a closed path

which threads the coil positively (i.e. in the same direction as the lines

of B). Thus the magnetostatic potential is not single-valued and cannot

be used in a region where there are currents flowing. On the other hand,

if the path does not thread a current circuit, the change in solid angle

is zero, and the potential is single-valued. If the path does encircle a

current i, we have ,

JB.ds = fi I. (5.16)

In a region of distributed current flow, the total current threaded by

the path is
J
J.dS, where J is the current density in an element dS of

a surface bounded by the path. Hence

cj>B.ds= fcurlB.dS = /* j" J -dS >

where the transformation from a line integral of B to a surface integral

of curlB is an example of Stokes's theorem (see Appendix A). Since

the integrals must be equal over any surface, the integrands must be

equal, and we have
curlB = ^ J. (5.17)
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Equation (5.16) is known as Ampere's law, and equation (5.17) is

its representation in differential form. Since any function such as
curl(grad^) is identically zero (see Appendix A), we note again that B
can only be derived from a scalar potential

<f>
in a region where J = 0.

5.3. Magnetostatics and magnetic media
The theory so far has been concerned with the magnetic effects of

currents in vacuo, i.e. in the absence of any magnetizable media. It is

found experimentally that a material substance acquires a magnetic
polarization when placed in a magnetic field, just as a dielectric medium
acquires an electric polarization in an electric field. The magnetic dipole
per unit volume of the material is called the intensity of magnetization
(or often, simply the magnetization), and is represented by a vector M.
All such magnetic effects are produced by current loops of atomic
dimensions, which arise from the circulation of electric charge within
the atom. The relation between the magnetic moment of such a loop
and the circulating current is given by equation (5.9). If a magnetic
medium has a magnetization M, which is not necessarily uniform
throughout the substance, the equivalent current flow can be found by
considering elementary current loops, as in Fig. 5.5. There the currents
were all equal, and cancelled one another except at the perimeter, but
in general this will not be the case. In Fig. 5.7 both M and I are func-
tions of the space coordinates. We consider an element of volume
dr = dxdydz at the point (x, y, z), for which the magnetic moment has
a componentMs dxdydz in the z-direction. This is equivalent to a current
flowing round the loop, the strength of the current being

J = {Mz dxdydz)j{dxdy) = Me dz,

since the area of the loop is dxdy. The adjacent loop at the point
(x+dx, y,z) has a current

/' = 1+ (dljdx) dx = Msdz+(8Mj8x) dxdz.

Hence the net current flow on the interface between the two elements
has a component in the ^-direction of magnitude

I—I' = -{8Mzjdx)dxdz
and if J is the current density, this component must equal Jy dxdz. By
considering similar current loops in the yz-plane, we find there is another
current component in the ^-direction of magnitude (8Mx/8z)dxdz asso-
ciated with the component of magnetization Mx . Hence the total y-
component ofthe current density is Jy = (8MJ8z)-(8MJ8x), with similar
expressions for the other components of J. These are the components
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of the vector curl M, so that we can write for the current density Jm
associated with a magnetization M

Jm = curlM. (5.18)

It follows that ifM is uniform in space, Jm = 0, so that an equivalent

current flow exists only in regions where M is varying.

x+dx

Fig. 5.7. Representation of a non-uniform magnetization by circulating currents.

In a medium which is both electrically conducting and magnetizable,

the total current density will be the sum of the real current density J
and the equivalent magnetization current density Jm , both of which

must be counted in Ampere's law. Hence equation (5.17), which was

derived for a vacuum, must be replaced by

curlB = ,ti (J+Jm) = fj,
(.J+c\xrlM),

or curl(B—n M) = /n J. (5.19)

This is the form which Ampere's law takes in the presence of a mag-

netizable medium, and the quantity (B— jii M), being directly related

to the flow of real current, is used to define a new vector such that

B-/* M = fi H, or B = ^(i^m^ (5-2o)
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Then Ampere's law takes the simple form

curlH = J, (5.21)

which is more general than equation (5.17), since it holds both in vacuo
and in a medium. Obviously, in vacuo B = /* H, so that equation

(5.17) is a special case of (5.21), which is the general differential form
of Ampere's law. Similarly, equation (5.16) must be replaced by the

more general equation

j*H.ds = J*curlH.dS = J3.dS = I. (5.22)

It is clear from this equation that the dimensions ofH must be amperes
per metre, since the line integral ofH round a circuit is equal to the total

current threading the circuit. From equation (5.20), M must have the

same dimensions as H, and this can be readily verified, since M = mag-
netic moment per unit volume, and magneticmoment = current X area,

from equation (5.9).

The process by which we have introduced a new vector H in modify-
ing our equations to allow for the presence of a polarizable medium is

analogous to that in electrostatics, where a new vectorD was introduced.

There, this vector followed from the modification of Gauss's theorem
needed in the presence of a polarizable medium; the force vector E is

related by Gauss's theorem to the sum of the real charge density and
the polarization charge density, and the advantage of D is that it is

related only to the real charge density. In the magnetic case, the force

vector B is related by Ampere's law to the sum of the real current
density and the magnetization current density, and the advantage of
H is that it is related only to the real current density.

We return now to equation (5.3) to derive an important relation for
divB. For a volume distribution of current, this equation may be
written

Then using the relation for the divergence of a vector product (see Ap-
pendix A), we have

divdB =
477

477

div IJ A grad -j

-I (grad
-J

. curlJ—J. curl (grad -)}

.

Now the differentiation is with respect to the space coordinates only,
so that curl does not operate on J and curlJ = 0, while curlgrad(l/r) =
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by another vector identity. Hence we have divdB = 0, and if this is

true for the contribution dB from any volume element dr, it must be

true also for the sum of all such contributions. Hence we can write

divB = 0. (5.24)

This relation has been derived only for a current in vacuo. However,

we have shown that any magnetization M present can be replaced by

Fia. 5.8. Boundary conditions at the surface between two media. Is is the surface

current per unit width normal to the plane of the circuit ABCDA.

an equivalent current density Jm for which it will also be true that

divB = 0. Hence equation (5.24) holds also in a magnetizable medium.

This equation is similar to that derived for divD in electrostatics,

except that divD = pe , where Pe is the density of true electric charge,

while div B = because we have no true magnetic charges. Again, as

in electrostatics, we can use Gauss's theorem applied to an elementary

flat box surrounding the boundary between two magnetic media as in

Fig. 5.8 to show that
J"
B .dS = over the surface of the box. If the

height of the box is very small compared with its cross-section, the only

contributions to
J
B.dS come from the components of B normal to

the boundary. Hence we have

A = A- (
5 - 25 )

The boundary conditions for H are found by using Ampere's law

applied to a small rectangular circuit ABCDA whose sides BC, AD are

very small compared with AB, CD. If there is a surface current Is per

unit length of the surface normal to the circuit, then equation (5.22)

leads immediately to the result

A-A = Is . (5-26)
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If there is no surface current,

1Ht

-
2Ht
= 0, (5.27)

showing that the tangential components ofH are continuous, while from
equation (5.25) the normal components of B are continuous. These
boundary conditions are similar to those in electrostatics, but note that
the formal equivalence here is between B and D, and between H and E.
This equivalence can be carried a stage further, since if no currents are
present, we have curlH = 0, and we can therefore write

H = —grad<£, (5.28)

which is analogous to E = —grad V. Equation (5.28) is true both in
vacuo and in a magnetizable medium, our earlier equation (5.10) being
a special case.

5.4. Solution of magnetostatic problems
In many materials it is found that the magnetization M is linearly

proportional to the field H, so that we can write

M = XH. (5.29)

Here x is known as the magnetic susceptibility; ifwe wish to distinguish
it from the electric susceptibility (§1.5) we may write them as xm and
Xe respectively, but where there is no danger of confusion the subscripts
may be omitted. Representative values of x for different substances
vary widely, and will be discussed in Chapter 8. At ordinary tempera-
tures x is small and independent ofH for most substances, the exceptions
being ferromagnetics, where x is large and very dependent on field

strength; M may even be non-zero when H = 0.

From equation (5.20) we have

B = /* (H+M) = ttlH(l+x)

= WoH> (5.30)

where the quantity ^ = 1-fv (5.31)

is known as the magnetic permeability of the medium, or sometimes,
since /* is called the 'permeability of free space', as the 'relative per-
meability'. It is clear that p plays a similar role in magnetostatics to
that played by the dielectric constant e in electrostatics.

Since divB = 0, we have, when ft is independent of H,

divB = div(/j./x H) = —^/x divgrad^

- -w V2
<f>
= 0,

or W = 0,
(5.32)
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showing that the magnetostatic potential obeys Laplace's equation.

The theory of Chapter 2 may therefore be adapted to magnetostatic

problems, and we shall illustrate this by treating a special case.

The problem of a polarizable sphere in a uniform electric field was

solved by means of spherical harmonics in § 2.4. The corresponding

magnetic problem may be approached in the same way, but we shall

(r, 6)

+ z

Fig. 5.9. A magnetizable sphere in a uniform field H = — 8<£2/9z.

extend it slightly by assuming that M is not necessarily proportional

to H, though still parallel to it. Then, from equation (5.20)

divB = — ;u. divgrad<£-f ju, divM = 0,

whence V2
<£ = divM. (5.33)

In the corresponding electrostatic case we found that the sphere was

uniformly polarized, and we shall assume that this is true also in the

magnetic case. Then divM = 0, and the potentials required are solu-

tions of Laplace's equation.

In Fig. 5.9, the potentials inside and outside the sphere are assumed

to be
<£1= -H^coad (r<a),

fa = —H r cos 6+Ar-z cos d (r > a).

As in the electrostatic case, there can be no term in r- 2 cos inside the

sphere, since it would become infinite at r = 0; thus the field inside is

uniform and equal to Hv Outside the sphere the field at large distances

is uniform and equal to H ; we take H to be given, so that Hx and A

are the unknowns to be determined from the boundary conditions.
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The first boundary condition, that the tangential components of H
be continuous at the boundary, is equivalent to making fa = fa at
r = a, giving ^ = ^_^_3

The radial components of B are

fi M cos e-[i (8fal8r) = ^(M+HJcos 6 (inside)

and -n (dfa[8r) = n. (H +2Ar-3)cos9 (outside).

Hence, equating the two at r — a, we have

M+Hx = H +2Aa-3
,

and elimination of A between this equation and the first boundary
condition gives TT TT , „,& Ei = H -\M, (5.34)

so that Hi is smaller than H by an amount Jikf. Thus the magnetiza-
tion produces a reverse field inside the sphere known as the 'demag-
netizing field' which is proportional toM ; the factor J is known as the
'demagnetizing factor'. Its value depends on the shape ofthe specimen,
and it is only a meaningful concept for a number of simple shapes where
the internal field is uniform and parallel to H .

A full solution of the problem is possible only if we know how M
depends on H

x . If M = xHj = Ot-lJHj, we find H2
= 3H /(^+2),M = 3H (/i— l)/(/x-f 2). As in the electrostatic case, the field outside

the sphere is equal to H plus the field of a dipole at the centre of the
sphere of magnitude equal to the total moment of the sphere. In the
ferromagnetic case we can have a finite M even when H = 0. This is

a spherical permanent magnet, whose external field is that of a point
dipole, and whose internal field is just the demagnetizing field

Hx = -JM.
We conclude the discussion of magnetostatics by finding a general

expression for the magnetic potential due to a magnetized substance.
In an element dr the dipole moment is Mdr, and the potential equation
(5.13) may be written in the form

^ =
~£n J

M

-

8rad(
1
/r)

dr
> (5.35)

where the differentiation is with respect to the coordinates ofthe volume
element dr (cf. equation (1.11b)). Then, by a vector transformation
similar to that used in deriving equation (1.17), we find
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showing that the potential can he attributed to an apparent surface

distribution of magnetic charge of surface density M cos 9, where 6 is

the angle which M makes with the normal dS to the surface, and an

apparent volume distribution of volume density —divM, which, since

divB = 0, is equal to -fdivH. Thus the field lines of H terminate on

the polarization charges, while the field lines of B are all closed loops

since there are no real magnetic charges. If the substance is uniformly

magnetized, divM = and there are no volume charges, but there is

a surface distribution corresponding to the 'magnetic poles' of classical

magnetic theory.

5.5. Steady currents in magnetic media

In § 5.3 the effects of the presence of a magnetizable medium were

considered, and it was shown that Ampere's law takes the simple form

curlH = J (5.21)

or in integral form
J
H . ds = I. (5-22)

It follows from these equations that in an infinite uniform magnetizable

medium of permeability /x the value of the field H is unaltered by the

presence of the medium, provided the current flow is unaltered, and is

independent of p. Returning to equation (5.3), which holds in vacuo

where B = ju H, we see that it may be rewritten in terms ofH as

dH = -^I(ds A r) (5.37)
477T3

= J_(JA r)dr, (5.38)
47JT3

where the first form refers to a current I in an element ds and the second

to a current density J in an element dr. From the preceding remarks

it is obvious that these equations are unaltered in a magnetizable

medium, and are known as the law of Biot and Savart.

We consider now the force vector B. We know from § 5.4 that

B = W* H (5-30)

and it follows that in a magnetizable medium the value of the force

vector due to a given current distribution is proportional to ft. Thus

the forces between two current elements are also proportional to p, and

the more general form of equation (5.2) becomes

dF «£^!{d8x A(d8,Ar)}. (5.39)
1

4tjT3
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We see from this that in a magnetizable medium the force between two
current elements is proportional to the permeability fi, in contrast with
the electrostatic case where the force between two electric poles is

inversely proportional to the dielectric constant e.

So far we have not considered the potential energy of a current circuit

in a field B, but this may be found in a simple manner. It was shown
in § 5.2 that the couple on a circuit in a field B may be written as

r = mAB, (5.8)

where m = /S (5.9)

is the equivalent magnetic dipole moment of the circuit. The equation
for the couple is similar to that for an electric dipole equation (1.14),

which was found from differentiation of the potential energy, equation
(1.13). The formal mathematical equivalence shows that the potential
energy of a magnetic dipole must be

#p=—m.B. (5.40)

Hence the potential energy of a circuit carrying an invariant current
/lS UP = -J*dm.B = -IjdS.B = -IN, (5.41)

where JV = |B.dS (5.42)

is known as the total flux ofB through the circuit. From equation (5.41)
its unit is equal to one joule per ampere, and is known as the weber.
Thus from equation (5.42), as already mentioned in § 5.1, the unit of
B is weber/metre2

.

The energy is expressed in equation (5.41) in terms of a surface in-
tegral, but it is useful to be able to express it as a line integral taken
round the current circuit. This transformation may be effected by
means of Stokes's theorem if we introduce a new vector A, such that
B = curl A. Since A is essentially derived from B by an integration,
this definition is not complete, for we could addanotherterm (equivalent
to a constant of integration) such as grad«^, and still have

curl(A+grad^r) = curlA = B.

We therefore add a supplementary condition, and define A by the
relations , . „ ,. .

curlA = B, divA = 0. (5.43)

The vector A is known as the 'magnetic vector potential', and we note
that the definition in equation (5.43) is consistent with divB = 0, since
divcurlA = (see Appendix A).
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The potential energy of a current circuit may now bo expressed as

£7p= -jJ"(curlA).dS = -/J*A.ds, (5.44)

where the line integral is taken round the current circuit, or, for a volume

current of density J, since Ids = Jdr,

[7p = _
j (A.J)dr. (5.45)

In an isotropic magnetic medium, B = ^/i. H, and we can combine

equations (5.21) and (5.43) to give

fifi J = jayn curlH = curlB = curl(curlA) = graddivA—

V

2A,

whence, since divA = 0,

V2A = -/x/*oJ. (5.46)

This equation is similar to Poisson's equation, equation (2.1), except

that the operand is a vector instead of a scalar quantity. This should

not cause any difficulty if we remember that equation (5.46) implies

that each of the components of the vector separately must satisfy the

equation. Then a formal solution similar to equation (2.6) can be found

for each of the components

4, =pK etc.,
4ir J r

which may be expressed in vector form as

dr. (5.47)
4tt J rr

This solution may be obtained directly from equation (5.38), which

gives

H -5/H?fi *--5j{ jAK))*' (M>)

where the integration is over the region of current flow and the gradient

is with respect to a displacement of the field point (cf. equation (1.11a)).

By a vector identity (Appendix A)

curl(-) = -curlJ—JAgradl-J = — JAgradl-J

since the curl operator acts only on the field point and J is invariant in

this operation. Hence in a uniform medium

B - «*H - •£ /
oml® * -S cnrl

! (')
fc-

where the order of the curl operation and the integration can be inter-

changed because the integration is over the current distribution while
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the curl operation refers to the field point. Since B = curl A, we have
found a solution for A which agrees with equation (5.47) above.
For a current circuit carrying a current /, the solution for A is

ds
4t7 J

(5.49)

and we can use this to find the value of the magnetic vector potential
for an elementary current circuit and hence for a point dipole. We take

P( x,y, z
)

-> x

Fig. 5.10. The magnetic vector potential due to a plane circular coil carrying a
current /.

a small circular current of radius a, and calculate the value of A at
a point P. For convenience we take Cartesian coordinates, whose z-axis

is normal to the plane of the coil and whose origin is at the centre of
the coil. Then P is at r = {x, y, z), and r is the distance of P from an
element ds of the circuit. In terms of the azimuthal angle <£ (see Fig.
5. 10), the components ofds are (—a &j> sin <j>, a d<f> cos <f>, 0) so thatAe

= 0.

Since

r2 = (x—acosffi+ty—asin<f>)
2+z2 = r^~2axoos^—2aysm<f>+a2

,

and a <^ r, we have

1

r

851110

1 ax eos </>-{-ay sin
<f>
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and hence

. __ fJLfi I f —a sin <j> d<f>
x ~

4tt J r

f/1 , ax cos^+aw sin 6\ . ... nu„, „,, , „ ,

J \7
+ ^g ?JBin^ty = -^{^/(w/rg)}.

o

2w
a(ip I f/1 aa; cos^+aw sin ^\

4tt

Similarly,
2>r

o

The dipole moment equivalent to the current circuit can be represented
by a vector m of size rtaH directed along the z-axis, and the com-
ponents of A are then proportional to those of the vector mAr .

Hence, dropping the subscript on r , we can write

A=S (mAr) - (5 -5°)

It can readily be verified that the lines of constant A are circles about
the z-axis, and it is generally true that for simple current circuits the
lines ofA are similar in their geometry to those of the current flow, as
in the case just discussed.

Equation (5.50) may be compared with equation (5.14). The vector
potential is proportional to the vector product (m A r), the scalar poten-
tial to the scalar product (m.r); in addition the quantity fifi appears
in the vector potential but not in the scalar potential because the former
is connected with B and the latter with H.

In § 2.3 a general expression was found for the equivalent electric

dipole moment of a distributed charge, and some applications on the

atomic scale were given. A similar expression may be found for the
equivalent magnetic dipole moment of a current distribution, and it is

convenient to do this from the formula for the energy in a uniform
field B, using the magnetic vector potential. For a uniform field,

A = J(BAr) (5.51)

as can readily be verified by calculating the components of curlA in

cartesian coordinates. Then from equation (5.45) the potential energy
of a distributed current is

UP = - j (A . J) dr = -
\ j {(B A r) .Jjdr

= -iJ"B.(rAJ)oV= -B. J"j(r A J)aV,
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where B can be taken out of the integral because it is constant and
independent of the space coordinates. The equivalent magnetic dipole

moment may be found by equating this expression for the energy to

that in equation (5.40), UP = —m.B, giving

m = j i(rAJ)d,T. (5.52)

We may check that this agrees with our earlier definition of the dipole

moment equivalent to a current circuit, since for the latter equation

(5.52) becomes
m = 1 1 J(r Ads) = / j dS = IS,

in agreement with equation (5.9).

Table 5.1

Comparison of various formulae

Electrostatics Magnetostatics CWrenis

D = e„E+P B = /* (H+M) H = (B//*,)-M

= «,E = Wh>H = B//*/*o

divD = p divB = divB =
curl E = curlH = curl H = J

E = —grad V H = —grad
<f>

B = curl A
W= -W« vv = o VaA = —fifi„ J

v
1

f
<•*•

47ree
J r 4tt J r

4irr*
H _ ZdsAr

4l7rs

p = jprdr m =
J J(rA J) dr

4tt« r8

m.r A-£«-AD
Up = —p.E Up = —m.B J7F = -JiV

Up =
J*
pV dr ^P= -J(A.J)dr

V = f JD.Edr
J

1

V =
f
$B.Hdr

The formulae derived in this chapter are summarized in Table 5.1 in
a form which gives a ready comparison with electrostatics. It is assumed
that the permeability ju, is independent of H and isotropic, and that
there is no spontaneous magnetization. In a ferromagnetic medium
these conditions are not satisfied, and formulae must be derived using
the relation B = /* (H+M) rather than B = WoH (see Problem 5.1).
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The formula U = j £B .H dr for the stored energy is quoted for con-

venience, and is derived in § 6.5.

5.6. Calculation of the magnetic fields of simple circuits

The magnetic field of a circuit of simple shape may be found in a
number of ways, the chief of which are:

(a) use of equation (5.22). This is possible only when the field has

a high degree of symmetry as in the rather similar use of Gauss's

theorem in electrostatics;

(b) use of the potential of the equivalent magnetic shell, equation

(5.12);

(c) use of the Biot-Savart law, equation (5.37);

(d) use of the magnetic vector potential, equations (5.43) and (5.49).

Simple illustrations will be given of the use of the various methods.

The field due to an infinite straight wire carrying a current J was
calculated by (c) in § 5.1, but is very quickly found by method (a). By
symmetry, H can only be a function of the radial distance from the

wire, and by applying equation (5.22) to a circle of radius r about the

wire we find
J"
H.ds = 2nrH = I. Hence the azimuthal component

ofH is I\2-nr ; since this depends only on r, the lines offorce are concentric

circles about the wire, and no other components ofH exist.

If the wire has radius a, and the current density is uniform, the field

inside the wire can be found by a similar application of equation (5.22).

In this case the current threading a circle of radius r is I(r2ja2), so that

J
H.ds = 2nrH = I(r2ja2) andH = Irj2na2

, showing that H increases

linearly from the centre to the surface of the wire.

The case of a straight wire serves also as a simple example where the

vector potential can be found by solving equation (5.46). Taking the

axis of the wire to be along the z-axis, it is obvious that the only

component of current density is Js , and hence the only component of

A is Az, so that the fines of A are parallel to the wire. Inside the wire

(permeability /j^)

V24s = —Mi ^o^ = —Mi^o-^/M2
)-

Since Jz is independent of z and (making use of cylindrical coordinates

r, 0, z), so also is Az and the differential equation becomes

Integration gives r(8Aj8r) = —^^1^12^^,
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where the constant of integration vanishes, because BAjBr = at r =
(otherwise we should have a discontinuity in BAjBr on crossing the axis.)
A second integration gives

^-^HS? <taid<"' «")
where for convenience we make A

B
= at r = a.

Outside the wire (assuming a medium of permeability ^2)

lllr^\ =
rdr\ Br) '

whence BAJdr = c/r, and

.4
S = cln(r/a) (outside),

where the second constant of integration is chosen to makeAs continuous
at the boundary; i.e. i2 = 0atr = o . The constant c is determined
by the boundary condition for BAjBr &tr = a. By writing r2 = x2+y*
and finding the components of curl A, it can be verified that

Bx = (8AjBr){y\r), By
= -(BAJdr)(z/r),

so that B = —BAJdr. Since Be is purely tangential (the other com-
ponents are zero), the boundary condition is thatHg must be continuous
at r = a, and it is easily shown then that

A»= -^Q-Hrja) (outside). (5.54)

Methods (6) and (c) may be compared in finding the magnetic field on
the axis ofa plane circular coil. We will assume that the coil has n turns
each carrying a current /, and the radius ofthe coil is a. Then, at a point
on the axis a distance z away, the solid angle subtended by the coil is

r~(z2+a2
)*J

(this formuIa may be verified by the integration

_ rdSr iw —
J
~~^-> taken over the plane surface bounded by the coil). Hence

Hz = —d<f>/dz = —(nI/4n)(dco/dz) = |n/a2
/(z2+a2

)*. (5.55)

When a < z, this formula is the same as that for the field of a dipole
of moment m = nl^a?) at a point on its axis (cf. equation 5.9).
In applying the formula of Biot and Savart we consider first the field

dH due to an element of wire ds, as in Fig. 5.11. Since dH is normal
both to ds and to r, it will have the direction shown in the figure. On
integrating round the coil it is clear that the sum of all the components
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ds dH

[5.6

Fig. 5.11. The magnetic field due to a circular coil at a point on its axis.

A

Fig. 5.12. Magnetic field on the axis of a solenoid.

normal to the axis will be zero. The components parallel to the axis

will sum to _ _____

j£
s
= nI [

(cos i£/477T2 ) ds = 1-nanI cos ^/4tt/-
2 =^TC/a2

/(g
2+g8

)
>
/
i

This formula may be extended to the case of a solenoid with m turns

per unit length, uniformly wound round a cylinder ofradius a (Fig. 5.12).

If the turns are closely wound, we may regard them as being equivalent

to a uniform current flowing round the cylinder, so that an element dz

of it forms a plane coil with a current ml dz. At the point this gives

a field along the axis equal to

dHz
= |m/o2 dz/(22+a2

)* = — ^mlsin<j>dcf>,
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where <£ is the angle AOZ. Hence

h
Hz = -iml j sin<j>d<f> = ^/(cos^-cos^). (5.56)

For an infinite solenoid,
<f>t
= and

<f>2
= „, so that

He = mI (5.57)
and is uniform inside the solenoid.

We shall end this section by calculating the force between two small
plane circular coils, each of one turn of radius a carrying a current /,
with a common axis, and separated by a distance z (a < z). Prom
equation (5.55) the field on the axis at the centre of the second coil is

Hz = ila*lz3 .

Since a < z
,
Hz will not vary appreciably for a small distance off the

axis, and the flux through the second coil is therefore

N = j B.dS = iifrQIatpXva?) = i^ nla^.
The potential energy of the second coil is UP = -NI, and hence the
force on it is „ JrT ,,

It is instructive to see just how this force arises. Since divB = in
the region away from the second coil, we have

8x ^ By
"+"

dz ~ '

where x and y are normal to the common axis of the coils. By sym-
metry, 8Bj8x = 8By\8y, and hence each equals -\{8Bz\8z). At a small
dlstance a from the axis there will be a radial component of field equal
to a(8Bx/8x) = -la(8Bej8z) = 3^^^ There wm therefore ^ ft

force /(dsA B) on each element of the coil, of which the components due
to Bz are radial and sum to zero over the whole coil, while the force
components due to the radial component of B all act in the negative
z-direction (assuming the currents in each coil flow in the same sense)
These sum to -I(2na)^ (3aU/^), which gives the same result as in
equation (5.58) (see also Problem 5.4).

5.7. Moving charges in electric and magnetic fields

The fundamental equations (5.1) and (5.37) for the force on and the
field produced by a current element both involve the quantity Ids. This
may be transformed to give the corresponding formulae for a moving
charge, which is equivalent to a current. The magnitude of the current
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/ = dqjdt, the rate at which charge passes a given point. If the charge

moves with velocity v, we have Ids = (dqjdt)vdt = dq\, and the Biot-

Savart law (equation (5.37)) thus hecomes

r /(dsAr) _ r dgjvAr)
H
-J 477f3 J 47rr3

If all the charge is located at a point, v and r are constant in the inte-

gration over dq, and for a point charge q we have

H = q4^±, (5-59)

while the force on a moving charge becomes

F = <z(vaB). (&60)

If an electric field E is also present, the total force is

F = #+vaB). (5-61)

It may be remarked that though equation (5.60) has here been intro-

duced as an additional postulate, it follows as a consequence of equation

(1.3) when we apply the special theory of relativity. An observer in

whose system a charge is at rest will ascribe the forces on it to a purely

electrostatic field E. On applying the laws for the transformation of

mechanical force we find that a moving observer would measure a force

of the type given by equation (5.61); that is, he would ascribe the effects

to the action of both electric and magnetic fields. In a similar manner,

equation (5.59) can be deduced from the electrostatic formula for D,

equation (1.23).

The motion of charged particles, usually electrons or positive ions,

under the action of electric and magnetic fields is the basis of many

fundamental experiments in physics, a few of which will be used as

illustrations here. The motion in purely electrostatic fields has already

been discussed (§ 3.7), and we shall begin by considering the motion of

a charge in a uniform magnetic induction B. If the charge is initially

moving in a plane normal to B, then the force on it (assuming E = 0)

is also in this plane and normal to its direction of motion. Thus no work

is done on the particle, since F.v = qvA (v A B) = 0, and its velocity

remains constant in magnitude. The charge will therefore move in a

circle in this plane, the force towards the centre being

Mv2jr — qvB,

where M is the mass of the charged particle, and r the radius of the

circle. Hence we have

r = MvjqB and o>e
= vjr = B(g/Jf ), (5.62)
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where &»c is the angular velocity. This equation shows that (a
c , and

hence the time taken to make one revolution, is independent of the

velocity of the particle (so long as the relativistic change of mass
with velocity can be neglected). This fact is made use of in many
applications.

Fig. 5.13. Double solenoid encased in iron, for magnetic focusing. O, G are small

annular gaps in the iron casing.

Magnetic focusing

If the initial velocity of the charge is not normal to B, but makes an

angle 9 with the direction of B, then we can resolve the velocity into

a component v cos parallel to B, and a component v sin 9 normal to B.

The vector product (v A B) has no component parallel to B, and the

component of velocity v cos 9 will therefore continue unaltered. The

projection of the motion on a plane normal to B will be a circle of radius

r = Mv sin 8/qB, and the actual path of the particle will be a helix.

One revolution of the helix is completed in a time 2it/oj = l-rrMjqB, and

the particle has then moved a distance z = 2ttMv cos 9jqB in the direc-

tion of B. For small values of 9, this distance is independent of 9 in the

first approximation (since cos 9 « 1— f 2
), and this is the principle used

in magnetic focusing.

In Fig. 5.13 electrons leave a point F, and it is desired to focus them
so that they all reach a point P a distance z away. If the electrons

emerge from a gun with electrostatic focusing, they all have closely the

same velocity v, but are not moving quite parallel to the line FP. By
means of a solenoid, a magnetic field is applied in the direction FP, and
the current in the solenoid adjusted so that the time taken to reach P
is equal to one or more periods of revolution in the helical motion caused
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by the magnetic field. It is often impracticable to use a long solenoid,

and one or more short solenoids, encased in iron with a small annular

gap round the inner circumference, as shown in Fig. 5.13, are used in-

stead. Such coils give a localized, non-uniform field, which acts like

a thin lens; their design is largely empirical.

Fig. 5.14. Diagram illustrating the principle of Bainbridge's mass
spectrometer.

Measurement of specific charge

Determination of the ratio of charge to mass (or 'specific charge') of

atomic particles is of prime importance in atomic physics. All such

particles carry a charge (positive or negative) equal to the electronic

charge e, or a small integral multiple of it, and the ratio of the charge

to the mass for the electron and the proton are fundamental constants.

From equation (5.62) it will be seen that an accurate measurement of

(oc and B for particles moving in a circle suffices to determine qjM , and
recent methods based on this principle are described in Chapter 23.

For positive ions of heavier nuclei, the main interest lies in the measure-

ment of the mass, and instruments for measuring the specific charge

(qjM) for this purpose are known as 'mass spectrometers'. In general

they make use of both electric and magnetic fields, and two measure-

ments are required since both the velocity of the particle and the value

of qjM are unknown. The positive ions are usually formed in a gaseous

discharge and more than one type of ion with varying velocity may be
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present; the instruments are therefore designed to sort these out, and
bring all particles with the same specific charge to a common focus.

Many such instruments have been designed, but since our purpose

here is just to illustrate the principles, we shall describe only one, due

to Bainbridge. It makes use of a 'velocity selector', formed by the flat

platesPlt P2 in Fig. 5.14, which have a very small separation. Ions enter

these plates from a source through slits S^ S2 , so that they are travelling

with velocity v parallel to the z-axis of the coordinate system shown in

the figure. A voltage is maintained between the plates, so that there is

an electric field E in the a;-direction. By means of a pair of Helmholtz

coils (see Problem 5.2) a uniform induction B is maintained in the y-

direction, and the total force on an ion between the plates is therefore

q(E—vB) in the a;-direction. If the plates are long and close together,

only ions for which this force is zero will emerge, and their velocity must
therefore be v = EjB. The device therefore selects ions of a particular

velocity determined by this ratio. On emerging from the plates the ions

travel in a semicircular path under the influence of the field B alone

until they strike a detector at C. The distance DC is twice the radius

of the orbit and is thus

1r = 2MvlqB = 2(Jflq)EIB2
. (5.63)

Hence the distance DC is linearly proportional to the mass of the ion.

In Problem 5.11 it is shown that the distance DC is independent (to the

first order) of the angle to the z-axis at which an ion emerges from the

plates, provided this is small, so that we have 'first order' focusing of

the ions with a given value of qjM.

REFERENCE
Page, L., and Adams, N. I., 1945, Am. J. Phya. 13, 141.

PROBLEMS
5.1. Show that if the relation B = /^ (H+M) is used rather than B = juju H,

the differential equations for the potentials ^ and A become

V2^ = divM (in regions where J = 0),

V2A = —/i J— jtt curlM.

These apply in media such as ferromagnetics, whereM is not linearly proportional

to H, and may even be finite (spontaneous magnetization) in the absence of an
applied field.
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5.2. Two identical circular coils, each of n turns of radius a, are placed with their
planes parallel and normal to the line joining them, a distance r apart. Calculate
the magnetic field on the axis midway between the coils due to a current I through
each coil. Show that, if r = a, the field midway between the coils is uniform
over a considerable region; that is, 6H/dr for one coil is equal to ~BH/dr for the
other coil, and d*H/6r2 = 0. Such an arrangement of coils was used by Helmholtz
for a galvanometer, a small magnetic needle suspended by a torsion fibre at the
centre being deflected by the current through the coils.

5.3. Two infinite cylindrical conductors are placed parallel to one another at a
distance 2a apart. They carry equal and opposite currents. Show that in the
equatorial plane the gradient of the magnetic field is greatest at a distance a/V3
from the plane through the axes of the cylinders.

5.4. Deduce equation (5.58) by treating each coil as a point dipole of moment
J(7ra2 ), and using the formula for the force on a dipole in a non-uniform field

F = m(8Bj8z)

equivalent to the electrostatic formula F = p(8F/8z).

5.5. Show that, if a magnet of moment m is suspended by a torsionless fibre so
that it is free to swing in a horizontal plane in a horizontal field B, the period of
small oscillations about the equilibrium position is T = 27r(3/mB)*, where 3 is

the moment of inertia of the magnet about the axis of rotation.

5.6. Two short magnets are attached to a cork so that they float on water with
their axes horizontal. One magnet lies with its centre on the axis of the other,
but with its own axis perpendicular to the line joining them. Assuming that
the distance between the magnets is large compared with their lengths, so that
they can be treated as point dipoles, calculate the force and the couple on each
magnet, and satisfy yourself that there is no resultant force or couple on the
system as a whole.

5.7. Show that the magnetic field inside a spherical air bubble in a paramagnetic
substance of permeability fi is 3^H/(2/x+l), if the field in the substance away
from the bubble is H . Will any translational force act on the bubble ?

5.8. A spherical shell has radii a and b respectively (6 > a), and is made of a
material of permeability p. It is placed in a uniform field H. Show that the field

inside the shell is „ _
H fyR_

i

{2fJ,+ l)(fi,+2)-2(
l
x-inaJbf

and that for large values of ju, this approximates to

fy = 9H/{2f^l-a*/V)}.

Thus if fi is large, H
t
is much smaller than H, and an instrument can be shielded

from stray magnetic fields by placing it in an iron case. Magnetic shielding is

much less efficient than electrostatic shielding (especially if ajb is close to unity),

for the effective value of e in the equivalent expression for a conductor is infinite.

5.9. A holl w sphere of internal radius a, external radius 6, has a uniform spon-
taneous magnetization M per unit volume. Show that the field in the internal

cavity (r < a) is zero, and that the external field (r > b) is the same as that of a
dipole moment m = 47rM(63— a3

)/3, the total moment of the hollow sphere.
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Show also that the square ofthe field outside the sphere at a point (r, 8), measured
from the centre ofthe sphere and with respect to the direction ofmagnetization, is

If the angle of dip S is defined as the angle which the lines of force at a point on
the external surface of the sphere make with the tangent at that point, show that

tanS = 2cot0.

5.10. A particle of mass M and charge q is rotating in a circular orbit of radius r
with angular velocity w. Show that a magnetic dipole momentm is associated
with the motion of the charge, such that

m = {q/2M)G,

where G = Mr*ai is the angular momentum of the particle. (The orbit may be
regarded as a small circuit carrying a current I = q x the frequency at which the
charge passes any point in the orbit per unit time.)

5.11. In Bainbridge's mass spectrometer the ions emerge in a wedge-shaped beam
of small semi-vertical angle (see Fig. 5.14). If the resolution of the instrument
as a mass spectrometer is denned as the reciprocal ofthe smallest fractional change
of mass which will produce non-overlapping traces on the plane CD, show that
the resolution is 2/02

.

5.12. A charged particle starts from rest at the origin of coordinates in a region
where there is a uniform electric field E parallel to the a;-axis, and a uniform
magnetic induction B parallel to the z-axis. Show that the coordinates of the
particle at a time t later will be

x = (E/a>B)(l-cosa)t),

y = (E/a>B){a}t—sina>t),

2=0,
where co = eB/m. (The path of the particle is a cycloid.)

Electrons are liberated with zero velocity from the negative plate of a parallel
plate condenser, to which is applied an induction B parallel to the plates. Show
that they will not reach the positive plate if the plate separation d is greater than
2mE/eB2

, where E is the field between the plates.



ELECTROMAGNETIC INDUCTION AND
VARYING CURRENTS

6.1. Faraday's laws of electromagnetic induction

The experiments of Oersted and others showed that 'electricity can

produce magnetism', and established the laws governing the magnetic

field set up by a current. Many experiments were devised to detect the

inverse effect, the flow ofelectric current due to a magnetic field, without

success, mainly because a steady current flow was looked for. In 1831

it was found by Faraday that a transient flow of current occurred in

a closed circuit when the flux of magnetic induction through the circuit

was changed. The change of flux could be brought about in a number
ofways : in his first experiment two coils of wire were wound on a ring of

soft iron as in Fig. 6.1. The presence of a current in the second coil was
detected by connecting it to another coil near a small suspended magnet.

When the first coil was connected to a battery, a momentary oscillation

of the magnet occurred, after which it settled in its original position.

A similar oscillation, though with an initial kick in the opposite direction,

was observed on disconnecting the battery. In other experiments Fara-

day showed that similar effects were observed ifapermanentmagnet was

moved near the second coil, or if the coil was moved in the neighbour-

hood of a magnet. His results were summed up in the two laws:

(a) when the flux of magnetic induction through a circuit is chang-

ing, an electromotive force is induced in the circuit;

(6) the magnitude of the e.m.f. is proportional to the rate of change of

the flux.

The sign of the e.m.f. is given by Lenz's law, which states that it is

such that any current flow is in the direction which would oppose the

flux change causing the e.m.f. Thus, in Fig. 6.2, if the magnet is moved
towards the closed loop of wire so that the magnetic flux through the

coil is increased, the induced current will flow in such a direction that its

own field opposes the increased field of the magnet threading the loop.

These laws are expressed in the equation
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where V is the electromagnetic force round the circuit, and N is the
instantaneous value of the magnetic flux through the circuit. Now
-AT =

J
B .dS and V =

J"
E.ds, where the former integral is taken over

9

\

Fig. 6.1. Faraday's experiment on electromagnetic induction.

V battery, S switch,
M suspended magnetic needle, I iron ring.

Fig. 6.2. Current induced in a loop by a moving magnet (broken lines represent lines of
magnetic field produced by the induced current when the magnet moves towards the

loop).

any area bounded by the circuit and the latter integral is taken round
the circuit. Hence we have

/
E.ds = 1

~dt /
B.dS. (6.2)
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Using the transformation
f
E.ds = j curlE.dS, and the fact that the

time and space coordinates are independent variables, this can be re-

written in the form

JcurlE.dS=-Jf.dS )

and since this must hold over any surface area, the integrands must be

equal, giving the differential form

dB
curlE = —

dt
(6.3)

At first sight it would have been expected that equation (6.1) would

have contained a multiplying constant to be determined either experi-

mentally or from theory. This constant is in

fact unity, as can be seen in the following

way. Let us assume we have a very thin

conductor carrying no current, which is

moved with a velocity v in a uniform field

of magnetic induction B. Since the wire is

a conductor, it carries charges (electrons)

which are free to move along the wire; let

the velocity of a charge q in the conductor

be u relative to the conductor. Since the

conductor is very thin u must be parallel

to the direction of the wire at any point.

The velocity of the charge q relative to the

observer is v+u, and the force on it will

therefore be F = q(y+u) A B. If the charge

moves a distance dr along the wire, the

work done is F.dr; since (uAB).dr = because u, dr are parallel,

this is the same as if there existed in dr an e.m.f.

B

Fig. 6.3. Belation between
Faraday's law of induction

and the force on a moving
conductor.

dV= (vAB).dr. (6.4)

For a closed circuit in a uniform induction B, since (v a B) is constant,

the total e.m.f. V = f (vAB).dr = 0. If the induction is not uni-

form, the flux through the circuit will change as the circuit moves, and

we can relate V to the rate of change of flux. Consider a small rect-

angular circuit ABGD (Fig. 6.3) with sides a, b parallel to the x, y axes

of a Cartesian system. The e.m.f. in an anti-clockwise direction (the

sense in which a right-handed screw would turn to advance along the
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z-axis) is

\*a* +V9y~+V&7 (6.5)

since divB = 0. But abB
z = N, the flux through the circuit, and since

vx = dxjdt, etc.,

v (8N
t
8N 8N \V=

-[-8x-
V
*+l%

V
»+te

V
J
= ~dN'dt

in agreement with equation (6.1). The unit of magnetic flux N is the
weber, and an e.m.f. of 1 V is generated in a circuit where the flux is
changing at the rate of 1 weber/sec.

Equation (6.3) may be combined with the relation B = curlA (equa-
tion (5.43)) to give

V H

"di

curlE = —~ curlA = —curl(dA/dt),

whence E = _^+ constant = -^-grad V. (6.6)

This is a more general equation than equation (1.6) which applies only
to steady fields. For a particle of charge q the rate of change ofmomen-
tum p is (assuming grad V = 0)

dp/dt = qE = -q(8A/dt),

which on integration gives

P = Po-?A,
(67 )

assuming that A = when p = p . This relation plays an important
role in quantum mechanics, where the effect of a magnetic field on a
charged particle can be introduced by replacing p by p —qA.

6.2. Self-inductance and mutual inductance
If a current / is flowing in a circuit, a magnetic field is set up and

there will be a flux 2? of magnetic induction through the circuit asso-
ciated with its own magnetic field. The magnetic field at any point is
proportional to the current I, and hence so also is the induction and the

851110 M
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flux N. We may therefore write

N = LI, (6.8)

where L is a constant which depends on the geometry of the circuit and

the permeability of the medium in which it is immersed. L is called the

self-inductance of the circuit, and is equal to the total flux through the

circuit when unit current is flowing. A circuit has unit self-inductance

(one henry) if it is threaded by one weber of flux when one ampere of

current is flowing.

If a second coil is brought near to a coil carrying a current I, there

will in general be a flux N2 of magnetic induction through the second

coil due to the current in the first coil. Since Nz is again linearly propor-

tional to L, we may write

Nz
= Mnh, (8-9 a)

whereM21 is called the mutual inductance between the two circuits. The

unit ofmutual inductance is again the henry. There will also be a fluxNx

through the first circuit due to a current J2 in the second circuit, given by

^ =^4 (6.9 b)

The coefficientsMl2 and if21 are equal, as can be seen from energy con-

siderations. The potential energy of the system can be found from the

flux of either coil due to the field of the other; from equation (5.41)

UP = -N2 I2 = -Mnhh = ~Nih = -MiM,
showing that M12 = M21 . (6.10)

By using equations (5.44) and (5.47) we can derive a formula for the

mutual inductance, since

where, by symmetry,

*u =*„~£jj^. (6-12)

This result is known as Neumann's formula. Since the unit of mutual

inductance is the henry, this formula shows that the dimensions of fi

are henry/metre.

Ifthe two coils are closely wound, so that all the flux generated by the

first coil passes through the second, and vice versa, then the ratio of

the two fluxes Nt andN2 will just be equal to the ratio of the number of
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turns %, n2 on the two coils. For a current I± in the first coil we have

(writing M for M12
= M21 )

NJN2 = {LJJWh) = LJM = njn*

while for the flux generated by a current I2 in the second coil

NJNj, = (L2 I2)I(MI2) = LJM = n2jnv

Hence LJM = M\L2
= nx\n2 and M% = LX L2 . (6.13)

If the flux through the two coils is changing, the voltages induced in the

two coils will be in the ratio

VJV% = (dNJdt)l(dNJdt) = nx\n2 = 1/n.

Hence such a device may be used as a transformer, since if a changing

voltage Vx is applied to the 'primary' coil, a changing voltage of different

magnitude will be induced in the 'secondary' coil. The voltage trans-

formation ratio is n = Y2\VX , the 'turns ratio' of secondary to primary.

In general not all the flux of one circuit passes through the other, and
M is less than (Lx L2

)l; it may be written as

M = lc(L1 L2 )* (0<Jb<l), (6.14)

where Jc is called the 'coefficient of coupling' . The theory oftransformers

is considered further in § 9.5.

The magnitude of an inductance may be calculated from first prin-

ciples by computing the field produced by a given current in the coil, and
then finding the total flux through the same or another coil, according

to whether the self-inductance of the first coil or the mutual inductance

between the two coils is required. The calculations are illustrated below

for a number of simple shapes of coil.

Long solenoid

For an infinitely long solenoid, wound with m turns per unit length

and carrying a current I, the magnetic field inside is uniform and given

by equation (5.57): R = mI
If the core of the solenoid has permeability p, the flux through each turn

is N' = fj.[ji, Ami, where A is the cross-sectional area of the solenoid.

The self-inductance per unit length is therefore L' = mN'jI = fifi m2A

;

for a solenoid of length I, large compared with its diameter, this formula

is still very nearly correct, and we may write for the total self-inductance

L = niJ. m2AL (6.15)

If a second short coil ofn turns, insulated from the first, is wound on the
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solenoid as in Fig. 6.4, the mutual inductance is

M = fifi mnA. (6.16)

Two coaxial coils

Another simple case is that of two plane coaxial coils A and B as in

Fig. 6.5, of radii a and b, and total numbers of turns nx
and «2 respec-

tively, whose centres are a distance z apart, where z > a, b. The field

Primary coil

Fig. 6.4. Solenoid with primary and secondary coils.

Fig. 6.5. Mutual inductance between two plane coaxial coils. AB — z.

at the centre of B due to a current / in A is, from equation (5.55),

H = i/a^i/z3 ,

and the total flux through B is nb^ifi^H), since the field through

the coil will be uniform in the first approximation when the inequality

z > a, b holds. Hence the mutual inductance is

(6.17)M ~ 2z3

Pair of coaxial cylinders

An important method of carrying radio-frequency alternating cur-

rents is by means of a pair of coaxial cylinders of radii a, b (b > a), as
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in Kg. 6.6. At any point the current in the inner cylinder is I, while
that in the outer cylinder is —/; that is, it is exactly equal in magnitude
but flowing in the opposite direction. The magnetic field at a distance r

from the axis when r < b is the same as that due to a straight wire, so
that tj TinH = ljziTr.

Application of the same equation shows that there will be no field outside
the larger cylinder, since any circuit drawn round it is threaded by two

26

Fig. 6.6. Self-inductance of coaxial cylinders.

equal and opposite currents. To compute the self-inductance ofa length
I, we findthe flux through a circuit such asABCD in Fig. 6.6. This flux is

« a

The flux and hence also the inductance are proportional to the length.
Hence the inductance per unit length is

Tr^o&l-] henry/metre. (6.18)

For another method of deriving this formula, which avoids the use of
the hypothetical circuit ABCD, see Problem 6.1.

6.3. Transient currents in circuits containing inductance, resis-
tance, and capacitance

If a circuit containing a battery V and a resistance B is connected
to a coil through which the flux N is changing, the total voltage V
applied to the resistance B will be the sum of the battery voltage V and
the e.m.f. developed in the coil. Hence V = V—dNjdt = BI, or

V=BI+dN[dt. (6.19)
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We can apply this equation to a number of problems, the first being

a circuit containing a self-inductance L and a resistance R, as shown in

Fig. 6.7, which is connected at time zero to a battery of constant e.m.f.
V.

Since dN/dt = L{dl\dt), we have

V = IR+L(dljdt), (6.20)

,*v -V\MMMAMAr

Fig. 6.7. Battery driving current through R and L.

-+ t

Fig. 6.8. Rise of current in circuit of Fig. 6.7.

which is the fundamental differential equation relating the current I to

the voltage V. Integration of this equation, with the condition 1 =
at t = 0, gives

_ y
i {1 - p-(R/Z,)^ (6.21)

showing that the current approaches exponentially the value VjR

which it would have if there were no inductance present (see Fig. 6.8).

The rate of approach to this steady value depends on the ratio of re-

sistance to inductance. If R = 0, the steady state, corresponding to

infinite current, is never reached, but the current rises linearly according
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to the equation I = {VjL)t, obtained by direct integration of equation
(6.20) with R = 0. When R is finite, the initial rate of rise of current,
given by the tangent at the origin in Fig. 6.8, is dl/dt = V/L, but as
the current through the resistance increases, the voltage across the in-
ductance falls, with a corresponding decrease in dljdt.

The converse problem, in which a battery has been connected to the
circuit for a long time so that a steady current J is flowing, and then
at time zero the battery is replaced by a short circuit, leads to the same
differential equation (6.20), but with V = 0. Its solution is

showing that the effect of the inductance is to prevent the current from
falling instantaneously to zero. If the battery is suddenly open-circuited,

•'N ^AA/VWWW\r-|

/

+g

Fig. 6.9. Battery charging capacitance C through resistance R.

the sudden cessation of the current produces a large impulse voltage
—L (dljdt) in the inductance, which may be sufficient to cause a spark
across the point at which the circuit is broken. With large inductances
such as are found in electromagnets (see § 8.5) very high voltages may
arise in this way which can damage the insulation if the circuit is broken
suddenly.

In both the cases considered above the exponential is of the form
c-"T

,
and the exponential rate of change of the current is the same; the

quantity r = L/R is called the time constant of the circuit.

Circuit with capacitance and resistance

An analogous problem is that of a capacitance G in series with a re-
sistance R, to which a battery V is connected at time zero (see Fig. 6.9).
At any instant the charge on the capacitor is q, and the voltage across
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it is q\C. Since the current I = dqjdt, we have

V = q/C+RI = q/C+R (dq/dt). (6.23)

The solution of this equation gives

q = CV(l-e-'!RC)
(6.24)

showing that the charge on the capacitor builds up in a manner similar

to the current in the previous problem. The time constant of the circuit

is now t = RG, and the current at any instant is

/ = dq[dt = I e-Wc = Z e-*r.

if if
(6.25)

-+«

Fig. 6.10. Current in circuit of Fig. 6.9 after switch is closed.

It therefore falls exponentially from its initial value (V/R) to zero, as

shown in Fig. 6.10. The voltage across the capacitor increases from

zero to its steady value V, when no more current can flow in the circuit.

If we have an isolated capacitor initially at a voltage V , and a

resistance R is then connected across it at time * = 0, the differential

equation for the charge at a subsequent time is given by equation (6.23)

with 7 = 0. The solution is

q = CV e-"BC= GV e-"T (6.26)

showing that the charge decays exponentially to zero.

Circuit containing L, C, R
An inductance, a capacitance, and a resistance are connected in series,

as in Fig. 6.11, and the circuit is closed at an instant t = when the

charge on the capacitor is q . Since the total voltage in the circuit is
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always zero, we have

Since / = dqjdt, q may be eliminated by differentiation, giving

d2I^7f dI Jw +Ii
di+ c

T d*I
,
j.dl IL M+R^+ 7i = °- (6-27)

+<7

-\

— G

Fig. 6.11. Discharge of a capacitance C through resistance R and inductance L.

This equation has a general solution of the form

I = e-W^lAent+Be-"*}, (6.28)

where n2 = (.R/2£) 2-(l/£C)

and A, B are constants determined by the initial conditions. Since

/ = at time t = 0, we must have B = —A, and the value of A can
be found by integration of (6.28) and setting q = q at t = 0.

The nature of the solution depends on whether n is real or imaginary.
Three cases can be distinguished:

(a) n real, that is, (B/2L) > 1/(LC)\ The discharge of the capacitor
is aperiodic, as shown in Fig. 6.12.

(6) n = 0; that is, (B/2L) = 1/(LC)K In this case the solution is of
6

°
rm

q = q (l+tBl2L)e-<WL* (6.29)

and the aperiodic discharge is most rapid.

(c) n imaginary; that is, (B/2L) < l/(LC)K The discharge is now
oscillatory, as in Fig. 6.13, and the current may be written as

/ = Ae^*'21* sin cot, (6.30)

where o>
2 = IjLC—£2/4L2

. If the resistance is small, so that

(B/2L) < ll(LC)i (i.e. IB(CJL)* < 1),



Fig. 6.12. Charge on capacitor and current in circuit of Fig. 6.11 (non-oscillatory

discharge).

Fig. 6.13. Oscillatory discharge in a circuit containing a capacitance, a resistance,

and an inductance.

I = Ae-WWem at.
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the angular frequency o> will be close to l[(LC)K We may call

/=—i—Jo 2^(LC)
the natural frequency of oscillation of the circuit in the absence of
damping. When the damping is small the amplitude of the osculations
decays slowly, and the maxima, which lie on the exponential curve

occur very nearly at the points where sin art = 1. These points occur at
intervals of time T, where T = Z^/a, = 2ir(LC)i (where we have again

+2 *

AAMAAAA/V nmW^

h

Fig. 6.14. Battery V charging capacitance C through resistance R and inductance L.

assumed that the damping is small), and the amplitude of successive
maxima (of the same sign) therefore decreases by the constant ratio
exp(—TBj2L). If we denote successive maxima by Im, Im+1 , the
quantity

log
e{IJIm+1 ) = TR/2L = tt.R(C/£)* = ^Q (

6.31)

is known as the 'logarithmic decrement' of the circuit. The quantity

Q
rJ\c)

is known as the 'quality factor' of the circuit. Either of these quantities
serves as an important criterion for the performance of an oscillatory
circuit, but in electricity it is customary to use the quality factor Q rather
than the logarithmic decrement. Further relations involving Q will be
obtained in Chapter 9.

The converse problem, where a battery of e.m.f. V is connected at
time zero to a circuit containing L, C, R in series (Fig. 6.14), is left as
an exercise for the reader. The differential equation is the same as (6.27),
and the solutions are similar to those above, with an aperiodic or oscil-
latory approach to the equilibrium state where no current flows and the
voltage across the capacitance is equal to V. An important point is
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that the approach to the equilibrium state in the L, C, R circuit is most

rapid at the change-over point from an aperiodic to an oscillatory condi-

tion; that is, when {BJ2L) = (LC)-* or Q = (LjC)ijR = |.

6.4. Magnetic energy and mechanical forces in inductive circuits

In the circuit of Fig. 6.14 the relation between the applied voltage V

and the current is given by the equation

where q is the charge on the capacitance. The rate at which work is

done is found by multiplying by /, giving

since / = dq/dt. The work done in a time interval t, in which the

current changes from Ix to J2 , and the charge on the capacitance from

qt to q2 , will be

w = f vi dt = mn-n) + f BI
* dt+^c

^- q^-

o

Now W is the total work done by the battery, and the integral of HP
is the energy dissipated as heat in the resistance, which is always posi-

tive. The last term, \{q\—qfj/C, represents the change in the stored

energy of the capacitance, and we interpret the first term \L(1\—1^)

as the change in the energy stored in the inductance. We note that

this change is reversible, since if the current is first increased to J2 and

then returned to its initial value Ilf the change in the stored energy is

zero. If Ix = 0, and a current / is established in the inductance, an

energy jLP will be associated with it.

An expression for the energy stored in a series of inductances will

now be derived in a more general way. If Nk is the flux through the

jfcth circuit, the voltage induced in it is Vk = dNkjdt, and the rate of doing

work is ij.1^. = Ik(dNk[dt). We assume that currents in all the circuits

were initially zero and increased proportionately with time, so that at

an intermediate instant t' the values are I'k = <xlk , N'k = a.Nk . Then

the total work done is

(

r

kvk dt' = ikNk j<x(d<xidt')dt'

o

= IkNk \*doc = \IkNk . (6.32)
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On summing over all the circuits, we have

tf = i2JA (6.33)
k

If each coil has both self and mutual inductance,

Nk = LkIk+ 2Mkj Iy (6.34)
j^k

Hence equation (6.33) can be written in the form

U = i I Lk I%+%f2Mki IkIy (6.35)
k j k

Since Mkj = Mik , each term in the second summation occurs twice.

This is clearly seen if we consider just two coils, for which (writing M
forM12) ^ = Li ji+MÎ ^ = L2ii+MIij

so that the energy becomes

= \{L1 I{+Li I\)+MIx Ii . (6.36)

It is important to realize the distinction between this stored energy U
and the potential energy of one circuit carrying an invariant current Jt
in the field of a second circuit carrying an invariant current J

2 ,
given by

equation (6.11). The difference lies in the fact that the formula for UP
assumes that the currents are invariant, and no account is taken ofany
work done by the batteries in maintaining the currents, whereas the
stored energy U includes the work done by the batteries in setting up
the current flow, starting from zero current. Thus UP is the potential

energy function from which any mechanical force can be calculated by
the usual formulae such as

Fx = —dUp/dx (6.37)

for the a;-component of the force, under the condition that the currents

are kept constant.

The distinction between U and UP can be seen from a simple example,
that of two rigid circuits as in Fig. 6.15, one of which is moving with
velocity dxjdt with respect to the other. Then the rate at which work
is done by the batteries is

dW/dt = {dUldt)+Fx(dxldt)+B1 II+i?2 1\, (6.38)

where dU/dt is the rate at which the stored energy changes. Now from
equation (6.37) Fx(dx\dt) = ~{dVP\dx){dx\dt) = -dUP/dt and hence

dWjdt = {dUldt)-{dUPjdt)+R1 I\-\-R2 Il



174 ELECTBOMAGNETIC INDUCTION AND [6.4

Now the flux through each circuit is

and the rate at which work is done by the batteries is

dWjdt = I^^+dNJdQ+UBzIz+dNJdt)
= 2(dM/dt)I1 12+Rx /?+ i?2 1%

-avwwv—i i

—

w$m—

-
Fi ^Of^-OO^ F2

» ' I -

Fig. 6.15. Two circuits with a mutual inductance M. Circuit (2) is moving relative

to circuit (1) so that M is varying, but Llt Lt and Iv J2 are constant.

since Iv I2 are constant. Comparing these two equations, we see that

dUldt = dUPjdt+2(dMldt)Il I2 . (6.39)

Now from equation (6.36), since only M is changing,

dU/dt = (dMIdt)^^

and hence dUP/dt = —(dMjdt)^^ = —dU\dt.

Thus the component of the mechanical force is

Fx = —dUpjdx = +dU/dx. (6.40)

From equation (6.39) we see that the difference in sign between the

two expressions for the force in (6.40) arises from the fact that the bat-

teries do work at the rate 2{dMjdt)I1 Ii (apart from the irreversible Joule

heating represented by the terms Rx I\, etc.) which is just twice the

rate of increase (dUjdt) of the stored energy. This situation with regard

to the magnetic energy, and the calculation of the mechanical forces

in a system where the currents are kept constant, is similar to that in

electrostatics when changes take place in a system where the conductors

are maintained at constant potential. It was shown in § 1.7 that in a

change where the stored energy increases by dU, the batteries do work
2dU, so that the amount of external work dW done on the system is
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—dU. Hence the component of the force in the z-direction is given by

Fx = -dUpjdx = +(dU[dx)v ,

where the subscript V denotes that this formula is to be used under the
condition V = constant. Similarly, we may emphasize that in equa-
tions such as (6.40) the current is kept constant by writing them in the
f°rm Fx = +{dUldx)Iy etc.

As we should expect, the torque on a coil can be shown to be

r = -(dUJdd) = +(dU/d6)z = (dMlde)Ix I2 , (6.41)

where is the angle which the coil makes with some fixed axis.

6.5. Magnetic energy in magnetic media
Since for any circuit

2V = jB.dS = JcurlA.dS = |A.ds (6.42)

we can transform equation (6.33) as follows:

U = hi IkNk = %Z IJ A.ds.
k )c J

For a system of distributed currents, we write Ids = J dr, and take
the integral over all space, since contributions arise only from regions
where J is finite, giving

U = %j(A.J)dr. (6.43)

However, J = curlH, and using the vector identity

div(AAH) = H. curlA—A. curl H,

we have TT , r
,TT , » . , , r ,U = i) (H.curlA)dT-ijdiv(AAH)dT

= \ j (H.B)<Zt-J j (A AH)dS.

If the volume integral is extended over all space, the surface integral
is taken over the sphere at infinity. For a finite system of closed
circuits, the fields H, B at large distances will fall off at least as rapidly
as those of dipoles; hence H ~ r~3 and A ~ t-\ so that the integrand
diminishes as r~5 and the integral vanishes as r -> oo. Hence we have

U = ij(U.B)dr. (6.44)

This formula shows that the energy may be regarded as distributed
throughout the region occupied by the fields with density £H.B,
which is clearly analogous to the result £D .E obtained in electrostatics
(1.36). In each case it has been derived under the assumption that B (D)
is linearly proportional to H (E), i.e. that the media have values of fi (e),
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which are independent of field strength, We may relax this assumption

by considering infinitesimal changes of flux, for which SU = 2 h8Nk-

Then by applying transformations exactly similar to those above, we

find
SU = jJ.SAdr = jU.8Bdr, (6.45)

a result which can then be integrated over any finite change in B if we

know how H and B are related at every point during the change. If B
is linearly proportional to H, this result clearly gives again equation

(6.44).

We close this discussion by finding the work done when the mag-

netization changes by 8M in a field B which is due to other sources,

i.e. B does not include the field due to the magnetic material itself.

A simple example would be a piece of magnetizable material inside a

solenoid; B is then just equal to the field /*„H which the solenoid would

produce in the absence of the magnetizable substance, and can be cal-

culated from the standard formulae. We start by considering two

circuits, for which, from equation (6.39), in an infinitesimal change,

SU = 8UP+2S(MI1 J,).

But UP = —

m

2 . Bx
= —

J

2
J"
Bi-dSa, and the flux through the second

circuit is MIX
= j Bx .dS2 . Hence

8U = +8/2 j Bx .dS2
= SfBi.m,),

where m2 is the equivalent magnetic moment of the second coil, and

we assume that Bx is constant over the area of this coil. If Bx is fixed,

andm2
increases by 8m, then 8U = Ba .8m. Clearly it does not matter

what the source of Bx is, so that we can write in general

8*7 = B .8m = j (B .8M)dr, (6.46)

where B excludes the field contribution from the magnetized substance

itself.

PROBLEMS
6.1. Two infinite coaxial cylinders carry equal and opposite currents I. Calculate

the self-inductance L per unit length (equation (6.18)) by equating the stored

energy per unit length to ^LI2
.

6.2. Prove that the inductance per unit length of two infinite parallel wires of

radius a separated by a distance 2d (2d ^> a) is

L = (/i/x /w)loge(2d/a).
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6.3. Prove that the inductance ofa long solenoid oflength I, radius a, withm turns
per unit length is approximately

(assume that the field is uniform over any cross-section: if I > 10a, this formula
is accurate within 2 per cent).

6.4. Show that the mutual inductance between two coplanar coaxial coils of
radii a and 6 (6 > a), with turns nx and ra2 respectively, is approximately (in vacuo)

M = fiaTrahi^nJib.

Use this result to show that the flux through the larger coil due to a small magnet m
placed at its centre and pointing along its axis is

N = p mn2/2b.

6.5. If the magnet in the last problem is withdrawn along the axis at a uniform
velocity v, show that the e.m.f. induced in the coil when the magnet is at a distance
z from the centre of the coil is

V = 3/iomw.j 2 t>& 2/2(&2+

a

2
)*.

If the resistance of the coil is B, show that the total charge which flows when the
magnet is removed from the centre to infinity is

Q = n mn2/2bB.

6.6. A plane circular disk of radius a rotates at a speed of/ revolutions per second
about an axis through its centre normal to its plane. A uniform induction B exists
parallel to this axis. Show from first principles that there is an e.m.f. between the
centre of the disk and its rim of magnitude V = /Bira2

. (Lorenz's method of
determining the unit of resistance depends on this result; see § 7.4.)

6.7. A circular coil ofn turns ofradius a, total resistance R, and no self-inductance
is rotated with uniform angular velocity to about a vertical diameter in a horizontal
induction B. Prove that the mean power required to maintain the coil in motion is

and that this is equal to the power dissipated in the resistance of the coil.

A small magnetic needle, which is free to turn slowly in a horizontal plane, is
placed at the centre of the coil. Show that it will set at an angle ^ to B where

cot$ = 4-R/(7m2/t„<ua).

(Rayleigh's method ofdetermining the unit ofresistance is based on an experiment
of this type.)

6.8. A torsional pendulum consists of two spheres of 1 cm diameter at either
end of a thin rod 10 cm long suspended at its mid-point. It swings in a horizontal
plane so that its instantaneous angular deflexion is 77 cos Jn-i. Find the magnitude
and direction of the current flowing in the rod at any instant, assuming that
the capacity of each sphere is the same as if each were isolated in space, and the
rod and suspension have negligible resistance.

Show that there will be damping of the swing if the suspension has a finite
resistance, but not otherwise.

(Vertical component of earth's magnetic field = 6x 10~5 weber/m2
.)

(Answer: 3-2 x 10-14 cos $nt amp.)
851110 U



178 ELECTROMAGNETIC INDUCTION

6.9. An aeroplane is in level flight at a ground speed of 300 km/hr. Its metal

propeller measures 3 m from tip to tip and rotates at 3000 r.p.m. Find an ex-

pression for the p.d. between the ends of the propeller when the aeroplane is flying

along the magnetic meridian.

(Vertical component of earth's magnetic field = 6 x 10~5 weber/m*.)

(Answer : • 15 cos 1 007rf volts
.

)

6.10. Show that for a uniformly magnetized spherical permanent magnet,
j£B.H dr, integrated over the volume inside the sphere, is just equal and
opposite to the value of the integral over the volume outside the sphere. Thus
j" £B.H(£t over the whole of space is zero. (This follows because there are no
currents—see the derivation of U =

J"
JB.Hefo- in § 6.5.)

6.11. The magnetostatic energy of a permanent magnet is j i/J- H2 dr taken
over all space. A solid spherical permanent magnet of radius b is uniformly
magnetized with a magnetization M per unit volume. Show that the total

energy stored in the field outside the sphere is
fj,
VM2

/9, where V is the volume
of the sphere. Show also that the energy (thus defined) stored in the field inside

the sphere is ju FM2/18. Thus the total energy is /i. FM2
/6, and this is the

magnetostatic enegy of the sphere.

{Hint: Use the result of Problem 5.9. The question of the magnetostatic

energy of a permanent magnet is discussed by V. Heine (1956), Proc. Camb.
Phil. Soc. 52, 546.)
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7.1. Galvanometers, ammeters, and voltmeters; the wattmeter
A galvanometer is an instrument for detecting and measuring
electric current; if it is provided with a scale already calibrated, it is
called an ammeter. The only type of galvanometer now in common use
is the moving-coil type, where the current is passed through a coil,
usually rectangular in shape, which is suspended in a uniform constant
magnetic induction, as in Fig. 7.1. The suspension is adjusted so that
the plane of the coil is parallel to the lines of magnetic field when no
current is passing. Flow of current through the coil gives it a magnetic
moment, and the action of the magnetic field on this moment produces
a couple which tends to turn the coil; this is balanced by the restoring
torque due to the suspension, and an equilibrium position is reached
where the two are equal. If the coil has n turns, each of area A, and
the current is J, the magnetic moment m will be nAI. When the coil
is deflected through an angle 9, the couple on it due to the suspension
is cB, and on equating this to the couple exerted by the magnetic field,
we have .

c0 = mAB = InABcosO.
(7.1)

In practice the lines of B are shaped so that they are always parallel to
the plane of the coil, and the term cos will then be unity, so that the
equilibrium deflexion 6 will be linearly proportional to the current.
The magnetic induction, usually « 0-4 weber/metre2 (4,000 gauss)

is produced by a small permanent magnet, with pole faces shaped as
in Fig. 7.2. The centre of the gap is filled with iron, so that the lines
of force in the gap are as nearly radial as possible. The coil is wound
on a former which fits in the gap between this piece of iron and the pole
faces without touching either. In the less sensitive but more rugged
type of instrument the coil is suspended by two spiral metal springs
which also serve as leads for the current, and the deflexion of the coil
is indicated by a pointer moving over a scale. In a common type of
instrument full-scale deflexion (corresponding to rotation of the coil
through about 60° of arc) is obtained for a current of 1 mA though
more sensitive instruments can be obtained. This higher sensitivity is
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achieved by winding more turns on the coil; this increases the resistance,

which rises to more than a hundred ohms. Such a high resistance is un-

desirable in many uses, and in galvanometers for currents of the order

of microamperes a light suspension of phosphor bronze wire is used

/ V

Fig. 7.1. Coil in a flux of magnetic induction B. Area of coil = A, number of turns n.

Fig. 7.2. Pole pieces of a permanent magnet in a moving-coil galvanometer.

instead of springs. This gives a small restoring torque and a greater

sensitivity. This type of suspension is not strong enough to support a

pointer, and the deflexion is observed by means of a lamp and scale,

a small mirror being attached to the suspension just above the coil.

With the scale at 1 metre distance, a common type of galvanometer

gives a deflexion of about 100 mm/juA, with a coil resistance of about

10 ohms. Thus the increased sensitivity is obtained partly from use of

a suspension with a smaller restoring torque, and partly from the greater

reading accuracy of the lamp and scale method (the deflexion just quoted

corresponds to a rotation of the galvanometer coil through about 3°).

The period of swing of such an instrument is about 2 sec. Higher sensi-

tivity can be obtained by use of a weaker suspension (giving also a longer

period) and more turns on the coil (giving a higher resistance, and also



(Courtesy of Messrs. II. Tinsley & Co.)

Fig. 7.3. A modern galvanometer suspension and magnet.

C—coil Z—zero adjustment

M—mirror L—lens

S—suspension strip X—clamping mechanism

P—magnet pole pieces Y—magnet yoke

T—suspension tube

When ready for use the coil assembly is lowered so that the mirror

is behind the lens and the pole pieces in line with the yoke.
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increasing the period through the greater moment of inertia of the coil
unless correspondingly thinner wire is used). A typical galvanometer
construction is shown in Fig. 7.3.

The pointer type of instrument described above is commonly known
as a milliammeter. It may readily be adapted to make the full-scale
reading correspond to any given greater current by use of a shunt. If
the coil resistance is R, and the current required for full-scale reading

I

^MA/WV
(him)

AAA/WW
Fig. 7.4. Shunting a milliammeter.

is I
,
then by connecting a shunt of resistance r across the coil as in

Kg. 7.4, full-scale reading will be given by a current I = I (l+R/r).
Hence if R is known, the sensitivity may be reduced by any given
amount by the correct choice of r. The net resistance of the instrument
becomes rR/(r+R), and so becomes very low if the coil is shunted to
read high currents. This is a desirable feature, since the ideal ammeter
should have the lowest possible resistance in order to minimize its effect
on the circuit in which it is introduced to measure the current.
The e.m.f. required to produce full-scale deflexion in the instrument

just considered is RI , and hence the meter can be used to measure
voltage ifR is known. Since R is about 50 ohms for an instrument with
a full-scale reading of 1 mA, the voltage required is about 50 mV. To
reduce the sensitivity, a resistance r is added in series with the coil, since
this makes the voltage required for full-scale reading I (r+R). By ad-
justment of r, any given full-scale reading can be obtained, and the
instrument is then called a voltmeter. Use ofa series resistance increases
the net resistance of the instrument ; since a voltmeter is connected across
the circuit between the points where the voltage drop is to be measured,
it is desirable that its resistance shall be as high as possible in order to
change the current flow by the minimum amount. It is obvious that,
whatever the reduction in sensitivity by adding series resistance, the
current drawn by the meter at full-scale deflexion is I ; thus a meter
with the smallest possible value of I should be used to construct a volt-
meter. Similarly, if the meter is shunted to make an ammeter, the
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voltage across it for full-scale deflexion is constant and equal to RI ;

thus a meter with the lowest value of RI should be used to make an
ammeter.

The most accurate measurements of voltage are made with a potentio-

meter, as described in § 3.6; since no current is drawn from the source
of voltage to be measured when the potentiometer is balan ced, it behaves
as a voltmeter with infinite resistance. Currents can be measured by
determining the voltage drop across a known resistance, as in the cali-

bration of an ammeter described in § 3.6.

In some applications it is more important to obtain the maximum
galvanometer reading than to have an instrument with very low resis-

tance, and we shall now discuss the factors involved in the correct choice

ofgalvanometer for this purpose. Obviously the sensitivity ofa moving-
coil instrument is increased by using a higher value of B, and we shall

assume that B is already made as high as possible by the correct design

of the permanent magnet. This means that the magnet gap in which
the coil moves is fixed, and the dimensions of the coil itself are fixed.

This determines also the suspension, since this depends mostly on the

mass of the coil, and the restoring torque is therefore also fixed. Thus
the only variables left are the number of turns n on the coil, and the

cross-section of wire used. If the available cross-section of the coil is a,

the cross-section of the wire must be a/n; if the perimeter of the coil is t,

the total length of wire is nt. Hence the coil resistance will be

R = ntpKa/n) = n2
tpj<x,

where p is the specific resistance of the wire. If the source of voltage V
has internal resistance r, as in Fig. 3.2, and drives a current / through
the galvanometer coil resistance R, then / = V/(R+r), and from equa-

tion (7.1) the coil deflexion will be

$ = nABI_ ABVI n \

c c \r+(n2
tpl<x))

v '

Differentiation with respect to n shows that 9 is a maximum when
nHpja. = r, or R = r. Hence for optimum sensitivity the number of

turns on the coil should be adjusted so that the coil resistance is just

equal to the internal resistance of the source (cf. § 3.5). In practice it

is only necessary to choose a galvanometer whose coil resistance is

approximately equal to that of the load, since a factor 2 in the ratio

of the resistances only causes the deflexion to fall by 6 per cent below
the optimum. The analysis shows that a low resistance instrument

should be used to measure, for example, the e.m.f. of a thermocouple,
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which has a low internal resistance. On the other hand, a high resistance
instrument should be used to measure an ionization current (such as is

caused by the passage of X-rays through a gas) since this behaves as
a very high resistance source.

In the moving-coil instruments considered so far the magnetic induc-
tion B is constant and provided by a permanent magnet. In another
class of moving-coil instruments, known as dynamometers, the induc-
tion B is provided by a second set of fixed coils carrying a current Ix

^-M/w\m—? 1

R -^^ Load

G

Fig. 7.5. A wattmeter.

surrounding the moving coil which carries a current J2 . Since B is pro-
portional to I

x , it is obvious that the torque on the moving coil will be
proportional to IX I2 ; more exactly, ifM is the mutual inductance be-
tween the fixed and moving coils, by equation (6.41) the torque is
IxI2(dMjdd), and hence the equilibrium deflexion will be given by the
equation

c6 = I^M/dO),
where c6 is the restoring torque due to the suspension (usually a spiral
spring). The factor {dMjd6)jc is found by calibration with known
currents.

If a current J to be measured is allowed to flow through the fixed and
moving coils in series, so that / = Ix = /2 , the instrument will act as a
milliammeter with a square law deflexion; with a pointer type dynamo-
meter the full-scale reading is about 1 mi. A more important applica-
tion is its use as a wattmeter; the coils are then connected as follows.
The fixed coil r is connected in series with the load, so that Ix is nearly
equal to I, the current in the load; the moving coil is connected in series
with a large resistance R across the load, as in Fig. 7.5. Then the current
h = VIR> where V is the voltage across the load. The deflexion is pro-
portional to Ix I2 = IV/R = WjB, where Fisthepower being dissipated
in the load. Thus the instrument may be calibrated to measure power
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directly. Note that with the coils connected as in Fig. 7.5, the current

through the fixed coil is really I-\-I2 , so that the power measured is the

sum of that in the load and in R (see Problem 7.6).

7.2. Galvanometer damping
So far we have considered only the equilibrium deflexion of a galvano-

meter when a steady current flows; the behaviour during the time in-

terval between switching on the current and the attainment of the final

deflexion must also be discussed. When the current starts to flow

through the galvanometer coil, a couple is exerted on it which gives it

an angular acceleration. This couple diminishes as the coil nears its

equilibrium position, owing to the reverse couple exerted by the sus-

pension, but ifthe damping is small, the coil may overshoot and oscillate

about its final position. If the damping is large no overshoot may occur,

and the coil approaches the final position very slowly. In either case

some time must elapse before the equilibrium deflexion can be observed,

and the effect of the damping is thus of considerable importance.

Though air resistance and other sources of energy loss contribute to the

damping, the most important source is electromagnetic damping, due

to the motion of the coil in the magnetic field of the permanent magnet.

With the notation of Fig. 7.1, the flux through the coil N = nAB sin 6,

and there will therefore be an e.m.f. induced in the coil equal to

—dN/dt= —nAB cob e{defdt).

If 6 is small, or if the lines of magnetic induction are always radial (as

in Fig. 7.2), we can put cos 0=1. If V is the external source of e.m.f.

and R is the total resistance in the circuit (including the galvanometer

coil resistance), then the current / will be given by the equation

V-?l = RI
dt

at any instant. The equation of motion of the coil will therefore be

~&0
, U M , a AT>T nABI jr dN\ nAB T7

(nAB) 2 d9
3-7-S-+OT-+C0 = nABI = „ [V =-| = —=r- V— -—=r-^- -=-,

dt2
T

dt
^ R \ dt) R R dt

(7.3)

where 3 is the moment of inertia of the coil, b(dd[dt) the torque due to

air damping, etc., and c9 the restoring torque due to the suspension.

Rearranging the equation gives
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from which it is seen that the effect of the e.m.f. induced by the motion
of the coil is to increase the damping torque by an amount

{nABf(d9ldt)IR.

The differential equation is similar to that for the oscillatory circuit of

§ 6.3, and the same analysis may be applied. There are three types of
solution, according to whether the damping is large or small:

(a) Small damping, b' < 2(3c)*, where b'= b+(nAB)*/R. The motion
is a damped harmonic motion, of period nearly equal to 2tt(3/c)*.

The coil overshoots its equilibrium deflexion 8 = (nAB)VjcR, and
then oscillates with diminishing amplitude about this position.

(b) Critical damping, b' = 2(3c)*. The coil approaches its equilibrium

without overshoot.

(c) High damping, V > 2(3c)*. The coil approaches its final position

without overshoot, but more slowly than in case (6).

In general the electromagnetic damping is much greater than other
sources of damping, unless the total resistance R of the galvanometer
circuit is very large. As R decreases the electromagnetic damping in-

creases, and critical damping will be obtained with a certain value of
resistance Rc given by the relation

Rc = i(«4JJ)V(3c)», (7.5)

assuming that b is negligible under these conditions. It is important to
operate a galvanometer at or near critical damping since it then takes
up its equilibrium deflexion (or, more precisely, comes to a deflexion

within a certain fraction of its equilibrium value) in the shortest possible
time; If the galvanometer is either highly over-damped or very much
under-damped it will take much longer to settle down, and this reduces
the rate at which readings can be taken. If the source of voltage varies

within the time required for the galvanometer to settle, the reading will

always lag behind the true value; in detecting the balance point of a
bridge, quite misleading indications can be obtained if the bridge arms
are altered too rapidly.

Since the critical damping resistance is ofsuch importance, it is always
specified for a galvanometer, together with the coil resistance, the sensi-

tivity, and the period. As a rough rule, the critical damping resistance

is 10 to 20 times the coil resistance in a modern reflecting galvanometer.
In a pointer instrument the coil may carry a short-circuited turn, or the
coil former may be made of metal, in order to give adequate damping.
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7.3. The ballistic galvanometer and fluxmeter

The ballistic galvanometer is a suspended moving-coil instrument with
very light damping, which can be used for the measurement of charge

by observing the maximum deflexion in its oscillatory motion. For this

purpose the charge must pass through the galvanometer in a time short

compared with its period of swing, so that the coil does not deflect

appreciably during the passage of the charge. If the current at any
instant during this passage is /, the couple exerted on the coil is nABI,
and the impulse of angular momentum given to the coil will be

f nABI dt = nABQ,

where Q is the total charge flowing through the coil. The effect of this

impulse is to give the coil an initial angular velocity (ddjdt)
t^ = nABQ/3,

where 3 is the moment of inertia of the coil. We analyse the subsequent

motion of the coil assuming it to remain connected to a circuit of total

resistance B (including the coil resistance) but with no external e.m.f.

The differential equation ofthe motion will be the same as (7.4) but with

V = 0, so that we have

where b' = b-\-(nAB)2/B is the total effective damping, which we shall

assume to be small. Then the solution is

6 = De-W^sinw*,

where w = (c/3)} to a good approximation. The constant D is found

by differentiation, and setting the initial angular velocity equal to

nABQ13, giving

nABQ/3 = (deidt)t=Q = Do,

whence 9 = (nABQ13w)e-b''l^ sin a>t. (7.7)

If there were no damping the deflexion would oscillate between maxi-

mum and minimum values ± d occurring at the instants when sin cot = 1

,

and the charge Q would be given by

Q = 3a>0 l(nAB) = cO^nAB) = 0^^), (7.8)

where we have used in succession the relations (3/c)w2 = 1 , and ca = 2ttJt,

where t is the period of swing of the galvanometer. This can be measured

experimentally, and the constant (cjnAB) can be found from the de-

flexion produced by passing a steady current through the galvanometer.
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The effect of the damping is to make successive deflexions smaller as
in Fig. 7.6, and also to make the first throw X (at t = £T) smaller than
&

, since from equation (7.7)

X
=

o
e-&'T/83.

e

Fig. 7.6. The deflexion of a ballistic galvanometer plotted as a function of the time=
O e-«>'|23>« sinorf.

The size of the correction can be found by measuring the logarithmic
decrement A of successive swings on the same side, since

A = logiBjej = log(02/03), etc.

= 6V/23.

Hence,
o
= ie*A (7.9)

or, since A is small,
O
= e^i^-iX).

Tor accurate use the damping of the ballistic galvanometer should be
small andthe resistance of the external circuit must therefore be high.
Ifused to measure the charge on a capacitor by connecting the capacitor
to the galvanometer and allowing it to discharge through the galvano-
meter, this condition is fulfilled because the capacitor is effectively an
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open circuit for the

galvanometer swing,

galvanometer directly

charged to a known
standard mutual inductance

slowly varying induced e.m.f. produced by the

A convenient method of calibrating the ballistic

is by discharging through it a known capacitance

voltage. An alternative method is by means of a

, using the circuit of Fig. 7.7. The secondary

[7.3

Fig. 7.7. Apparatus for calibrating a ballistic galvanometer.

O Galvanom ster,

M Standard
P Potentiometer

jnutual inductance.

connected across standard 1 ohm resistance.

of the mutual inductahce

current is reversed ir.

secondary windings

the secondary currenl

aid

where dNjdt is the

secondary coil

flux change (assuming

pared with the perioc.

dNh dt
dt = Nx-1%

WWW

is connected to the galvanometer, and a known
the primary coil. If L is the inductance of the

R the total resistance in the secondary circuit,

/ flowing at any instant is given by the equation

L dJ-+RI=™,dt^ dt

rate at which the flux is changing through the

Integrating over the duration of time occupied by the

that the time constant RjL is very short com-

of the galvanometer) gives

= L f^ dt+R f Idt = L[lf+RQ = RQ,

(7.10)
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showing that the charge measured by the galvanometer is just equal to

the total flux change in the secondary divided by the total resistance.

If J is the current reversed in the primary, iV^—iV2 = 2MI , and so

Q = 2MIJR. The current I may either be measured by a substandard
ammeter, or by means of the potential drop it produces across a known
resistance. To reduce the damping of the ballistic galvanometer, either

R must be large, which in general will mean adding considerable resist-

ance to the circuit and thus reducing the sensitivity of the galvanometer,

or the secondary circuit must be broken immediately after the primary
current is reversedandbeforethegalvanometerhas deflected appreciably.
Once the ballistic galvanometer has been calibrated, it may be used

to measure a flux change or an unknown mutual inductance if the

resistance R is known. An alternative method is to use a fluxmeter,

which gives a direct reading of the flux change. This instrument con-

sists of a moving coil, suspended in such a way as to give almost zero

restoring torque, in a strong magnetic induction ofa permanent magnet.

The electromagnetic damping is very strong, and if other forms ofdamp-
ing can be neglected, the equation of motion is

J!9,MS)2 dfl AVT nABI dN r dl\ /w „.*w+^dJ = nABI = -ir(-iti-
L

dil'
(7J1)

where I is the instantaneous current produced by the e.m.f. — dNjdt

induced by the flux change to be measured, and L is the self inductance.

The effect of this current is to impart an angular momentum to the

fluxmeter coil, which is then brought to rest under the action of the

electromagnetic damping. Integration ofequation (7.11) over the entire

time occupied by the motion of the coil gives

^|W|° (nAB)2
rm t nAB rM „

n
nABL

yrfi
*[dt\

+^r [e]
° --g-K-^J—s-Mt

and, since the angular velocity and current are zero both initially and
finaUy

' nAB$ = Nx-N2 , (7.12)

where d is the ultimate deflexion of the fluxmeter. The flux change

through the fluxmeter coil is just nAB6 , and so this equation shows

that the total flux threading the system is the same at the beginning

and the end. The fluxmeter is generally calibrated directly in terms of

flux; since there is no restoring torque on the coil it has no stable posi-

tion of equilibrium but can rest anywhere in neutral equilibrium. It is

therefore necessary to level the instrument carefully to prevent the coil

drifting during the measurement. As a rough rule, a fluxmeter is accurate
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to about 1 per cent, while a ballistic galvanometer, properly calibrated,

is accurate to about 0-1 per cent,

7.4. Absolute measurements
Relative measurements of electrical quantities can be made using

bridges or potentiometers to an accuracy of some parts in 105
. For

absolute measuremen ts it is necessary to have ultimate standards (for

example, of resistancB and current) with which an unknown quantity

can be compared. Tt e resistance of a coil was determined by Rayleigh
in terms of the constant fi and the standard of length, by rotating the

coil in a magnetic fiold (see Problem 6.7). Here we shall describe in

some detail the meth )d used by Lorenz, which has the two advantages
of being a null method, and of not needing the resistance to be in the

form of a coil. If a disk-shaped conductor is rotated in a magnetic field

B with a frequency o f/ revolutions per second, and B is parallel to the

axis of rotation, a vdtage is induced in the disk between the axis and
the rim of magnitude V = hfB, where k is a constant (with the dimen-

sions of an area: see Problem 6.6) determined by the geometry of the

apparatus. In Loren: :'s experiment (Fig. 7.8) the field B is produced by
coils carrying a current I which also flows through the resistance R to

be standardized. Then B = njjk', where k' is a quantity with the

dimensions of a leng;h, again fixed by the geometry of the apparatus.

The voltage V is balanced against the potential drop RI across the

resistance, so that RI = (kjk')n fl, and at the balance point

R = (klk')fi f. (7.13)

The frequency/ can be measured accurately, (i is defined in the m.k.s.

system as 4n- 10-7 hei ry/metre, and {kjk') has the dimensions ofa length.

In fact iLQ{kjk') is tho mutual inductance between the field coil and the

rotating conductor, svhich can be calculated from the dimensions and
the geometry. Fund imentally the comparison is between the resistance

and the product inductance X frequency, the rotating conductor being

a device by which a steady voltage is developed across the inductance

for balance against 1 he voltage drop in the resistance.

The arrangement of the apparatus is shown in Fig. 7.8. The rotating

conductor is formed by the disks P, P' mounted on a shaft driven by
a motor. The galva lometer G reads zero when the voltage induced in

the circuit abed is exictly equal to the potential across the resistance R,
which is in series with the two coils CC and DD'. The current flows

through these coils in the opposite sense so that the voltages induced
in the two disks adc round the circuit abed. Contact with the disks at
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a and d is made by brushes, and the coils are designed so that the mag-
netic induction at these contacts is zero; this minimizes any error in
determining the actual radius of the disk; that is, the distance from
the centre at which contact is made. Some trouble arises from thermal
e.m.f.s. at the brush contacts, which would give a finite galvanometer

CC''
7
njy^IT^VFiF

81^ *£J*™™* a stance Rm terms of ^ the metreCG
,
DD are coils through which/flows (in opposite senses) producing the magnetic

fields in which the plates PP' are rotated.

reading at the true balance point. This difficulty is overcome by revers-
ing the current throughout the whole system, which reverses any true
unbalance current but not that due to the thermal e.m.f. Hence the
correct balance point is when the galvanometer reading remains un-
changed on reversing the current, and this procedure also ehminates
the effect of any voltages induced by stray magnetic fields. With ade-
quate precautions it is possible to obtain an accuracy of a few parts in
10s

;
other resistances can then be determined relative to the standard

by means of a Wheatstone's bridge.

Prom the fundamental equations of § 5. 1, it can be seen that a current
may be determined in absolute units by passing it through two conduc-
tors and measuring the force between them. The method of doing
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this, by means of a 'current balance', is illustrated in Fig. 7.9. A, B, C,

D, E, F are six single-layer coils wound on marble formers and con-

nected in series. Coils A, C, D, and F are fixed, while B and E are

carried on a balance arm; the current flows through the various coils in

such a direction that the force on E is upwards while that on B is down-

wards. The balance arm is brought back to its equilibrium position by

moving a standard mass along a calibrated scale on the arm. From the

distance of the mass from the fulcrum, the torque and hence the force

Fig. 7.9. Current balance.

B standard resistance. Q galvanometer. iS standard cell.

between the coils can be evaluated. IfM is the mutual inductance be-

tween B or E and either of the coils A, C or D, F, then the total torque

due to the coils when carrying a current / is 4kI2(dMjd9), where 9 is the

angle defining the rotation of the balance arm. Since dMjdd must be

calculated from the geometry, there must be no iron near the apparatus.

Effects due to the more remote coils (that is, for example, the force

between coilA and coil E) are eliminated by repeating the readings with

the current through all the coils on one side reversed. An accuracy of

one part in 105 can be achieved, but the measurements are very laborious.

One such determination is carried out at a standardizing laboratory,

and at the same time the voltage across a standard resistance, placed
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in series with the coils so that the standardized current flows through it,

is compared with the e.m.f. ofa standard Weston ceU. By potentiometer
methods, other Weston cells can be calibrated against the standard cell
for use as substandards; subsequently, a current is measured by com-
paring the potential drop it produces in a standard resistance with the
e.m.f. of the substandard cells. Ammeters can be calibrated in this way,
as outlined in § 3.6.

Fig. 7.10. Determination of a capacitance C in terms of a standard
resistance i?.

The value of a resistance is found in absolute units by comparing it

with an inductance whose value is ju, times a factor with the dimensions
of a length. The capacitance G of a capacitor is e 1, where I is a factor
with the dimensions of a length which is determined by the geometry
of the capacitor. Thus if I is calculated, and the capacitance G is de-
termined by comparison with a standard resistance B, the value of the
constant e can be found. An accurate experiment of this type was
carried out by Rosa and Dorsey in 1907; the apparatus consists essen-
tially of the bridge circuit shown in Fig. 7.10. The contact X vibrates
between P and Q at a known frequency, and the capacitor G is alter-
nately charged and discharged / times a second. The voltage V across
it is qjC, and the charging of the condenser / times a second sends a
current fq through the arm AB, so that the effective resistance of this
arm is V/(fq) = l/(/C). Hence at the balance point, BijR1 =fCB.
Rosa and Dorsey used both spherical and cylindrical capacitors, and
took many readings to correct for a large variety of possible errors.
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Their final result, expressed in our units, was

6 = (8-8547)10-12 F/metre

with an accuracy of about 4 parts in 105
.

PROBLEMS
7.1. A bridge consists of a self-inductance L and resistance of about 10 ohms in

one arm and three non-inductive resistances in the remaining arms, so that an
accurate steady balance is obtained. If, with the galvanometer in circuit, the

battery key is depressed, a ballistic deflexion of 10 cm of the galvanometer is

recorded. If in a second experiment a resistance of 0-02 ohm is connected in series

with L, a steady deflexion of 12 cm is obtained with the key depressed. The
galvanometer is a moving-coil instrument with a period of 9 sec. A switch in

the galvanometer circuit is opened immediately after the flow of charge through

it when it is used ballistically. Show that L is approximately 24 mH.

7.2. A ballistic galvanometer is calibrated by putting it in series with a 2-V battery

and a resistance of 10e ohm. A steady deflexion of 17 cm is observed. The time

of swing is 3-8 sec. A capacitor is charged by a 4-V battery and when discharged

through the galvanometer gives a throw of 24-2 cm. Find its capacitance.

(Answer: O = 0-43 jxP.)

7.3. A small search coil with 8 turns of mean area 1-5 cm2 is placed between the

poles of an electromagnet with its plane normal to the magnetic field. It is

connected to a ballistic galvanometer and the total resistance of the circuit

is 1000 ohms. When the coil is suddenly removed to a place where the field is

negligible, the throw of the galvanometer is 23 divisions. When a capacitance

of 1 /xF charged to 1 V is discharged through the galvanometer, the throw is

25 divisions. Calculate B between the poles of the magnet.

(Answer: B = 0-77 weber/metre 2
.)

7.4. A ballistic galvanometer gives a throw of 10 cm when a charge of 3-5 X 10~7

coulombs is passed, Its period is 2-2 sec. Calculate the deflexion when a steady

current of 3 fj,A is passed.

(Answer: 30 cm.)

7.5. A capacitance is connected across a moving-coil ballistic galvanometer of
negligible resistance; show that the period of the galvanometer is increased. If the

capacitance is 10 iiF, the current sensitivity ofthe galvanometer per /xA is 1 cm at

a metre, the moment of inertia of the suspended system 10 g cm 2
, and the period

on open circuit 10 sec, show that the fractional change in period is about 8 x 10-3 .

7.6. In the circuit of Fig. 7.5, the moving coil (in series with B) may be connected

either as shown or between the points A and C. Show that the fractional error

in the reading of the power in the load (resistance Z) is less with the latter method
of connexion ifZ > (r\R)*, and vice versa, where r is the resistance ofthe fixed coil.
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MAGNETIC MATERIALS AND MAGNETIC
MEASUREMENTS

8.1. Origins of magnetism
The fact that a substance placed in a magnetic field acquires a magnetic
moment was introduced in the theory of magnetostatics in § 5.3. The
ratio of the magnetic moment per unit volume to the magnetic fieldH is

known as the susceptibility x, and substances are classed as diamagnetic,

paramagnetic, or ferromagnetic according to the nature oftheir suscepti-

bility. In the first two of these classes the induced magnetization is

proportional to the applied field under ordinary conditions, so that the

susceptibility is independent of the field strength. In diamagnetic

substances the magnetization is in the opposite direction to the applied

field, so that x is negative, while in paramagnetic substances it is in the

same direction, giving a positive value of x- Ferromagnetic substances

are distinguished by very large (positive) values of x, which are not inde-

pendent of the field strength; in addition they may possess a magnetic

moment even in the absence ofan applied field, as in apermanent magnet.
In this chapter we shall give first a brief description of the origins of the

magnetization, and describe methods of measuring magnetic properties.

A fuller account of the theory of paramagnetism and ferromagnetism is

given in Chapters 20 and 21.

After the discovery that a small coil carrying a current behaves like

a magnet, Ampere suggested that the origin of all magnetism lay in

small circulating currents associated with each atom. These 'amperean

currents' would each possess a magnetic dipole moment, and the total

magnetic moment of any substance would be just the vector sum of

the magnetic dipole moments of its constituent atoms. This gave a

natural explanation of the fact that no isolated magnetic pole had ever

been observed, since even on the atomic scale only dipoles existed, and
these were due to electric currents and did not consist of two actual

magnetic poles of opposite sign separated by a small distance. Ampere's
theory is essentially thesame as that ofmodern atomic physics, the origin

of his elementary current circuits being the motion of the negatively-

charged electrons in closed orbits round the positively-charged atomic

nucleus.
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When a particle is moving in a closed orbit in a system where no
external force is acting, its angular momentum is constant. If the
particle is charged, a magnetic moment will be associated with its

motion, and there is a linear relation between the angular momentum
and the magnetic moment (see Problem 5.10 for the simple case of a
circular orbit). A general expression for the magnetic dipole moment
associated with a distributed current has already been found in § 5.5.

In equation (5.52) we can replace Jdr by vdq to find the equivalent
expression for a moving charge, giving

m =
f
$(r ay) dq. (8.1)

In the absence of an external force, the quantity (r a v) is a constant,
since m(r Av) is equal to G, the angular momentum for a particle of
mass m. Hence

m = G
J
{dq\2m) = (q/2m)G = YG, (8.2)

where q =
J*
dq is the total charge circulating in the orbit. The quantity

y = q/2m is called the magnetogyric ratio.

This close relation between magnetic moment and angular momen-
tum is of great importance in atomic theories of magnetism, because on
quantum theory the angular momentum of an electron in an atom,
which is a constant of the motion, can only have discrete values. The
electron possesses angular momentum not only in respect of its orbital

motion round the nucleus, but also in respect of its intrinsic rotation
(spin) about its own axis. The resultant angular momentum of an atom
is the vector sum of the individual angular momenta of its electrons,

and the resultant magnetic moment is a similar vector sum of the indi-

vidual magnetic moments ofthe electrons. Because of the linear relation

between the two, an atom, ion, or molecule will have no resultant per-
manent magnetic moment if the total angular momentum is zero. If
the total angular momentum is not zero, the atom, ion, or molecule will

have a permanent magnetic dipole moment. Most free atoms possess
a permanent magnetic dipole moment because they have a resultant
electronic angular momentum.
Such magnetic dipole moments are fundamentally different from

electric dipole moments, where it has been shown (§2.3) that if parity
is conserved in an atom or nucleus, no electric dipole moment can exist.

The difference is clear if we write out the components of the magnetic
dipole moment given by equation (8.1); e.g.
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If parity is conserved, we have inversion symmetry; that is, the value
of dq is the same at the point (-x, -y, -z) as at the point (*, y, z). So
also is the quantity {x{dyjdt)-y{dzldt)}, so that the integrand retains the
same sign under the inversion operation, and the integral can have a
finite value. The difference from the electric dipole moment is that the
latter involves the first power of the coordinates (see equation (2.25)),
while the magnetic dipole moment involves the second power. The
difference also shows clearly in an operation such as reflection in a plane,
as shown in Fig. 8. 1

.
The presence of magnetic dipole moments in atoms'

o>
+

<0 +

t

+'

+

t

(°)
(&)

Fro. 8.1. (a) Reflection of circulating currents in a plane.
(6) Reflection of dipoles in a plane.

Note that the circulating currents behave differently from the equivalent dipoles on
reflection,

and nuclei confirms that they arise from circulating currents associated
with moving electric charges, since a dipole moment due to a pair of real
magnetic charges would follow the same rules as a dipole due to a pair
of electric charges.

In general, however, atoms do not exist in the free state but are
combined into molecules, and it so happens that the forces responsible
for chemical binding strongly affect the arrangement of the individual
magnetic moments of the various electrons in the molecule. As a result
the stable state of the molecule is nearly always one in which the vector
sum of these individual moments is just zero, so that the molecule as
a whole has no resultant permanent magnetic moment. Similarly, in
the majority of solids and liquids, the atomic constituents are ions with
no permanent magnetic dipole moments. When such a substance is

placed in a flux of magnetic induction B, each individual electron, being
a moving charge, experiences a force. Its orbital motion round the
nucleus is altered in such a way that it acquires an angular momen-
tum and hence a magnetic dipole moment which is proportional to
the applied field, but in the opposite direction. This gives a negative
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susceptibility, whose value willnow be calculated. It should be noted that

this diamagnetic effect is present in all substances, but in paramagnetic

substances there is a much larger positive contribution to the suscepti-

bility which generally far outweighs the diamagnetic contribution. The

positive contribution arises from molecules (or ions) where the vector

sum of the individual electron moments is not zero, so that the molecule

or ion possesses a permanent magnetic moment. Thus all substances

show a diamagnetic effect, giving a susceptibility of the order of 10-5

(using m.k.s. units, or 10-6 with e.m.u.), but in paramagnetic substances

there is a positive susceptibility contribution which is much greater.

8.2. Diamagnetism

The fact that an atom placed in a magnetic field B acquires a mag-

netic moment parallel to B can be shown by finding the effect on the

atom of establishing the field B from zero. In § 6.1 it was shown that

this changes the momentum of a particle of charge q from mv to mv,

where »mv = mv -q\
and A is the vector potential associated with the field B. The corre-

sponding current density is given by

J = pv = pv —/>(g/ro)A. (8.3)

IfA is increased by 8A, the increase in potential energy is, by equation

(5.45),

§UP = -
j (J.8A)dr = -

j P(y .8A)dr+ j P(qlm){A.8A)dT .

(8.4)

For simplicity we take B to be a uniform field (which it will be over

atomic dimensions), so that

A = J(B a r), and (A . SA) = J(J5 8B)r2 sin20,

where 6 is the angle between B and r. Hence

SUP = —
J"
\pw . (SB A r) dr+ (g/4m) f PB8Br* sin2 dr

= -SB. f \p{T AV )dT+(g/4m).B 8B j pr2 sin2d dr

= —SB.m —SB.nif = —SB.m. (8.5)

This result shows that the magnetic moment m consists of two parts,

ofwhich the first, m , is clearly the permanent magnetic dipole moment
(see equation 8.1), while the second m

f
is an induced dipole moment

which is proportional to the field strength B. The value of nij- is

Hif = — B(g/4m) f prz sin2 dr = — B(22/4m)(r2sin2
0>,
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where q =
j

pdr is the total charge. If p is independent of 6,

IT

(r2 sin2
0> = <r2> — f sin2 . 2n sin 9 dO = §<r2),

477 J
o

where (r2) is the mean square radius of the orbit. On summing over

all electrons in the atom or ion, m must be replaced by the resultant

(if any) of the permanent dipole moments, while the induced moment
per atom becomes

mf
= -(e2/6m)B J <**>, (8.6)

where the electronic charge — e has been substituted for q. Hence the

diamagnetic susceptibility of a sample containing n atoms (or ions) per

unit volume will be

x = nmJH =-nMo(e2/6m) £ (r2). (8.7)

This result can be derived in another way using Larmor's theorem

(Appendix A. 11). The result of establishing a field B is to set up

a processional motion of the electronic orbits with angular velocity

to = — (g'/2«i)B, as a result ofwhich each electron acquires an additional

angular momentum

Gf
= m(a2)o> = —m(a2)(g'/2m)B,

where (a2) = (r2 sin20) is the mean square distance ofthe electron from an

axis parallel to B through the centre of gravity ofthe atom (the nucleus).

Associatedwith G^ is an additional magnetic moment ofmagnitude (from

equation (8.2))

mf = (?/2m)G< = —
(g

2/4m)(r2 sin20>B.

On evaluating the average and summing over all electrons in the atom,

this gives equation (8.7) above.

This equation shows that the diamagnetic susceptibility is inherently

negative in sign, and does not depend, for example, on the sign of the

electronic charge. Fundamentally, the negative sign follows from Lenz 's

law. When the external magnetic induction B is switched on, there is

a change in flux through the electron orbits which induces a momentary
e.m.f. The change in the orbits which this causes gives an induced mag-
netic moment to the atom which is in such a direction as to oppose the

change in flux through the orbit, i.e. the magnetic moment is due to an

induced current whose own lines of magnetic field through the atom are

in the opposite direction to those of the external field. We have assumed

that (r2) is unaltered by the presence of the magnetic field; this is justi-

fied because the magnetic forces at ordinary field strengths are negligible

compared with the internal atomic forces (see Appendix A. 11).
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As defined in Chapter 5, the susceptibility refers to unit volume of

substance, and n is then the number of atoms in unit volume. Since x
is linearly proportional to n, it is permissible to take samples of different

size, and refer to the 'susceptibility per unit mass', or 'susceptibility per

gramme atom'. These are simply equal to the susceptibility per unit

volume (or 'volume susceptibility' for short) multiplied by the volume
of the sample. Thus the 'mass susceptibility' Xm = xlp> where p is the

density, since unit mass (1 kg) occupies a volume of (1/p) metre3
.

Similarly, the susceptibility per gramme atom or gramme molecule will

be xm = 10_3-^Xm> where M is the atomic or molecular weight in

grammes. Here the factor 10~3 occurs because our xm refers to a kilo-

gramme of substance. For a gramme mole equation (8.7) gives the

numerical value „ KK w , „„ x- . „. /£) _.

Xm = — 3-55xl09 ]?{r2). (8.8)

In most reference tables the susceptibility is given in electromagnetic

units, and for solids and liquids the diamagnetic volume susceptibility

(per cm3
) is of the order — 10-6 e.m.u. (for gases it is much smaller owing

to the lower number of atoms per unit volume). In our m.k.s. units the

volume susceptibility (per metre3
) is greater by a factor 47r and so is

of the order — 10~5
. As a rough rule, the susceptibility (m.k.s.) per

gramme atom is of order — 10-nZ, where Z is the atomic number, equal

to the number of electrons in the atom. This indicates that the mean
value of <>2> is about 10-21 metres2

, as expected from atomic theory.

The susceptibility of a diamagnetic substance is substantially indepen-

dent oftemperature, since^ <r2> is practicallyunaltered by temperature.

In the first approximation 2 (.r2} is constant for a particular type of

atom or ion, and is not greatly alteredby its surroundings. Thus aqueous
solutions of alkali and alkaline earth halides obey quite accurately (and

most substances approximately) an additivity rule known as Wiede-

mann's law. According to this rule the mass susceptibility xm of a solu-

tion containing a mass m
x of a salt of mass susceptibility xi m a mass

m2
of solvent of mass susceptibility ^2 is

Xm ~ m1+m2

(8 " 9)

Similar additivity rules are approximately valid for chemical com-

pounds. Thus, for compounds which ionize in solution, the molar sus-

ceptibility of the compound is generally close to the sum of the ionic

susceptibilities of its constituent ions in solution. By assuming a theo-

retical value for the susceptibility of one type of ion, approximate values

for the susceptibilities of other ions can be obtained from measurements
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on compounds, and the validity of the additivity rules tested. (For a
review of the diamagnetism of ions, see Myers (1952).)

8.3. Paramagnetism

As already pointed out, paramagnetism occurs in those substances
where the individual atoms, ions, or molecules possess a permanent
magnetic dipole moment. In the absence of an external magnetic field,

the atomic dipoles point in random directions and there is no resultant
magnetization ofthe substance as a whole in any direction. This random
orientation is the result ofthermal agitation within the substance. When
an external field is applied, the atomic dipoles tend to orient themselves
parallel to the field, since this is a state of lower energy than the anti-
parallel position. This gives a net magnetization parallel to the field,

and a positive contribution to the susceptibility. Since the thermal
agitation, which tends to give a random orientation, is less at low tem-
peratures, a bigger proportion of the dipoles are able to align themselves
parallel to the field, and the magnetization is greater for a given field.

It was discovered by Curie that, for ordinary fields and temperatures,
the susceptibility of many substances follows the equation

M C
X = H=T> (

8 - 10
)

where C is a constant, and T is the absolute temperature; this is known
as Curie's law. For large fields at low temperatures the magnetization
produced is no longer proportional to the applied field, and tends to a
constant value. This saturation effect is produced when all the atomic
dipoles are aligned parallel to the field, so that the magnetization reaches
a limiting maximum value.

The theoretical explanation of Curie's law was given by Langevin,
using the classical statistics of Boltzmann. He assumed that each atom
had a permanent magnetic moment m, and that the only force acting
on it was that due to the external field B. Then, ifa given atomic dipole
is pointing in a direction making an angle with B, its magnetic poten-
tial energy is W = —mB cos 0. Now, on classical statistics, the number
of atoms making an angle between and 0+dd is

dn = ce-w'kT sin9d0, (8.11)

where k is Boltzmann's constant and T is the absolute temperature,
c is a constant defined by the fact that integration of (8.11) over the
whole possible range of energies must give just n, the total number of
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atoms in the system. Hence for our case

dn = c exp(nt-B cos djlcT) . mB sin 8 d6

and n is equal to this integrated over all angles from to tt. The com-

ponent of each dipole moment parallel to B is m cos 6, and hence the

average component per atom is fn, where

nm = trt f cos 6 dn.

10

2 4 6

Fig, 8.2. The Langevin function L(y) = cothy—ljy.

Hence

m

j
cos d . c exp(rrt-B cos OjkT) .mB sin 6 dd

o
•jr

\ c exp(nt5 cos dflcT) . mB sin 6 dO

On writing mBjkT = y, cos 6 = x, this takes the form

+i

m
m

x exp(xy) dx

+i

I exp(xy)dx

cothy—-= L(y),
y

(8.12)

where L(y) is known as the Langevin function. It is plotted as a func-

tion of y in Fig. 8.2. For large values of y the function tends to unity,

saturation being reached when all the atomic dipoles are parallel to B.
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For small values of y the curve is linear, and L{y) = y/Z = mB/3kT.
Then the susceptibility is

_ nm. _ fttttn2

x"¥~lMr ' (8 - 13)

where n is the number of atoms per unit volume. This is the same as
Curie's law, equation (8.10), if we identify the Curie constant C with
fi nm2/3k. The only unknown quantity in (8.13) is the atomic dipole
moment m so, that by measuring the susceptibility as a function of the
absolute temperature in a region where mBjkT is small, the magnitude
of the atomic dipole moments may be found. In general these are of
the order of 10-23 ampere-metre2 (10-20 e.m.u.), or slightly greater, and
the volume susceptibility at room temperature of solid paramagnetic
substances which obey Curie's law & -f 10~

3
. Thus the paramagnetism

considerably outweighs the diamagnetism which is also present.

Langevin's theory applies strictly only to gases, where the molecules
are sufficiently far apart for their mutual interactions to be negligible.

In liquids and solids such interactions may be large, and many sub-
stances obey the modified Curie-Weiss law

G

is called the 'Weiss constant' and is characteristic of the substance

;

it may be either positive or negative (see Chapters 21 and 22). Equa-
tion (8.14) holds only at temperatures where T > \0\, and for many
substances no single equation represents the susceptibility variation
adequately over a wide temperature range.

As already noted, the tendency in chemical combination is towards
zero resultant angular momentum of the electrons and hence to zero
permanent magnetic moment. Of the common gases, only oxygen 2
and nitric oxide NO are paramagnetic. In the solid state paramagnetism
occurs in salts of the 'transition group' ions (see Chapter 20), and the
magnetic moment is associated with the metallic ion itself. Thus in

compounds such as CrK(S04)2,12HaO ('chrome alum') or CuS04,5H2

(copper sulphate) only the Cr+++ ion and Cu++ ion respectively have
permanent magnetic moments, the other ions (K+,S07 _

) and water
molecules giving only a diamagnetic contribution to the susceptibility.

In most metals the outer electrons are detached from the individual
atoms, which are thus left as diamagnetic ions. The detached electrons
are free to move through the metal and form the conduction electrons;

these give rise to a diamagnetic and a paramagnetic effect, both of the



204 MAGNETIC MATEBIALS AND [8.3

same order of magnitude and both independent of temperature (see

§ 18.7). The outstanding exceptions are the ferromagnetic metals, iron,

cobalt, nickel, and a few others.

8.4. Ferromagnetism
Ferromagnetic substances are all solids, and each is characterized by

a certain temperature known as the Curie point at which its properties

change abruptly. Above the Curie point the susceptibility is independent

S (in units of weber/metre 2 or IO4 gauss)

1-5 r

Pig. 8.3. Magnetization curve (full line OABS) and hysteresis loop

(broken line )for iron.

of field strength, and follows approximately a Curie-Weiss law (equation

(8.14)) with a Weiss constant 9 whose value is close to that of the Curie

point. Below the Curie temperature the behaviour is quite different;

very large values of magnetization are produced by quite small fields,

and the magnetization varies quite non-linearly with the field strength.

This is shown by a characteristic plot of the magnetic induction B as a

function of the fieldH in a sample of iron, Fig. 8.3. If the iron is initially

unmagnetized, and a field of slowly increasing magnitude is applied,

B follows the full line in Fig. 8.3, known as the 'magnetization curve'.

In a field of a few hundred ampere/metre the value ofB becomes practi-

cally constant at about 1-5 weber/metre2
. If the magnetic fieldH is now

reduced, the induction B does not return along the magnetization curve

but follows the broken line, and even at H = 0, corresponding to the

point R in the figure, B is still near the saturation value. The value of

B at this point is known as the 'residual induction', and the retention
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of magnetization in zero field is known as 'remanence'. On applying
a reverse field the value of B falls and finally becomes zero (point C in

Fig. 8.3); the value of the field at this point is called the 'coercive force'.

As the magnitude of the reverse field is further increased, a reverse in-

duction is set up which quickly reaches the saturation value. Finally,

if the reverse field is gradually removed and a positive field applied,

10,000

8,000 -

6,000

4,000 -

2,000

10 1-5

B (weber/metre 2
)

Fig. 8.4. Curve of permeability p against induction B for iron.

the induction traces out the broken curve in the direction S'BS. This
broken curve is called the 'hysteresis curve'. It shows that the change
in the magnetic induction always lags behind the change in the applied
magnetic field.

The magnetization curve may also be represented in the form of a
permeability curve, showing the variation of p = B/(fi H) as a func-
tion of either B or H. Such a curve (^ against B) is shown in Fig. 8.4.

When a field is applied p goes through a maximum and then falls rapidly
as the material becomes saturated. The values of (*, of the order of 10*,

are enormously greater than in paramagnetism (1-001 or so at ordinary
temperatures).

To explain this behaviour, Weiss suggested that a ferromagnetic
substance contains atoms with permanent magnetic moments, as in a
paramagnetic substance, but that there are large forces acting between
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neighbouring atomic dipoles which cause groups of them all to point
in the same direction. The substance would then be permanently mag-
netized within each group; such groups are called 'domains' and their

size is now known to vary from about 10-6 cm3 to 10-2 cm3
, or greater

in single crystals. In an unmagnetized polycrystalline specimen the
domains are oriented at random, so that there is no resultant magnetic
moment in any direction. When a field is applied, domains where the

Fig. 8.5. Schematic representation of domains in a ferromagnetic substance : (o) un-
magnetized ; (6) magnetization through movement of domain boundary wall ; domains
oriented parallel to H grow at the expense of anti-parallel domains ; (c) magnetization
by rotation of the magnetization of whole domains. The domains remain magnetized
along a preferred direction in each crystallite ; very large fields are required to swing the

magnetization away from such a direction towards the applied field.

magnetization is parallel or at a small angle with the field grow at the

expense of those where the magnetization is anti-parallel or nearly so,

so that the boundary between domains is displaced. Initially (OA in

the full curve of Fig. 8.3) the magnetization of the substance as a whole

proceeds by small (reversible) boundary displacements, but the steeper

part (AB) of the magnetization curve is due to larger (irreversible) dis-

placements. Above the knee of the curve, magnetization proceeds by
rotation of the direction of magnetization of whole domains; such a

process is rather difficult and the increase in magnetization is relatively

slow. These processes are shown schematically in Fig. 8.5. When the

applied field is reduced, there is little change in the domain structure

so that the magnetization remains quite high until reverse fields are

applied, thus giving rise to the hysteresis described above.

Ferromagnetic substances may be broadly divided into two classes:

(a) magnetically soft materials, which have high permeability, and are

easilymagnetizedand demagnetized, and (6) magnetically hard materials,

which have a relatively low permeability and are difficult to magnetize
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or demagnetize (high coercive force) . The chief uses of the former are in

electromagnetic machinery and transformers, and ofthe latter in perma-
nent magnets. To obtain a soft magnetic material the domain walls

must be able to move easily and reversibly, so that the magnetization

changes by large amounts for small changes in the magnetizing field.

This requires a material as free as possible of irregularities in the crystal

structure due to strains or small particles of impurities. The main treat-

ment of such materials consists therefore of heating to a temperature

where sufficient movement of the atoms is possible for them to settle

into an ordered lattice, followed by a slow cooling (annealing) so as not

to disturb it. On the other hand, a hard magnetic material is one in

which domain wall movement is difficult owing to lattice imperfections.

These areproducedbyheating the materialandthenplunging it suddenly
into cold oil (quenching), which sets up internal stresses. Some alloys

are then reheated to a lower temperature to cause one ofthe constituents

partially to separate out in small particles dispersed through the alloy.

In an alternative process magnets are constructed from compressed
powders of very fine particles. If the particles are below a certain size,

each forms a single domain and there are no domain walls within the

particle. Magnetization and demagnetization can only be accomplished

by rotation of the direction of magnetization of each particle, which
requires a higher field than wall movements, and so gives a higher

coercive force.

8.5. Production of magnetic fields

For many purposes it is necessary to maintain a large magnetic field

which is constant over a certain volume. By 'large' is meant values of

B ranging from 0-1 to 10 weber/metre2 (103 to 105 gauss), and the volume
may vary from 100 cm3 up to many cubic metres in a modern accelerator

for atomic particles. According to the particular application, permanent
magnets or electromagnets (with or without iron) may be employed, and
the principles of their construction are outlined below.

A modern permanent magnet of typical shape is shown in Fig. 8.6.

The important quantities are the values of B in the air gap, and the

volume of the air gap; since the energy density at any point is JB.H
(equation (6.44)), the total energy stored in the air gap is

(
%BH)Va , where

Va is the volume of the gap, and the vectorial representation of B and
H can be dropped since they are parallel to one another. The energy
stored in the gap includes both the important parameters (the value of
B and the volume), and is simply related to the quantities involved in
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the magnet design, as follows. If we assume that there is no leakage, so

that all the lines of magnetic induction within the magnet pass through

the gap, we have BAa
= BmAm , (8.15)

where Aa , Am are the cross-sections of the air gap and the magnet respec-

tively, and Bm is the value of the magnetic induction in the magnet.

Fig. 8.6. Permanent magnet.

Now, if we consider a circuit through the gap and the magnet as indi-

cated by the broken line in Fig. 8.6, the total magnetomotive force (see

§ 5.2) is zero, since no electric currents are involved. Hence

j H.ds = Hda+Hm dm = 0, (8.16)

where da , dm are the path lengths in the air gap and the magnet respec-

tively, and Hm is the magnetic field in the magnet. On combining

equations (8.15) and (8.16) we have

(\BH)Va = {\BH)Aa da

= —(h£m Hm)Am dm = — (\BmHm)Vm . (8.17)

This important relation shows that for a magnet of given volume Vm ,

the greatest amount ofenergy stored in the gap is obtained if the product

(BmHm) has its maximum value.

The variation of the product (BmHm ) with Bm for a typical material

is shown in Fig. 8.7, together with the 'demagnetization curve'; that is,

the part of the hysteresis loop corresponding to the application of a
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reverse field. In a permanent magnet the field inside is the 'demagnetiz-
ing field' due to the 'free magnetic poles' near the ends of the magnet;
this field is in the opposite direction to Bm , and the negative sign in
equation (8.17) arises from this. The size of the demagnetizing field is

Demagnetization curve

(B„HJ

5x10*
(amp/metre)

//_+- -+ (BJIJ

5x10*
(joule/metre3

)

Fig. 8.7. Demagnetization curve (to the left) and plot of (Bm Hm) against Bm
(to the right), for Alcomax III.

determined by the shape of the magnet, and this must be designed so
that the material is at the point where [BmHm) is a maximum. A good
working rule is that at this point the ratio of Bm to Hm is equal to the
ratio Br\Ee , where Br is the residual induction and Hc the coercive force.

In practice there is always some leakage of lines of magnetic field so
that the energy stored in the gap is less than the theoretical value given
by equation (8.17). The best shape of the magnet is one in which BmHm
at every point in the material is closest to its maximum value. Since the
product BmHm is a characteristic of the material the volume of material
required increases linearly with the energy stored in the gap. Many
special alloys, such as Alcomax (Alnico), have been developed with high
values of the energy product. Alcomax III has the composition 50%
iron, 25% cobalt, 13-5% nickel, 8% aluminium, 3% copper, and $%
niobium. Its coercive force #c « 5 X 104 A/metre, the residual induction
Br « 1-3 weber/metre2

, and the maximum value of (BmHm) « 4x 10*

851110 p
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joules/metre3
. The disadvantage of most of these special alloys is that

they cannot be machined, and the magnets must be cast or sintered

from powder. They are very useful when constant fields up to I weber/

metre2 are required.

When fields of greater magnitude, or adjustable fields, are required,

an electromagnet is used. For fields up to about 2 weber/metre2 the

normal type of construction is as shown

in Fig. 8.8. It consists of a yoke Y of

soft iron or, more commonly, mild steel,

which has a reasonably high magnetiza-

tion for small values of the applied field.

C, C are coils of copper wire, or copper

tube through which cooling water may
flow, carrying current from a d.c. gen-

erator. If the coils have a total of n
turns each carrying a current /, the

magnetomotive force (m.m.f.) is

nl = j H.ds = Hda+Hm dm (8.18)

Fig. 8.8. Weiss type of electro-

magnet.

C, O coils carrying electric current ;

P, P pole tips ; Y yoke. , . .,,, , il ,
round a circuit through the air gap and

yoke similar to that shown in Fig. 8.6, with the same nomenclature as

before. Since equation (8. IS) still holds, we have

d„
nl = BA \

^a
I

^m 1,a
U*aAa WoAmY

(8.19)

where the quantity in brackets is known as the magnetic 'reluctance'

of the system. In this analogy between the m.m.f. and the e.m.f. in a

circuit, the flux (BA a) is analogous to the electric current, and the flux

passes through the two components—the air gap and the yoke—in series.

The total reluctance of the 'magnetic circuit' is the sum of the two parts

due to the gap and the iron. Since /j, for iron is very large, the greater

part of the reluctance is generally associated with the air gap.

In most iron-cored magnets the pole faces may be removed and

replaced by others of different shape for special investigations, and the

width of the air gap may be altered. To obtain higher values of B, coned

pole pieces may be used. In the design of Fig. 8.9, if it is assumed that

the magnetization is everywhere parallel to the axis and has the satura-

tion valueMs, the field at the centre ofthe gap due to the conical portions

indicated by shading may be shown to be (see Problem 8.7)

B = n H = /Lt lf
s sin

2^cos^loge(6/a). (8.20)
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This has a maximum value at
<f>
= 54-7°; in practice the pole pieces are

not everywhere completely saturated, and a value of about 60° gives
the best results. The pole tips may be made of a special cobalt steel
which has a higher saturation induction than ordinary mild steel. A plot
of the field in the gap against exciting current is usually fairly linear

2b

Fig. 8.9. Coned pole tips for magnet.

(apart from a smaU initial field due to the remanence) until the steel
becomes saturated; the rate of increase then becomes much lower, any
extra field being that due to the current in the coils themselves.

It was pointed out by Bitter (1936) that this arrangement, in which
the iron is magnetized everywhere in the same direction, does not make
the best use of the iron. In Fig. 8.10 the field at the origin O due to the
dipole at A, oriented as shown, has a component paraUel to the a;-axis
equal to

4ttt3
(2 cos 8 cos ^+sin 0sin <j>).

If the orientation of the dipole is variable, then Hx has a maximum
value when dHJdO = 0; i.e. tan0 = Jtan^ and this value is then

(#Jmax = ^5(1+ 3 COS2^)i.
(8.21)

If, on the other hand, the dipole points parallel to the z-axis, so that
= — j>, the value ofHx is only

mH,
'tnr3

(3cos2<£— 1). (8.22)

Both the angular functions in (8.21) and (8.22) have the value 2 at
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(f>= 0, but the latter falls to zero at
<f>
= 54-7° and then changes sign

(the reason why the coned pole pieces discussed above have this as their

optimum angle is that dipoles at a larger angle oriented parallel to the

axis would give a reverse field and thus reduce the field in the gap).

On the other hand, at this angle (1+3 cos2^)* has fallen only to V2, and

its smallest value is 1 at
<f>
= 90°.

• x

Fig. 8.10. Illustrating the calculation of the field at the origin O due to a dipolem at A,

At first sight it would seem impracticable to set up a magnetization

in the iron with the angular distribution of the direction of magnetiza-

tion required by the equation tan0 = Jtan^. The orientation of the

magnetization at any point is, however, just the same as the direction of

the lines of force set up by a point dipole at the origin pointing along

the a;-axis, and it follows that such a dipole would magnetize the iron in

just the right direction. Bitter therefore designed a magnet of the type

shown in Fig. 8.11, where the magnetizing coil, whose field is approxi-

mately that of a point dipole, is surrounded by soft iron. This gave an

appreciably better performance than the older type of design. Bitter

considered also the question of the current distribution and shape of the

magnetizing coil, and concluded that higher efficiency could be obtained

if the current density were not uniform, as it is in a coil wound in the

ordinary way, but fell off inversely with the radius. In the design of

Fig. 8.11 this is achieved by winding a spiral out of copper strip of

gradually increasing width; the current enters along a central brass tube,

flows round the spiral with decreasing density as the width increases,

and leaves at the outer edge. In such a magnet Bitter obtained a flux of
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30 000 gauss (3 weber/metre2
), using a power of 21 000 W; the m.m.f.

was 5 X 10* ampere-turns, and the coil resistance about 0-03 ohm.
Since iron and other magnetic materials saturate at about 1 to 2

weber/metre2 , the contribution they make in magnets for still higher

fields is not sufficient to justify the expense. Bitter has designed air-

cored solenoid magnets on the principle outlined above. The non-uniform

Axis

A A

/
/ V

\
X—Coil—

N

/ X
B

Iron

B

Fig. 8.11. Bitter magnet, with central coil surrounded with iron.

The coil consists of a spiral strip, whose width increases with the
radius ; current enters at AA, flows round the coil producing an axial

field, and leaves at BB.

current distribution is obtained by using flat conductors of the shape
shown in Fig. 8.12; the current is led in along the edge AA and out along

BB, so that the current density varies inversely with the radius because
the resistance along a path of radius r increases with r. The solenoid

is constructed of a number of such disks mounted one above the other,

with holes drilled in them so that cooling water can be forced through.

The low resistance of such a design (~ 0-01 ohm) reduces the chance
of any breakdown in the insulation, and corrosion through electrolysis

of the cooling water. In one such coil Bitter (1940) obtained a field of

10 weber/metre2
, uniform to 1 per cent over a volume of 25 cm3

, with
a supply of 10 000 A at 170 V. It can be shown that the field obtained

from an air-cored coil can be expressed as (WX/pr)* times a factor

depending only on the shape of the coil and the current distribution;

here W is the power dissipation, X the fraction of the coil volume occu-

pied by conductor of resistivity p (the remainder being insulation and
coolant), and r a linear dimension such as the inner radius. Thus to

double the field over the same volume requires four times the power.
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The discovery of superconducting wires which remain in the super-

conducting state up to fields of 105 gauss (10 weber/metre2
) or more has

made it possible to construct solenoids in which a steady field can be
maintained without any power consumption, since the resistance in the

superconducting state is zero. The main drawback is that the super-

conducting state is only attained below some critical temperature Tc

Fia. 8.12. Shape of copper disk known as a 'Bitter pancake'.

which lies below 20° K for virtually all substances, so that the solenoid

must be maintained at liquid helium temperatures. A comparison ofthe

power requirements of various types of magnets is given in Fig. 8.13;

the power shown for the superconducting magnet (lOkW) is arbitrary,

being that required to run the liquid helium refrigerator

!

8.6. Measurement of magnetic fields

The commonest method of measuring the value of B at any point

in air is by means of a 'flip coil' and an instrument for measuring flux.

The flip coil consists of a number n of turns of wire wound on a small

former of known area A ; this is mounted on a handle and the leads to

the coil are twisted and brought out through the handle. When the coil

is placed with its axis parallel to a field B, the flux through it is nAB;
if the coil is then quickly removed to a point where B = 0, the flux

change is just nAB and this can be measured either by a ballistic gal-

vanometer or a fluxmeter (see § 7.3). For accurate results the ballistic

galvanometer should be standardized as described in § 7. 3 using a mutual
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inductance, with the secondary winding and the flip coil in series with
the galvanometer throughout all the measurements so that the total
resistance of the circuit remains constant. Flip coils can be made with
different values of the product nA (turns X area), so that by choice of
the right coil for the field to be measured a suitable deflexion can be

100 1000

Total Power (kilowatts)

10,000

Fig. 8.13. Comparison of field produced by various types of magnet, and the power
requirements (for the superconducting magnet this is just the refrigerator power con-
sumptwn). Volume of field = 500 cm3

. (Courtesy Dr. J. Hulm, Westinghouse Research
Laboratories

.

)

obtained on the ballistic galvanometer or fluxmeter. As noted in § 7.3,
the accuracy obtainable with an average fluxmeter is about 1 per cent,
and with a ballistic galvanometer about ten times greater.

If the coil is rotated rapidly in the field, an alternating voltage is set
up which is proportional to nAB times the angular velocity; measure-
ment of this voltage requires a less sensitive instrument than the flux-
meter because the energy available is much greater than with a single
throw. In a typical instrument, a coil of 3 mm outer diameter is rotated
at 30 c/s, and gives full scale deflexion in a field of about 500 gauss;
with larger and smaller coils, fields ranging from the earth's field to 10*
gauss can be measured quickly with an accuracy of about 1 per cent.
An absolute method which is capable of giving higher accuracy is the

electromagnetic balance of Cotton, in which the force due to the field B
on a length of wire carrying a known current is measured directly. This
method can only be used for rather strong fields which are uniform over
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a fair volume. A long rectangular coil is suspended from an analytical

balance with the lower end of the coil in the field to be measured, this

field being directed horizontally. The long sides of the coil are vertical,

so that no force is exerted on them in the vertical direction; they act

as leads for the current in the horizontal lower edge of the coil, and the

force measured is just that on this lower edge, assuming that the value

of B along the upper edge is negligible. If the lower edge is directed

perpendicular to the lines of B, the net vertical force is F = I j B dx,

where the integral is measured along the lower edge. Thus the integrated

value of the field along this edge is determined, and to find the value

at any point the field distribution must be known. The current is

measured with a standard resistance and potentiometer, and the force

by the change in the balance reading when the current through the

rectangular coil is reversed in direction. With a balance of this type

Thomas, Driscoll, and Hippie (1950) were able to measure a field of

about 0-5 weber/metre2 with an accuracy of a few parts in 10s . The

purpose of their experiment was to make an accurate absolute measure-

ment of the magnetogyric ratio of the nuclear magnetic moment of the

proton, by determining the precession frequency (oj/27t) of the nuclear

moments in a field B. The principle of this method ('nuclear magnetic

resonance') will be discussed in Chapter 23, but it is based on the

equation
co = —yB,

where y is the magnetogyric ratio (see equation (8.2)). Since the frequency

(w/27r) is linearly proportional to B, and the frequency of a radio-oscilla-

tion may readily be determined with high accuracy (see Chapter 15),

this gives an accurate measure of B if the value of y is known.

8.7. Measurement of susceptibility

-***" Most methods of determining the susceptibility of weakly magnetic

substances depend on measuring the force on the substance in an in-

homogeneous magnetic field» By analogy with equation (1.15), the force

on a magnetic dipolem has an cc-component

^HtH#)+™#)- (823)

Now, if instead of a permanent dipole we have a particle of magnetizable

matter of susceptibility x an(l volume v, its moment will be

m = xvH
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and the a;-component of the force on it is

If the particle has a susceptibility xi and is immersed in a medium (such
as the atmosphere) with susceptibility x2 , then the force on it is

iKXi—XzWaV— . (8.24)

This can be seen from the fact that any displacement of the particle

in the x-direction requires an opposite displacement of an equal volume
of the surrounding medium.

This equation may also be derived by considering the stored energy.
The effect of the presence of the particle of volume v is to increase the
stored energy by

?7 = »(iB1.H-iB i .H)

= H(i+^)-(i+x.)K^*
= i*>(xi-X2K#2

.

From equation (6.40) the force component is given by Fx = + (8U/8x),
giving the same formula as above (equation (8.24)). In both these de-
rivations we have assumed that the magnetic field inside the specimen
is the same as the value measured before

the specimenwas introduced. These two
quantities differ only by the demagnet-
izing field in the specimen, whose order

of magnitude is M = x^> which is

negligible for the values of x (~ 10"3

or less) ordinarily encountered.

.s^The force equation
(8.24^ is the basis„

of methods for measuring the suscepti-

bility of small specimens, and was used

by Curie. The specimen is suspended

from one arm of a sensitive torsion

I balance, and hangs between the pole |
FlG

-
814 - Curie '

s method for the

! .. c i j. , • i-i. „ . .
susceptibility of a small specimen S.

V*|ps of an electromagnet's in Fig. 8.14,J P, P are the magnet p;le tips .

— The arrangement of the pole tips gives

a large value ofdH^/Sx, while along the axis the quantities dR\\dx and
BHl/Bx are very small. Values of the order of 1011 A2/metre3 can be
obtained for 8E\\8x withHy of the order of 10« A/metre (~ 104 oersted).

The main difficulty arises from the fact that the value of bH\\dx is

.V
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usually constant over only a rather small volume, and different speci-

mens must be placed rather accurately in the same position in the

magnet to obtain correct results. This difficulty is reduced by the use

of special shapes of pole tips designed to make dB.\\dx uniform over a
larger volume.

When larger quantities of a substance are available, a better method
of measuring the susceptibility is that due to Gouy. The specimen is

^

(a) (b) (c)

Fig. 8.15. Gouy's method for measuring susceptibility.

made into a long cylinder of uniform cross-section, and is suspended
from one arm of a sensitive balance so that its lower end hangs between
the poles of an electromagnet, as in Fig. 8.15 (a). If the cross-section

of the specimen is A, the vertical force in the rc-direction is dFx on an
element A dx, and hence the total force is found, by integrating over

the length of the specimen, to be

Fx = \AilAxi-X*) j (8H*ldx)dx

= ^WXi-X2)(#?-#t), (8.25)

where Ht is the field at the lower end of the specimen and H2 that at

the upper end; generally HI will be negligible compared with H\ . It will^

be seen that, although the force arises because the specimen is in an in-

homogeneous field, only the value of the homogeneous field at the centre

of the magnet gap is required. With field strengths of the order of 105

to 106 A/metre (103 to 10* oersteds), forces of the order of milligrammes
are obtained which can be measured on an ordinary laboratory balance.
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For liquids and powders, a cylindrical container of uniform cross-
section may be used, half-filled with the substance or divided into two
compartments (see Figs. 8.15 (6) and (c)). The mid-point of the con-

>
tainer is in the centre of the field, and the forces on the two halves of the
container are equal and opposite. They therefore cancel, leaving only
the force on the specimen. For liquids, a variant of the Gouy method
due to Quincke may be used, in which the force due to the magnetic
field is balanced by hydrostatic pressure. In_the simplest form of this- .

method the liquid is contained in a U-tube^and the meniscus in one arm
is placed in the uniform field between the magnet pole tips.* When the

"

field is switched on, the meniscus rises or falls, according to whether the
liquid is more or less paramagnetic than the air in the tube above it*-.

If the density of the liquid is known, the hydrostatic pressure caused Y
by the magnetic forces may be found from the change in height of the j

meniscus in either limb of the tubei^hmore accurate method, which
eliminates errors due to the liquid sticking on the walls of the tubers

\tg restore the meniscus to its original height by changing the relative
levels of the two limbs (e.g. by tilting). This method was used by Auer
in determining the diamagnetic susceptibility of water with an accuracy
of about 0-1 per cent.~]

Force methods of measuring the susceptibility have the disadvantage
that the force arises from an inhomogeneous magnetic field. In modern
measurements, the magnetic moment of a small single crystal is often
required as a function of field strength and of the direction of the field

relative to the crystal axes (as well as of temperature). For this purpose
it is preferable to use a uniform magnetic field, whose value can be
determined accurately much more easily thana quantity such as dH2jdx .

which is needed in Curie's methodV'A number of methods have been
developed where the sample is moved in and out of a coil (or from one
coil to another) in the field, and the change in flux through the coil is

measured. Movement of the sample is superior to movement of the coil,

because the latter gives a flux change even in the absence of a sample
due to residual inhomogeneity in the field. A null method is often used;
one way ofachieving this with a cylindrical sample is to wind a small coil

round the sample and adjust the current through it until the magnetic
moment of the coil just cancels that due to the sample, as shown by the
zero flux change in a pick-up coil from which the (sample+coil) are
suddenly removed. This is a good example of the equivalence of a
current circuit and a magnetic shell, as discussed in § 5.2.

A sensitive magnetometer, due to Foner (1959), in which the sample
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is vibrated at 90 c/s, is shown in Fig. 8.16. The sample S, at the end

of a long support which reaches down into a dewar vessel for work at

low temperatures, is vibrated vertically by a loud-speaker transducer T
fed by alternating current at 90 c/s. The sample is at the mid-point

between two coils A, B whose axes are vertical; the vertical component

of the flux from the horizontal magnetic moment of the sample threads

Direction of 00 c/s vibration

QM

Magnet
pole

face

D

A'

90 c/s voltage from 0, D
'

Phase shifter

Voltage

Divider

Magnet
pole

face

90 c/s voltage from A, B"_
Amplifier and
Null Detector

Fig. 8.16. Foner's Vibrating Magnetometer. The pair of coils A, B (and similarly C, D)
are in series but opposing, thus reducing spurious voltages due to magnetic field instability

or unwanted mechanical vibration.

8 sample, producing 90 c/s voltage in coils A, D.

M permanent magnet producing comparison voltage in coils C, D.

T loudspeaker transducer driving sample 8 and magnet M in vertical vibration

at 90 c/s.

the top and bottom halves of each coil in opposite sense, so that the

net flux is zero if the sample is exactly opposite the mid-point. When
the sample is displaced vertically during vibration, the net flux through

each coil becomes finite and in first approximation is linearly propor-

tional to the displacement of the sample. Thus an e.m.f. alternating at

90 c/s is induced in the coils, which can be balanced against a similar

e.m.f. induced by a small permanent magnet M in the coils C, D. This
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gives a null method where the magnetic moment of the sample is read
off on the calibrated voltage divider (the phase shifter is required because
the two alternating voltages may have a small phase difference—see
Chapter 9). The accuracy is about 1 per cent, and changes in magnetic
moment of about 10-* e.m.u. (10-7 ampere metre2

) can be detected,
corresponding to a volume susceptibility in the sample of about 10-8

e.m.u. (10-7 m.k.s.) in a field of 104 gauss (1 weber/metre2
). Rotation

ofthe whole assembly about a vertical axis enables the magnetic moment
to be measured throughout a horizontal plane; permanent moments can
be measured as well as induced moments.

8.8. Experimental investigation of the hysteresis curve
In order to determine the hysteresis curve ofa substance it is necessary

to know the values of jB and H inside the substance. For this purpose
the most satisfactory shape of the substance is in the form of an anchor
ring, or toroid, since then there is no demagnetizing field due to the
'free poles' at the ends of the specimen. If the radius of the ring is

large compared with the dimensions of its cross-section, a coil wound
uniformly round the ring will produce a uniform field H everywhere
within the ring. If nx is the number of turns per unit length in this (the
'primary' coil), and / the current flowing, then H = n-^ I. To measure
B, a small secondary coil is wound over the primary at some point on
the ring; ifthis coil has n2 turns, and the cross-section ofthe ring is A, the
flux through the coil is n

2AB. Changes in the flux through the secondary
coil are measured by connecting it to a ballistic galvanometer; the gal-
vanometer is calibrated at the same time as described in § 7.3.

A circuit diagram of the apparatus is shown in Pig. 8.17. In order
to determine the initial magnetization curve (0AB8 in Fig. 8.3), the
ring must previously have been demagnetized; this is usually accom-
plished by passing an alternating current through the primary coil and
slowly diminishing its amplitude to zero. Then the primary coil is sup-
plied with direct current measured on the ammeter A : this current can
be adjusted in value by means of the variable resistance R± . By adjust-
ing M1 in steps, the current in the primary coil is increased stepwise
and the ballistic throw of the galvanometer measured at each step. This
gives the increment in B at each step, and finally the saturation value 8
(Fig. 8.3) is reached.

Before starting to plot out the hysteresis curve, the full current in
the primary should be reversed a number of times until the flux change
at each reversal reaches a constant value. The material is then in a
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'cyclic state' and reproducible results for the hysteresis curve can be

obtained. Suppose the material is at the point 8 in Fig. 8.3, with the

full current flowing through the closed switch S2 in Fig. 8.17. On open-

ing the switch S2 with a suitable value of the resistance R2 , the primary

current is diminished and a point between 8 and R on the hysteresis

curve is attained. On throwing the reversing switch in the primary

<d>

Fig. 8.17. Apparatus for B-H curve measurement.

M is a standard mutual inductance for calibrating the ballistic galvanometer B.
P primary winding ) , . , ,„ , -j? on toroidal specimen.
<S secondary winding

J

r

circuit the current is restored to its full value but flowing in the opposite

sense through the primary coil, so that the material is now at S', and can

be returned to 8 by returning the reversing switch to its original position

after closing S2 . By repeating this procedure with various values of i?2 ,

and then rearranging the circuit to that R2 is in circuit when the current

flows in the negative sense, points all round the hysteresis curve can be

obtained. It is important that the cycle is always followed in the same

sense, and completed by reaching the points S and S' every time, in

order to retain the cyclic state. If the direction of movement round the

hysteresis curve is reversed at some point between S and 8', an inter-

mediate curve will be traced out, and the cyclic state must be restored

by a number of reversals of the full current.

In many cases the material to be tested is in the form of a long bar
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rather than a toroidal ring. Special methods (see, for example, Vigoureux
and Webb, 1946) must then be used, but the general principle is similar
to that given above.

The area enclosed by the hysteresis curve is of importance because it

represents the work done in taking the material once round the hysteresis
curve. Thus in a transformer for alternating current of frequency /, the
hysteresis curve is traversed/times per second and power is dissipated
which appears as heat in the magnetic material of the core. From equa-
tion (6.45) the work done per unit volume in moving from one point on
the hysteresis curve to another is the integral, taken along the curve,

W = JHdB. (8.26)

It is readily seen that in a complete cycle the value of the integral is just
given by the area enclosed by the hysteresis curve. Since this curve
is traversed once per cycle, the energy dissipated rises linearly with the
frequency of the alternating current.

8.9. Terrestrial magnetism
It has been known since the sixteenth century that there is a small

permanent magnetic field at the surface ofthe earth. The general nature
of this field is similar to that of a uniformly magnetized sphere whose
magnetization is slightly inclined to the axis of rotation. At two points
the lines of force are normal to the earth's surface. These are known as
the 'magnetic poles'; the northmagnetic pole attracts the 'north' pole ofa
suspended magnet or compass needle, and the latter is more accurately
termed the 'north-seeking pole', since it is a pole of opposite sign to the
earth's magnetic pole. In general, the magnetic field at any point on the
earth's surface makes an angle with the horizontal, known as the angle
of dip. The direction of the horizontal component is called the magnetic
meridian, and the angle between this and the geographical meridian is
the angle of decimation. In England the size ofthe horizontal component
is about 0-18 oersted (« 14 A/metre), and the angle of dip is 58°.

Although it is a convenient first approximation to think of the earth
as a uniformly magnetized sphere, it must be remembered that this im-
plies that the field outside it is just the same as that of a small dipole
at the centre, and no immediate deductions can be drawn from the
nature of this field about the actual distribution ofmagnetization within
the earth. The magnetic potential associated with the earth's field can
be analysed in a series ofspherical harmonics. Apart from small localized
distortions due to iron-bearing minerals in the earth's crust, there is a
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dipole term which has decreased in magnitude by about 5 per cent in

the last hundred years, while the quadrupole and higher terms have

strong and fairly rapid secular variations with lifetimes less than a

hundred years. These latter terms have no constant components and

it is believed that all the non-dipole field components would average to

zero over a sufficiently long period of time. The variation with time of

the field at any one point also contains diurnal variations which are

irregular and unpredictable. These are caused by currents in the iono-

sphere due to solar and lunar perturbations, and days of great magnetic

disturbance can often be related to epochs of maximum sunspots, the

intensity showing a similar 11 -year cycle.

The origin ofthe main field is more difficult to account for. A plausible

guess of the composition of the interior of the earth may be made by

studying the composition of meteorites, the sun, stars, and other planets,

and using the data on the density obtained from the velocity of seismic

waves through the earth. The latter show that there is a central core,

with a radius of 3473±4 km, which is assumed to be liquid since no

transverse seismic waves are transmitted through it. Although this

contains much iron, the temperature and pressure are too high for it

to be ferromagnetic; it is assumed to consist mostly of liquid silicates

of iron, magnesium, and calcium, which have an appreciable electrical

conductivity at high temperatures. The present view is that the main

part of the earth's field is due to electric currents in this core, associated

with convective currents caused by radioactive or chemical sources.

The mathematics of the process (energy source -> kinetic energy of

fluid -> electrical energy) has been studied by Elsasser, Bullard, and

others, and it seems probable that electrical currents can be maintained

in this way. For detailed accounts reference should be made to Chapman

and Bartels (1940), and Elsasser (1950, 1955-6).
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PROBLEMS
8.1. The susceptibility of a gramme mole of helium gas is -2-4x 10"11 (m.k.s.
units). Show that this corresponds to a value for the mean square radius of each
electronic orbit in the helium atom of l-22o§, where a = 0-528 X lO"10 metre is the
radius of the first Bohr orbit in the hydrogen atom.

8.2. If the mutual repulsion of the two electrons in the helium atom is neglected,
the wave function of each electron in the ground state is

^=(Z»/iwS)*exp(-&/a ),

where -ei/)2 is the density of electronic charge at a distance r from the nucleus,
and Ze is the effective charge of the helium nucleus. Show that this wave function
leads to a value for the mean square radius of each electronic orbit of

r2 = 3a%/Z*.

Verify that agreement with the value of 1 -22ag in the previous problem is obtained
ifwe take Z as about 1-6 (we should expect it to be less than 2 because each electron
partially shields the other from the field of the nucleus).

8.3. When 23-15 g ofNiCl2 are dissolved in 100 g water, the density ofthe solution
is 1255 kg/m3

. Show that the maximum height of a column of the solution which
can be supported by magnetic force when one surface ofthe column is in a uniform
induction of 1 weber/metre2 is 3-0 mm.

(Susceptibilities oflkgofNiCl
2 and water are -f 0-438 x lO"6 and — 0-0090x 10"8

respectively; volume susceptibility of air = + 0-4 x lO"6 (m.k.s. units).)

8.4. The susceptibility of a gramme mole of NiK2(S04 )8,6H2 is found to be
1-6 10~5 T~l

. Assuming that the diamagnetic contribution is negligible, and that
the only paramagnetic contribution comes from the Ni++ ion, calculate the size
of the permanent dipole moment on each Ni++ ion.

(Answer: 3-0 x 10-23 ampere-metre2
.)

8.5. An iron anchor ring of large mean radius R and uniform cross-section has a
gap of thickness d cut in it. It is wound with a single layer coil. Over the range
under consideration the permeability of the iron is (1+ a/H), where H is the field
in the iron. Show that, ifd < R, four times as much power is required to maintain
a field 3a in the gap as is required for a field 2a.

8.6. It was shown by Rayleigh that at low values of the magnetic induction the
hysteresis loop with tips at B , H and —B , —H is described by the equations

B =
nfj. H+ $a(Hl- ff2

) (upper half of loop)

and B =^H— JafflJ-H*) (lower half of loop),

where fi = BJ[i H . Show that the energy loss per cycle represented by the area
of the loop is W = iaHl

in each unit volume of the substance.

This relation is valid only for low values of B (in iron below about 0-05 weber/
metre2

). At high values W varies approximately as B\6
, an empirical law due to

Steinmetz.

851110 Q
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8.7. Deduce equation (8.20), by the use of equivalent magnetic shells and integra-

tion of equation (5.55), or from integration of the magnetic induction due to the

'free poles' (polarization charges) on the surfaces of the cones.

8.8. An air-cored solenoid of length 21 is constructed from n equally-spaced

Bitter pancakes each of thickness t, inner radius a, outer radius 6, and resistivity

p. If w is large, and W is the power supplied, show that the field H at the centre

is approximately
„ [ Win 1* b{l+(l*+a*)l}
~ l&nPp loge(b/a)\

ge a{l+ (I*+ 62)i}

'

Note that this is of the form (W\/pr)$ times a factor depending on the shape

of the solenoid (as given in § 8.5), since A = nt/2l.

8.9. It was shown by Maxwell that stresses are present in the magnetic field which

can be represented by a stress tensor similar to that in the electrostatic case (§1.7)

if E, D are replaced by H, B respectively. Show that the force equation (8.25) can

be obtained by considering the stresses on the end of the specimen.



ALTERNATING CURRENT THEORY

9.1. Forced oscillations

In § 6.3 we considered the transient currents which flow when a capaci-
tor, initially charged, is allowed to discharge through a circuit con-
taining both inductance and resistance, and found that an oscillatory
current of decaying amplitude flowed through the circuit provided that
the resistance in the circuit was not too high. The theory of such
transients is due to Lord Kelvin, and its correctness was verified by early
experimenters. With the invention of the dynamo and, later, the
electronic vacuum tube, it became possible to produce continuous
alternating currents whose frequency of oscillation may be anything
up to about 1011 c/s. In the simplest case the form of the current is

that of a simple sine wave, and may be written as

/ = I cos cot,

where / is the value of the current at time t. The maximum value of /
is J0> known as the 'amplitude' of the current, and the frequency of
alternation is /= (»/2w) o/s. The current generated by a dynamo or
other device may or may not have a simple sinusoidal wave form, but
whatever the actual wave form it may be resolved by Fourier analysis
into a sum of sine and cosine terms whose frequencies are integral
multiples of the fundamental frequency. This frequency is given by
the inverse of the period between instants at which the whole wave
form is repeated. Since the behaviour of a circuit is in general different
at different frequencies, it is necessary to consider each component of
such a Fourier series separately, and in the theory that follows we shall
assume that the wave form is sinusoidal, varying at one frequency only.
Except in non-linear circuits where the behaviour of a circuit element
depends on the size of the current or voltage applied to it (i.e. elements
in which the amplitudes of current and voltage are not linearly propor-
tional to one another) any non-sinusoidal fluctuations may be resolved
into their Fourier components, and the required solution is simply a
sum of such components.

In the circuit of Fig. 9.1, a voltage V cos cot is applied to an inductance,
a resistance, and a capacitance in series. If / is the current flowing at
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any instant, the e.m.f. set up in the inductance is —L(dljdt), and the

voltage drop across the capacitance is qjC, where q is the charge on the

capacitor. We have therefore for the circuit

F cos cot- L(dI\dt)-q\C = EI

or L^+ BI+q/C = V cosojt. (9.1)
at

^UM^ VAAMWr

©r\J) V = V cos mt
+1

Fig. 9.1. Forced oscillations in a circuit containing L, C, R.

Now the rate of increase of the charge on the capacitor dqjdt = I, the

current flowing, and hence by differentiation we have

L
'S
+B

Ti+^
=z dVjdt = -wFo sinaj*-

(
9 - 2)

This is a differential equation whose solution consists of two parts.

The first of these, known as the Complementary Function, is found by

solving the equation obtained by setting the right-hand side equal to

zero; that is, it is a solution of equation (6.27), and hence is of the form

given by equation (6.28). This solution represents a transient flow of

current produced by the act of applying the e.m.f. V cos cot, it being

assumed that this starts to act at the instant t = 0. In all practical

applications this transient current decays rapidly in amplitude, owing

to the exponential term exp(—tR/2L) and becomes negligible within a

few seconds or less of the circuit being closed. If conditions are such

that the transient current is oscillatory, its frequency is the natural

frequency determined by the values of L, G, and R, and not that of the

applied e.m.f.

The second part of the solution is known as the Particular Integral,

and for equation (9.2) it may be written as

I = {V IZ)coa(ujt-cf>), (9.3)
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where Z = Ir2+Ll U^ (9.4)

and the phase angle
<f>

is given by

tan
<f>
= L>L L j Ir. (9.5)

This is also known as the 'steady state' solution, since it gives the

current flow at any time after the transient current has become negli-

gible. The frequency of the current is the same as that of the applied

e.m.f., so that the circuit is in 'forced' oscillation. In general the phase

of the current is different from that of the applied voltage, except when
coL—1/ioC = 0. This occurs when

to = to = 1/V(£C), (9.6)

and hence is the same as the angular frequency of natural oscillation

of the circuit in the absence of any damping resistance. The circuit is

then said to be in 'resonance', and the amplitude of the current is, by
equations (9.3) and (9.4), a maximum.
The quantity Z in equation (9.4) is called the impedance ofthe circuit,

and at resonance the value ofZ is just equal to R, the total resistance in

the circuit. At other frequencies the value ofZ is related to the quanti-

ties R, L, and C, but is not given by the simple additive relation that

holds (§ 3.4) for resistances in series. The reason for this is that the

voltages across the different elements are not in phase, and the total

voltage amplitude is therefore not just the sum of the individual ampli-

tudes. In the following sections we shall see how this difficulty can be
overcome by the introduction of complex numbers to represent the im-

pedances. The use of such complex impedances enables us to apply

Kirchhoff's laws (§ 3.4) to alternating current (a.c.) networks, and we
can find the steady-state values of the current and voltage in any branch
without having to solve a differential equation.

An important consideration in a.c. circuits is the rate of doing work.

At any instant the rate W at which work is done by the generator in

Fig. 9.1 is

W = VI = (V cosa>t)x(V IZ)cos(a>t— j>)

= (VlJZ){co&2cot cos $+cos cat sin cot sin cf>}.

To find the mean rate W ofdoing work, this expression must be averaged

over one or more periods of oscillation. Now the mean value of cos^cot

averaged in this way is just \, while that of cos tot sin cot is 0. Hence the
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mean power drawn from the generator is

W = l(V^Z)oos<f> = FoV°s<£ = mZcosj,, (9.7)

where 7 = V/Z is the amplitude of the current given by equation (9.3).

Prom equation (9.5) it is readily shown that coa<f> = BjZ, and the ex-

pression for the mean power can therefore be written

W = mB. (9.8)

Now the mean rate at which power is dissipated in the resistance of the

circuit is the average value of BIq cos2(cot —<f>) taken over a complete

period, and this is just equal to £jRi|. Hence all the power delivered by

the generator, averaged over a period, is dissipated in the resistance of

the circuit. The term in cos cot sin cut in the expression for VI represents

work done by the generator in increasing the energy stored in the in-

ductance and capacitance; since the product coscofsincof is as often

negative as positive, this work is returned to the generator in other

parts of the cycle and no mean power is drawn from the generator for

this purpose in the steady state. Of course, power was drawn from the

generator initially to provide the stored energy, and this is represented

by the transient current; when this has decayed, the mean stored energy

remains constant and no further work is done by the generator on the

average except to supply that dissipated in the resistance.

Since the rate at which power is dissipated is proportional to the

square of the current, it is convenient to specify the root mean square

value I of the current, denned by the fact that

(J)« = <!*>,

where the average of the square of the current is taken over a whole

period. The root mean square value of the voltage V may be defined

in a similar way, (F) 2 = <F2
>. If the wave form is sinusoidal, the root

mean square value is just (1/V2) times the amplitude, and we can write

equation (9.7) as

W = (P2/Z)cos<£ = VToos<f, = PZ cos<£ (9.9)

and the ratio W/Vl = cos<£ is called the 'power factor' of the circuit.

It represents the fraction of the product Vl which is dissipated as

Joule heat. If the circuit behaves as a pure resistance, as occurs when

the resonance condition (9.6) is fulfilled in the circuit of Fig. 9.1, the

power factor is unity, while ifthe circuit contains no resistance the power

factor is zero.

The general practice in a.c. circuits is to specify the root mean square

values of the current and voltage, and it should be understood that
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any values quoted are root mean square values unless the contrary is

specifically stated.

9.2. Use of vectors and complex numbers
The values of the voltage across the individual components of the

circuit in Fig. 9. 1 will now be considered in more detail. For this purpose
we assume that a current I = 7 cos<u« flows through them all in series,

as in Fig. 9.2. The voltages across the three circuit elements are:

across R: V = IB = BI cos wt

across L: V = L(dlldt) = —a>LI smwt = u)LI Gos(wt+lir)

across C: V = qjG = (l/ojC)/ sinw< = (llwC)I cos{cot-\-n)

where in the last case we have used the relation q = f I dt. It will be
seen that the voltage across the resistance is in phase with the current,

Ia cos <ot

a/wvwm—nnm^
Fig. 9.2. Current I flowing through R, L, G in series.

the voltage across the inductance leads the current in phase by 90°,

while that across the capacitance lags behind by 90°. We may represent
these voltages by vectors such that, if the voltage across the resistance
is represented by a vector drawn parallel to the x-axis, that across the
inductance is represented by a vector parallel to the «/-axis, and that
across the capacitance by a vector parallel to the latter but in the
opposite sense. The lengths of the vectors are proportional to R, wL,
and I/wC, respectively.

Ifwe require the voltage across two of the elements, say the resistance
and inductance, it may be found by adding the two individual voltage
vectors together, as in Fig. 9.3 (a). For the total voltage will be

V = IR+L(dI/dt) = BI coscot—ojLI 3inwt

= I {B2+co2L2)icoa{cot+<f>) = I Zcos(o}t+<l>), (9.10)

where tan^ = ojL/R. From Fig. 9.3 (a) it will be seen that (R2+o, 2L2)i

is just the length of the hypotenuse of the triangle, while the phase
angle

<f>
is just the angle between the vectors jB and (R2+w2L2

)*. Thus
the magnitude of the total voltage is represented in amplitude by the
hypotenuse, and its phase relative to the current is given by the angle
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through which this vector is rotated with respect to R. Similarly it can
be shown that for a resistance and capacitance in series the total voltage

may be found by adding the vectors R and — (l/o>C) as in Fig. 9.3 (b),

while the case of a resistance R, inductance L, and capacitance C all in

series is represented by Fig. 9.3 (c). Here the amplitude of the resultant

vector is {R2+(coL— IjoCff, which is just the value of Z (equation

(9.4)) and the voltage leads the current by the phase angle
<f>,

where

tan<£ = (<oL—llo>C)IB,

as in equation (9.5). The term 'impedance' has already been introduced
for Z, which represents the ratio of the amplitude of voltage to current

Fig. 9.3. Vector diagram for impedance, (a) B, L in series ; (b) B, G in

series
; (c) B, L, C in series. The voltage vectors are the samo as the im-

pedance vectors if the current is represented by a unit vector parallel to if.

for the whole circuit. The quantities coL and IjcoC associated with

inductance and capacitance respectively are known as reactances, and

are usually denoted by the symbol X. Thus the total reactance of the

circuit of Fig. 9.2 isX = (wL— 1/coC), and the impedance is given by the

vector sum of R and X, represented by mutually perpendicular vectors.

Thus Z = (R2 -\-X2
)
i

, and the phase angle is given by tan<£ = X/R.

The vector representation of the impedance is similar to the repre-

sentation of a complex number on the Argand diagram. Using the

relation smt „„_ t , „•„•.„ f

where J
2 = — 1, we may replace our cosine and sine functions by com-

plex exponentials on the understanding that we are interested only in
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the real or imaginary parts respectively. Then we may write the current
I cos iot as i ^(e»co

<), and quantities such as dl/dt or q = j I dt become

dl/dt = I (d/dt)cosa)t = I 3l(jeiA = 7 «(jW^)

and q = I j cos cot dt = I @( j e1°* dt\ = I ml— &A

respectively. Hence the total voltage across the circuit of Fig. 9.2 is

V = BI+L{dIldt)+(ljC) j Idt

= (£e'«l+ja>Lei°*+~e?al)l
\ JcuC j

"

= (R+frL+^I. (9.11)

If the current is I cos cut, then to find the voltage we take the real part
of (9.11). Thus

V = I £%lJi cos oot-\-jR sin tot+jcoL cos <ot—wLsincot—

1 \ . \—^COS£u<-| -SUldli
cuU cjC j

= I \R cos u>t—wLsixx(x)t -\—-sinajn,
\ a>C J

where the three component terms are just the voltages across the three
circuit elements derived at the beginning of this section. Similarly, if

the current had been 7 sin tot = I Jf{e^), the voltage would be found
by taking the imaginary part of (9.11), giving

V = I \R sin wt-\- coL cos a>t cos cot).

\ wC j

The importance of equation (9.11) lies in the fact that it shows we
may represent the inductance and capacitance by impedance operators
jojL and IJ(jojC) respectively, and these operators may be added to one
another when the elements are in series in a similar way to resistances.

The phase ofthe voltage, which leads the current by |ir in the inductance
and lags by \n in the capacitance, is taken care of by the presence ofj.
If, as is usual in the Argand diagram, real quantities are represented
by vectors drawn parallel to the z-axis, and imaginary quantities by
vectors parallel to the y-axis, then the complex impedance operator is as
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shown in our vector diagram Fig. 9.3(c). The circuit impedance is given

by the modulus of the complex impedance operator, and the phase

angle by its argument. If we write the impedance operator as

Z = B+jaiL+J-, = R+jX = Zett
JOiU

then Z = (i?2+X2
)*, and tan<£ = X/B, as before. Then

V = ZI = Zeitl J" = ZI e**+*>.

If / = /„ cos a)t, the real part of this gives V = ZI cos(cot-\-<f>), as in

equation (9.10). If, on the other hand, the voltage is given as V coaa>t,

as in § 9.1, the current is found by taking the real part of

I = P/Z = V e^'l{Ze^) = (VolZ^W-fr,

which gives / = (VIZ)cos(cot— <£),

as in equation (9.3).

From an extension of the treatment given above it may readily be

shown that the impedance operator for a circuit consisting of a number
of impedances Zx , Z2,..., Zn in series is

Z = Zx+Z2+...+Zn . (9.12)

The corresponding formula for a number of impedances in parallel is

found by noting that the voltage across each is the same. The current

through the impedance Zk is VjZk , and the total current is the sum of

a number of similar terms. Hence the net impedance is given by

When a number of elements are in parallel it is generally convenient to

work in terms of the reciprocal of the impedance, known as the admit-

tance Y. Thus I = F/Z = YV, and equation (9.13) may be written as

Y = Yi+YH-.-.+Y,,. (9.14)

In general Y is complex; thus Y = G-\-jS, where O is called the con-

ductance and S the susceptance. For the three simple circuit elements

we have conductance = 1/B; susceptance of an inductance is

S = (jwL)-1 = —jl(wL); susceptance of a capacitance is S = ju>C; but

note that for a circuit containing both resistance and reactance these

simple reciprocal relations do not hold. For

Y = 1/Z = 1HB+JX) = (B-jX)l(IP+X*),
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so that T=\Y\ = |Z-i| = Z-\ but

G = */(JP+X») = Foob^, 5 = -Z/(U«+Z») = -Fain*
and similarly

B = G/(G*+S*) = Zcos^, Z = -SJ(Q»+S*) = Zsin^

(9.15)
In order to calculate the power consumed in a circuit we must use

the relation W = <%{V} x ®{I); note that this is not the same as ®{V1)

(a)

<uC

Fig. 9.4. (a) Imperfect capacitor with conductance G, repre-
sented by capacitance C shunted by resistance R = I/O;

(6) corresponding admittance diagram.

for ^{V ^xVj<ot}x®{I exVj(cot-<f,)}^V coS clitXl coS(cot-<f>), which
does not equal_^{Fo 7o exPi?-(2^-0)} = F / cos(2co*-<£). However, the
mean energy W dissipated is given by any of the relations (where f
and I are the root mean square values)

W = V2@{Y} = V*Q = V*BJ(B*+Z*)

= Pa{Z) = PR = PG/(G*+S*), (9.16)

as can be verified by comparison with equation (9.9).
The unit ofreactance and impedance is the same as that of resistance,

the ohm; when o> is expressed in radians/second, L in henries, and G in
farads, the corresponding reactances are in ohms. Similarly, the unit
of admittance and susceptance is the same as that of conductance, the
reciprocal ohm, or mho.
We may illustrate the use of admittance by considering the case of

a lossy condenser, represented by a pure capacitance C shunted by a
resistance R, as in Fig. 9.4 (a). The admittance operator is

Y = (lfB)+jwC = G+joC.
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This may be representedby the admittance diagramshown in Eig. 9.4(6).

The phase angle of the admittance is given by tarn/- = u>C\G = ojCB;

by use of equation (9.15) or by plotting the corresponding impedance

diagram it is readily shown that tan^ = -tanf so that ijj - -<j>.

Hence the power factor cos<£ = cos,/, = (l+o^-R2)-- For a perfect

capacitance, as for a perfect inductance, the power factor is zero; in

practice this is not quite true, since at radio frequencies power is lost

through eddy currents in the plates and imperfections in the dielectric.

The latter are caused by hysteresis effects which cause the vector D to

lag behind the vector E in the dielectric as in the corresponding case

of B and H for a ferromagnetic substance. The quality of a dielectric

is expressed in terms of its 'loss tangent', tan 8, where

§ = 477— >p = frr+<f>;

hence tanS = cot0 = -cot<£ = G/(o>C) = (wCB)~K

In an oscillating electric field the hysteresis loop is traversed once per

cycle, so that the loss conductance G is proportional to the frequency.

The value of tan 8 should therefore be independent of frequency, and

this is generally true except for strongly polar dielectrics (see Chapter

17); for a good dielectric, such as quartz, the value of tan S is about 10 4
.

9.3. Tuned circuits

The circuit of Pig. 9.1 consisting of an inductance, resistance, and

capacitance in series is known as a 'series resonant' circuit. The im-

pedance operator is z = B+j(coL-ll<oC), (9.17)

and, as pointed out in § 9.1, the modulus of this has a minimum value

if the frequency is adjusted to make coL = 1/oC. This is the resonant

frequency of the circuit, given by equation (9.6)

At this frequency the current through the circuit is a maximum and is

in phase with the applied voltage, since Z is real; the magnitude of the

current is V/B. The voltage across the resistance B is thus equal to the

voltage across the whole circuit, and the voltages across the inductance

and capacitance are therefore equal and exactly 180° out of phase with

one another, making the voltage across the two zero. The voltage across

the capacitance alone at resonance is

V = II(ja> C) = VI(jco CR)
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and hence, using (9.6),

\VCJV\ = K CB)~i = LJL =°^=Q, (9.18)

where Q is the 'quality factor' of the circuit as defined in § 6.3. It is

also known as the 'circuit magnification factor', since from equation

(9.18) we see that it equals the ratio of the voltage across the capacitor

to the voltage across the whole circuit. Thus the tuned circuit acts as

a transformer; since the current through the capacitor is a maximum
at resonance, the ratio of the voltages VcjV is also a maximum at this

point. The voltage across the inductance L is equal to that across the

inductance at resonance, but in general R is associated with L and
only the voltage across the combination (B-\-jcoL) can be measured in

practice.

The behaviour of the circuit at frequencies near resonance is of

particular interest. The reactance of the circuit changes rather rapidly

in this region, passing through zero at the resonant frequency because
two rather large quantities, a>L and l/(a>C), cancel at this point. For
frequencies near resonance we may write a> — co +Sa> and then the

impedance operator becomes

Z = R+jL L+8wL 1
-
Ti+~) = B+2jSwL, (9.19)

since l/(cu| C) = L. On introducing Q, this may be written

Z = B{l+ 2j{8w/a> )Q} (9.20)

and the impedance is

Z - Jfl-Hfl^y. (9.2.,

showing that if a given current flows through the circuit, the voltage

across the circuit rises by a factor V2 when the frequency deviates from
the resonant frequency by a fraction 8co/w = ±1/(2(2). Similarly, if

a given voltage is applied to the circuit, the current through it falls to

1/V2 of its maximum value when the frequency deviates by this amount;
the power dissipated in the circuit falls to one-halfof the maximum, and
these points are therefore often referred to as the 'half-power' points.

The form of equation (9.21) shows that the variation of impedance with
frequency gives a curve of universal shape but whose spread in frequency
is determined by the value of Q. Since in general the ratio of \VC |

to \V\

is (coCZ)-1
, the voltage step-up obtained falls sharply away on either

side of the resonance point. Thus the circuit is selective in its response
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to signals of different frequency; its 'selectivity' is determined by the

value of Q since Q is the ratio ofthe resonant frequency to the difference

of frequency between the two half-power points:

Q = a> l(2Sco)=f l(28f).

A plot of the amplitude of the current in a series resonant circuit when
a signal of given voltage but varying frequency is applied to it is shown
in Fig. 9.5. Since the voltage across the capacitance Vc = Ij{o>C), and

(///max)

2

• >Wlf,)

Fig. 9.5. Variation of current in series tuned circuit near resonance.

near resonance the variation in / is very much more rapid (if Q is large)

than that of co, the voltage step-up obtained is also given to a good
approximation by a curve of the same shape as in Fig. 9.5.

The approximation used in the deduction of equation (9.20) is that

Sco/ajg <^ 1. At frequencies where this approximation is not valid, the

variation of Z still follows a universal curve, since we may write

z = r[i+jq(x
-1)}, (9.22)

where x = (o>/w ) = (/// ). Since the reactive part of the impedance

varies as 2Q(8co/cu ) near resonance, the current falls to quite small

values before the approximation Sto/w <^ 1 becomes invalid, provided



9 -3] ALTERNATING CURRENT THEORY 239

that Q is fairly high. In an ordinary tuned circuit the resistance is that
of the wire used in winding the inductance coil; if we use a larger in-
ductance in order to increase the value of Q at a given frequency, the
resistance goes up and so does the self-capacitance between the different
parts of the coil. The latter sets up an upper limit to the size of the coil
since at some point the coil will resonate at the desired frequency with-
out any external capacitance, because ofits self-capacitance. As a rough
guide one may take the Q of a coil designed to resonate at an audio-
frequency as about 20; at frequencies of the order of 1 Mc/s a Q of 100-
200 may be obtained; at frequencies of 109 and 1010 c/s where tuned

/W0^fP—vvwwwv

r

Fig. 9.6. Series resonant circuit with lossy capacitor.

transmission lines and waveguide cavities (see Chapters 11, 14, and 15)
are used instead oflumped circuits, values of 1000 to 10 000 are obtained
for Q. Thus in most radio work with tuned circuits equation (9.20) is

a good approximation.

Hitherto we have assumed no loss in the capacitor; ifwe include some
loss the circuit becomes that shown in Fig. 9.6. The impedance operator
is now

Z = B+JwL+
jw0+1 ir

= B+ja>L+{r-ja>Cr*)l(l+co2C*r2
).

If the power factor of the capacitor is small, wCr > 1, and the im-
pedance operator is approximately (cf. Problem 9.3)

Z = B+jaL+iafi&r^i-jftaQ. (9.23)

Thus the resonance frequency is unaltered in the first approximation,
but the resistance of the circuit is increased. The value of Q is now
given by

\}Q = {l*+KC«r)-i}/KZ) = J*+J— = 1/^+tanS,
a>Q L o) Ur "

where QL = co LjR is the Q of the circuit due to the loss in the induc-
tance alone. Since for a good capacitor tanS < 10~3

, while for lumped
circuits with inductive coils (as distinct from transmission line circuits)

UQL « 10-2, loss in the capacitor can generally be neglected.
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Parallel resonant circuits

A parallel resonant circuit consists of a capacitance shunted across

an inductance+resistance, as in Fig. 9.7. The admittance operator for

the circuit is

1 . „ . R—joLY=jwC+
B+jwL JcoC-

R*+a>*L*
(9.24)

Fig. 9.7. Parallel resonant circuit.

We will define the resonance point for this circuit as the point at which

the admittance is real. Then, equating the imaginary terms to zero

§ives Ri+aAL?- = L\C (9.25 a)

(9.25 b)and hence a>.H^t
£2+0^2 = L/C

)

=
(lc) (

1_
^)

2
'

J?2C\

while the admittance at this point is

Y = Rl(R*+a>%L*) = RC/L = ll(Q*R). (9.26)

We see that the resonance frequency is not quite the same as in the series

tuned circuit, but the difference is small and can usually be neglected if

Q is large (if Q = 100, the fractional difference in w is \ 10"4
). Because

of this difference, the alternative formulae co L/R and l/(w CR) for Q
are not exactly equivalent to (LjCflR, but they are a good approxima-

tion if Q is large. The reciprocal of the admittance at resonance is called

the 'parallel resistance' of the circuit, and is equal to Q 2R without any

approximation.

The definition of resonance as the point at which the admittance is

real is to a certain extent arbitrary, but is very convenient to use; it has

the further advantage of being unique. The admittance of the circuit

at this point is very small, but is not necessarily aminimum . Ifresonance

is defined as the point at which Y is a minimum, then the resonance con-
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dition depends on what is being adjusted to make Y a minimum. If the
capacitance is altered, and other quantities are kept fixed, then, by
differentiating Y = |Y| with respect to C, it can readily be shown that
Y is a minimum when the value of the capacitance satisfies equation
(9.25 a). On the other hand, if L or the applied frequency is altered,
slightly different resonance conditions are obtained; the fractional dif-
ference is, however, only of order 1/Q*, and so can be neglected if Q is

large. The calculation involved in finding these resonance conditions by
differentiation is very tedious in comparison with the simple device of
setting the imaginary part of Y equal to zero, and the simple definition
of resonance as the point at which the circuit has unity power factor
(i.e. the admittance is real) has many advantages.

It is useful to have an approximate expression for Y near resonance
similar to equations (9.19-21) for the series resonance circuit. Writing
(a = to +Sa>, we have from equation (9.24)

RG= ~jj {l-2So,(a> CL)}+2j8a> C*La>l

where we have used equation (9.25 a). In the term of order So, we may
put oi\LO = 1, giving

*-£(>-^}+*-"
In general the small change in the conductance can be neglected, so that

Y = (RC/L)+2jSa>C = (RC/L){l+2jQ(8co/w
)}, (9.27)

showing that the behaviour of the admittance near resonance for the
parallel resonant circuit is similar to that of the impedance of the series
tuned circuit. The selectivity is the same in that Y rises by a factor V2
when the fractional deviation of the frequency is

(Wo) = (W"o) = ±i/(2<2).

Thus the current drawn from the voltage generator is a minimum at
resonance (apart from the small corrections which can be neglected when
Q is large). The current in each of the arms is larger than that drawn
from the source by a factor nearly equal to Q. Thus the ratio of the
current through the capacitance to that drawn from the generator is

\W = K CV)I(ROVIL) = o> LIB = Q (9.28)

in our approximation; this relation is complementary to that given by
851110 E
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equation (9.18). That equation showed that the series resonant circuit

can be used as a tuned transformer where the output voltage across the

condenser is larger by a factor Q than that injected in series with the in

ductance. The impedance measured at the output (e.g. by finding tho

current drawn from a generator applied across the capacitance as in

Fig. 9.7) is Q2R at resonance (by equation (9.26)) whereas the impedance

ofthe series tuned circuit is R. Thus the ratio ofthe impedances is Q2
, the

square of the voltage ratio. This, which is a characteristic of all trans-

formers, can be seen as follows: if we apply a generator of voltage V
to the series tuned circuit, the current drawn from it is /; to have the

same current flowing through the capacitance in the parallel resonam;

circuit formed from the same elements, we must apply a generator o:^

voltage QV across the capacitance, and the current drawn from it will

be IjQ. The power dissipated in the circuit is VI, the same in each case

The importance of the quality factor Q in determining the properties!

of a resonant circuit can be readily appreciated from the following sum

mary. For a simple resonant circuit as considered hitherto

:

(a) Q = (LIC)ijR » w L/R « K CR)~H

(6) Q is equal to the voltage step-up obtained by using the circuit asp

a tuned transformer;

(c) the parallel resistance is Q2 times the series resistance;

(d) the fractional frequency difference (2S/// ) between the points at

which the impedance or admittance changes by a factor V2 is IJQ ;

(e) Q = it/A, where A is the logarithmic decrement of free oscillations!

in the circuit (see § 6.3);

(/) in forced resonance,

Q _ (u X (stored energy)

rate of energy dissipation

This last relation can be used to define Q in more complicated resonant

circuits, and in other resonant systems such as waveguide cavities (see

Chapter 11) where the values of L, C, R cannot be specified. For the

series resonant circuit of Fig. 9.2 it is readily shown that this definition

agrees with that in (a) above. For the stored energy at any instant ifi

tLP+tfrC = \LIl cos^o<+Ki?/K C)}sina
c«i *

= \LI% at resonance,

while the mean rate of energy dissipation is \RI%. Hence

Q = co ($LnmRIt) = co LIR.
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9.4. Coupled resonant circuits

Two circuits are said to be coupled together if they have a common
impedance. The impedance may be a resistance, inductance, or capaci-
tance, and may be a part of each circuit, as in the example shown in
Fig. 9.8(a), or connected between the two circuits as in Fig. 9.8(6).

-WVWWW

©' h A

R, c2

AWWAAAr

Fig. 9.8. Types of coupled circuits
: (a) with common impedance (C8) ; (6) with impedance

(C3 ) connected between them.

Two circuits may also be coupled together if one ofthem is in an electric
or magnetic field set up by the other; for example, the oscillating mag-
netic flux due to a coil in one circuit may induce a voltage in a coil in
the second circuit, so that there is a mutual inductance between the two
circuits.

In Fig. 9.9 two resonant circuits 1 and 2 are coupled together by a
mutual inductance M between the coils L

x and i2 . The voltage ^
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applied to the first circuit produces a current Iv and this induces a voltagB

Midljdt) in the secondary circuit. For a simple sinusoidal wave form

this voltage may be written as joiMIx , where jatM is the impedance

operator for the mutual inductance. Similarly, if 72 is the current in thB

Fig. 9.9. Two resonant circuits coupled by mutual inductance M.

secondary, a voltage j<i>MI2 will be induced in the primary. Thus for

the two circuits we have

(9.29)
Vx = I^+joMIA
= /2 Z2+iaJif/J'

where Zv Z2
are the impedance operators for the primary and secondary

circuits in the absence of the mutual inductance. On eliminating I2 wp

have
/ M2]Lf2\

Vi = Ji(zi+^)- (
9 - 3^

The quantity (w2M2jZ% ) is called the impedance 'reflected into ths

primary circuit'. For the secondary circuit, elimination of Ix gives

jioM
Vx {*>+*& (9.31)

zx

-i ~v a z

showing that the current flow is that produced by an apparent voltagb

— (joolf/ZJTi working into Z2 plus the impedance 'reflected into ths

secondary circuit' (o>
2ilfa/Z1 )

To investigate the behaviour of the primary circuit impedance ih

more detail we write Zx
= R^jX^ Z2

= R2-\-jX2 . Then

VJI,. = i?1+jX1+a,WV(i?2+jX2)

^B^B^M^KRl+XD+JiX^X^M^KRI+Xt)}
= Rp+jXp . (9.3^)
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The current and voltage in the primary are in phase ifXp is zero. This
requirement is satisfied if Xt = X2

— 0, and in the following analysis

we shall assume that the elements of the primary and secondary circuits

are the same, so that R± — R2 , Zx
= X2 at all frequencies (the latter

implies Lx = L2 , Cx
= C2). Then Xp is zero when either

X = or!2 = a>*M2—R2
. (9.33)

The second of these conditions can be fulfilled only if wM > R. If

i»M = R, the three roots are identical, and if wM < R only one real

root exists.

The significance of these three roots becomes apparent when we
examine the behaviour of the secondary current. When

Xx = X2
= X = 0,

from equation (9.31) we have

2
R*+coZM*'

(9"H)

where co = (ItC)-* is the resonance frequency of either circuit by itself.

If we can vary the mutual inductance M, then the value of I2 at this

frequency rises asM is increased from zero, passes through a maximum
value of —JVJ2R when a) M = R, and then falls again. At the maxi-
mum the impedance reflected into the primary from the secondary is

just equal to R, so that the secondary circuit is 'matched' to the primary
circuit, and the power dissipated in the secondary circuit is a maximum
at this point. From equations (9.30) and (9.34) it can be seen that the
currents in the primary and secondary circuits are both equal to VJ2R
at this point, but they differ in phase by \tt.

At the second two points given by equation (9.33) where the effective

primary impedance is real, the secondary current is

2 Z»+oAJf» R2-X2+<o*M*+2jRX

_ —jaiMVj^ _ —joMVx
~ 2R*+2jRX ~ 2R(R+jX)'

where we have used the condition given by equation (9.33). Hence

1/ | = ™MVi _A
1 2I 2R(R2+X2)* 2R'

These results show that when the circuits are 'over-coupled' (ojM > R)
the secondary current rises to (VJ2R) at the second two points given
by equation (9.33), while it has fallen below this value at the point
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X — 0. The primary circuit impedance is purely resistive at all three >

points, but only at the second two points is it equal to 2B, as can bo
seen by substituting in equation (9.32). Thus the secondary current isi

a maximum at these two points because the secondary circuit is agair.

'matched' to the primary circuit.

The general behaviour of the secondary current is shown in Fig. 9. 10

where the degree of coupling is specified in terms of the 'coefficient o:'

coupling' defined by equation (6.14) as

when the two circuits are identical.

[VJiB)\-

(9.35

-0.04 o

W.
+ 0-04

Fig. 9.10. Secondary current in the circuit of Fig. 9.9

for two identical circuits each with Q = 100. Critical

coupling occurs at h — 0-01.

The critical condition ia M = R then occurs when the coefficient of

coupling has the value

k = SI(cj L) = 1IQ. (9.36;

The curves in Fig. 9.10 are drawn for Q = 100, and coefficients of

coupling of 1c = $k , k , and 2k respectively. The first curve is similar

to an ordinary resonance curve, but the current is always less than the

maximum possible value VJ2R. The second curve has a single peak ir

the centre, but the peak is decidedly flattened because of the three

coincident roots. As soon as k > k we have two side maxima in the

current with a central minimum. As k/k increases these peaks move
outwards and the trough in the middle deepens. When Q is large

and the frequency is close to resonance we may write X ~ 2ScuL, anc
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equation (9.33) gives for the separation 28/ of the peaks

(Wo) = (28«K) » {|J--|L)* = (k*-l!Q*)i = (*»-*5)».

(9.37)

Although identical circuits have been assumed in this analysis, the
behaviour of any pair of coupled circuits whose natural resonant fre-

quencies are the same is similar. Thus for two circuits with the same X
but different Bv Rz , optimum coupling occurs (for X = 0) when

a> M = {R1 B2
)i {k = 1I(Q1 Q2

)i}

and the secondary current is then VJ2{B1 R2)K Side peaks occur when
the coupling is greater than this value, and the secondary current at
these peaks is Ty(-R1+.R2), which is less than the optimum. The values
of the effective primary impedance are 2i?x when the coupling is opti-
mum and X = 0, and (i?!+i2

2) at the side peaks when the circuits are
over-coupled.

Coupled circuits have an important application in the reception of
radio signals when it is desired to accept a narrow band of frequencies
and reject frequencies outside this band. Thus in broadcast reception
of sound a uniform response over a band of about 9 kc/s width is re-
quired with total rejection outside, so that the ideal response curve
would be rectangular in shape. By the use of tuned circuits with rather
more than critical coupling a response curve with steep sides is obtained,
and the slight dip in the middle can be compensated by the use of some-
what under-coupled circuits (with a central peak) elsewhere in the
receiver. In a tunable receiver of this kind a constant bandwidth is
required independent of the central frequency. This cannot be achieved
by mutual inductance coupling alone, for equation (9.37) shows that
the bandwidth is then proportional to the central frequency. A combina-
tion ofmutualinductance couplingtogetherwith capacitance coupling as
in Fig. 9.8 (a) may be used to give a more or less constant bandwidth, for
the coupling through the capacitance decreases with frequency, because
of the fall in the impedance common to the two circuits.

9.5. Low-frequency transformers

The coupled resonant circuits discussed in the last section may be
regarded as a tuned transformer; they are used as such at radio
frequencies where the effects of stray capacitance can be reduced by
making it part of the tuning capacitance. At low frequencies (such as
those of power supplies) effects of stray capacitance are small, and
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transfer ofpower can be made very efficiently by use of the transformer

whose principle was mentioned in § 6.2. It consists of two coils, the

primary or input coil of nt turns, and the secondary or output coil ofn
turns, which are closely wound together on an iron core so that all the

flux due to one coil passes through the other. In practice there is always i

a small leakage of flux, so that not all the flux of one circuit passes i

through the other. Then the transformer may be represented by the

circuit of Fig. 9.11, where Lv L2 are the self-inductances of the primary

h h

Pig. 9.11. Circuit diagram of transformer with loaa Z
2 .

and secondary windings, and M is the mutual inductance between

them. An alternating voltage Vx of angular frequency a> is applied to

the primary in series with an impedance Z1; and the secondary is con

nected to a load impedance Z2 . Then, if the primary and secondary

currents are I± , 72 , the equations for the primary and secondary circuits

are
K = (Z14>2*)i1+>Jf/,

(9.38)
= (Z^+jcoL^+jcoM^ •

These equations differ from (9.29) in that the self-inductances Llt L 2

are not included in the impedances Z1; Z2 because their reactances an?

normally very much larger than any other impedances in the circuits-

Alternate elimination of I2 and Ix between these equations gives ths

following formulae for the primary and secondary circuits

rji;^ z1+jcoi1+c w7(z2+jcoi,2 )
(9.3d)

and -(MJLJVJI, = Z^+Z^LJL^+M^-M^L,), (9.40)

where in the second equation a term Zx Z^KjcoLj) has been omitted

since it is an order of magnitude smaller than Z2 .
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For a perfect transformer, there is complete coupling between the
two coils, so that M2 = Lx L2 . Since the self-inductances are propor-
tional to the squares of the number of turns, the turns ratio n = {L2jLtf,
and with complete coupling we have also n = MjLx

= L2jM. Hence,
assuming Z2 < w£2 , from equation (9.39) the primary impedance Zp
may be written

V*lh = Z„ = Zi+ja.i1+a>
2Jf2(Z2-jwL2)/(Zl+a>

2i|)

» Z1+Z2(ifVil)+ja,(i1-Jf2/L2) = Zi+Zj/n*. (9.41)

The current in the secondary circuit is the same as that due to an e.m.f.

—(MJL^Vl = — iiT^ working into an impedance Zg , where

Z, = Zt+Z1 n*. (9.42)

These equations show that for a perfect transformer on load (Z2 < wL2 )

the inductive terms such asjwi^—M2/^) are exactly zero when there
is complete coupling between the two coils. The effect of the secondary
circuit on the current in the primary is represented by the additional
impedance Z2/n

2
, known as the 'reflected impedance'. In the secondary

circuit the effective e.m.f. is —nV
x> with an apparent internal impedance

Z^n*. Hence the impedances are transformed by n2 while the voltages
are transformed by n; the current transformation ratio is l/», so that
the power on the two sides is the same (T^ Ix = Y% I2), as we should expect
for a perfect transformer with no losses.

In practiceM2 is slightly less than LxL2 because not all the flux from
one circuit passes through the other, and we writeM = k{Lx L2)*, where
k is the coupling coeflicient defined by equation (6.14). It is useful to
derive an equivalent circuit for the transformer, and in order to include
the case where Z2 is of the same order of magnitude as <oL2 , we rewrite
the expression for the primary impedance (equation (9.39)) in the follow-
ing way

zp = 7^+jv.,r,
i
(i_i.)

|

",*,
£i-£'«+j<tf.M(Zt+jMz,t)

_Z2+joL2

The last term may be written in the form

ia.ti1{Z2+jo1(l-i)i2}
^Z2+jw(l~k)L2}+jcjkL1 n2 '

since in the denominator jcokL^—jwk^ = 0. The last term is now

[
1 n2 |-i

which is equivalent to two impedances in parallel. Hence the primary
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circuit may be represented by Fig. 9.12. Here (1

—

k)L1 is the 'leakage

inductance' due to the imperfect coupling, and the impedance on tho

extreme right is the reflected impedance of the secondary, which is in

parallel with the remainder of the primary inductance.

h
Z,

(l-fc)£i

©r\j)yr kLt
2

2+jw(l— lc)L2

Fig. 9.12. Equivalent circuit of primary of imperfect transformer.

na = LJLi; h = MI(Lx Lt%

n'fa+jcoil - lc)LJ

h(\ - fc)L„

r\j^-i»r1

Fig. 9.13. Equivalent circuit for secondary of imperfect transformer.

For the secondary circuit, since MjL1
= k(L2fL-^ = kn, we have,

from equation (9.40),

-hnVJl, = Z,+n«Z14j7i>.£,(l-ife)+ja»(*£l
-Jtf'2

/-&i)

= Z2+n2{Z14>Z1(l-fc)}+jw£2 £(l--&),

which is represented by Fig. 9.13. The reflected impedance is the

transformed value of Zx plus the primary leakage inductance L^l—k),
while the secondary leakage inductance is, apart from a factor k, just

that which appears in series with Z2 in the impedance reflected in the

primary. If k is close to unity, this approximation is a good one, for the
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leakage inductance will be small compared with Z2 except for very small
values of Z2 . The equivalent circuit of the transformer can be drawn
as in Fig. 9.14, where the centre portion enclosed in the dotted rectangle
is regarded as a perfect transformer. The resistances rx and r2 are the
resistances of the windings, which previously we have regarded as part
of Zx and Z2 . The resistance B in parallel with kLx allows for the dissi-

pation of energy through hysteresis and eddy currents in the iron core.

Fig. 9.14. Approximate equivalent circuit of imperfect transformer.
rlt r„ resistances of primary and secondary windings.
^.resistance equivalent to hysteresis and eddy current losses in iron core.
The portion within the dotted rectangle is regarded as a perfect transformer

of turns ratio n.

The prime requirements in a transformer are therefore a high primary
inductance, to keep the 'magnetizing current' through hLx in Fig. 9.14
small, and the smaUest possible leakage of flux between primary and
secondary. These requirements are fulfilled by winding the primary and
secondary round an iron core whose magnetic circuit is completed by
a yoke, as in Fig. 9.15. If the two coils are interwound the leakage is
reduced to a minimum, but if good insulation between primary and
secondary is required they may be wound side by side.

In transformers the magnetic material is subject to an alternating
magnetic field so that the hysteresis loop is traversed once every period
of the alternation. From equation (8.26) this requires the expenditure
of energy, the amount per cycle being just equal to the area enclosed by
the hysteresis loop. This loop should therefore be as thin as possible (or,
roughly speaking, the coercive force must be small). A soft magnetic
material is therefore required (see § 8.4), and ideally the permeability



252 ALTERNATING CURRENT THEORY [9.

P primary winding.

5 secondary winding.

should be high and constant, with the area of the hysteresis loop zerc

,

so that the B-H curve is a straight line of high slope through thj

origin. Alloys of iron with a few per cent of silicon approach this ideal

more closely than pure iron, and are

used in power transformers for supply

frequencies. For small transformers and

other uses at higher frequencies, more

expensive alloys requiring lengthy heat

treatment give improved performance,

For example, an alloy of about 78 per

cent nickel and 22 per cent iron (perm

alloy), if slowly cooled from 900° C and

then rapidly cooled from 600° C, gives

Fig. 9.15. Construction of iron-cored
an initial permeability of nearly 10* and

transformer. a maximum permeability of nearly 10 '.

laminated iron core and yoke. Another alloy (supermalloy) with the

composition 80 per cent nickel, 15 per

cent iron, 5 per cent molybdenum, aftt r

heating in very pure hydrogen at 1200° to 1300° C, gives initial and

maximum permeabilities some ten times higher. These high perme-

abilities are accompanied by very low values of the coercive force

~ 4 A/metre for permalloy and 0-3 A/metre for supermalloy.

Another effect of the alternating magnetic flux in the core is to seet

up induced voltages and produce power loss through eddy current!

The core is therefore constructed of very thin laminations, insulated

from each other, and oriented so that the insulation lies across the path

of the eddy current. This is therefore constrained to flow within tie

lamination, and the losses are reduced (see Problem 9.14). In this

respect the special magnetic alloys mentioned above have the further

advantage of a high electrical resistivity. At radio-frequencies (105-108

c/s) the use of magnetic cores also reduces the size of inductors and im-

proves the coupling between the coils of transformers; such cores are

made either from fine metallic powders mixed with insulating binde-s

or from magnetic oxides ('ferrites') which are themselves electrical

insulators.
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PROBLEMS
9.1. A resistance R, inductance L, and capacitance G are connected all in parallel.

Show that the admittance of the circuit at frequencies near resonance is

Y = l/R+2jBcoC.

If R = 3 x 105 ohms, L = 10-3 henries, O = 100 fifiF, calculate the current in

each arm when a voltage of 10 V r.m.s. at a frequency of 0-5 Mc/s is applied, and
the phase of the total current drawn from the generator.

(Answers: 0033, 318, and 314 mA; 51°.)

9.2. A circuit is required to accept a signal of frequency 1-1 Mc/s and to reject

a signal of frequency 1-2 Mc/s. A coil of self-inductance 200 /xH and resistance

10 ohms is tuned to parallel resonance at 1-2 Mc/s by a capacitance Gx . A capaci-

tance G2 is then placed in series with the combination, so that the whole is in

series resonance at 1-1 Mc/s. Find the values of Ct and C2 .

(Answers: 88 and 16 /a/zF.)

9.3. Show that a capacitance C shunted by a resistance r is equivalent to a capaci-

tance C in series with a resistance R at any given frequency. If cuCr ^> 1, show
that approximately R — (co^Ch-)-1, and C" = G.

9.4. Four impedances Zlr Z2, Z3, Z4 , in that order, are placed in the arms of a
'generalized' Wheatstone's bridge using alternating current. Show that the

balance condition is 7/77 /7

Note that this is really a double balance condition, since the real and imaginary
parts of this equation must be separately satisfied. This isbecause a null reading

is obtained on the detector only if the voltages at each of its terminals are equal

both in amplitude and phase.

9.5. The four arms of a Wheatstone's bridge, taken in cyclic order round the

bridge, are a, b, c, d. a and b are equal resistances R; c is a resistance R in series

with a capacitance G; d is a resistance jR shunted by a capacitance G. Show that

such a bridge will not be balanced at any frequency, but that if the resistance in

arm 6 is doubled, a balance will be obtained at a frequency

/ = (2nRC)~\

9.6. A capacitor of capacitance C, a resistance r, and a coil whose inductance is

L and resistance is R, are connected all three in parallel. An e.m.f. of variable

frequency is applied across the capacitor. Show that the frequency of parallel

resonance is independent of the value of r, and prove that the parallel resistance

of the combination is rL/(L~{-RrC).

If the Q of the circuit is high, show that it is given approximately by

I_i Ik**!Q~ r*JG
+M

>JL-Q

9.7. A series resonant circuit is connected across a constant voltage generator

operating at 6-50 Mc/s. As the capacitance is varied, the current is observed to

fall to 1/V2 of its maximum value when the capacitance is 12-47 fifiF, and again

when the capacitance is 12-64 /x/*F. Find the values of Q, L, R for the circuit.

(Answer: « 150; 48 juH; 13 ohms.)
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9.8. An alternating voltage is applied to the terminals A, B of the network shown
in Fig. 9.16. Show that, as R is varied, the amplitude of the potential difference

between the terminals X, Y remains constant, but its phase is shifted byn radians
Explain your results by means of a vector diagram. (This network is commonly
used for producing a variable phase shift without change ofthe output amplitude.

9.9. A high frequency transformer has primary inductance 100 fiH. and primary
resistance 5 ohms, secondary inductance 2-5 X 103 /xH, and secondary resistance
100 ohms. If the coefficient of coupling Jlf/(i

x i2
)i is 0-9, show that at high

frequencies the voltage across the secondary is approximately 4-5 times tha;
applied to the primary.

Ifprimaryand secondaryare each separately tuned by capacitors to resonancea ;

60 kc/s, show that the high frequency power required to produce an r.m.s. voltago
of 2000 V across the capacitance in the secondary circuit is approximately 650W

X Y

B
•-

Fig. 9.16. Phase shift network (see Problem 9.8).

9.10. A wire-wound resistance has a small inductance and self-capacitance which
may be represented by placing an inductance L in series with the resistance R,
and shunting the combination by a capacitance C. Show that the reactance at
low frequencies is zero in the first approximation if the wire is wound so that
L/C = i?a . Show also that under these conditions the apparent resistance is (to

the second approximation) „,. . !r
_.

9.11. An inductance L with small resistance r has self-capacitance which can be
represented approximately by a capacitance C shunted across the series com-
bination of L and r. Show that as the frequency increases the apparent self-

inductance of the coil is increased by the factor {l+co2LC) while the apparent
series resistance increases by the factor ( 1 -f2w2LC), in the region where (o*LC< 1

9.12. A parallel plate capacitor is filled with a medium which has a dielectric
constant e and a conductivity a. Show that at a frequency/ = co/2it the power
factor of the capacitor is cos^ = sin 8, where the loss tangent of the dielectric
medium is given by the relation tan 8 = cr/We .

Note that this is independent ofthe shape of the capacitor, as would be expected
from equation (3.11).
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9.13. A 100 V dynamo is connected to a magnet whose resistance is 10 ohm and
self-inductance 0-1 henry. Show that the percentage increase in the heating of
the magnet caused by the presence of a 100 c/s ripple voltage of 5 V amplitude
in the output of the dynamo is 0-0031 per cent.

9.14. The iron core of a transformer has laminations of thickness o and resistivity

p; it is subject to a sinusoidally varying induction with a maximum value B and
frequency/. Show that the power loss per unit volume (neglecting skin effects,

see Problem 10.13) due to eddy currents is approximately w*B'ay»/6p. If a = 0-1

mm, p = 4x 10-' ohm-metre, B = 0-5 weber/metre3
, and/ = 50 c/s, show that

the power loss is approximately 2-6 X 10~5 W/em3
. Compare this with the power

loss through hysteresis, if the energy dissipated per cycle for permalloy at this
induction is 200 ergs/cm3. ;

(Answer: Hysteresis loss = 10-3 W/cm3
.)
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ELECTROMAGNETIC WAVES

10.1. Maxwell's equations of the electromagnetic field

So far we have considered the propagation of electrical currents iln

material conductors. The possibility of the propagation of an electro

magnetic wave through space was first suggested by Faraday, and this

suggestion was confirmed by the work of Maxwell. Maxwell was ah e

to show that the laws of electromagnetism could be expressed in tie

form of some fundamental equations which, with an important modi
fication, lead to a differential equation whose solutions represent trans

verse waves travelling through free space with the velocity of light

Further work showed that the properties of these waves—reflection

refraction, diffraction—are the same as those established experimental y
for light waves, and we are therefore justified in assuming that they a::e

identical, and that light waves are a form of electromagnetic radiatiox

The theory of Maxwell deals entirely with macroscopic phenomena
making the assumption that matter is continuous and has no atomistic

structure. This assumption places certain limitations on the theory

thus it offers no explanation of the phenomenon of dispersion—the

change of refractive index with frequency. This phenomenon will be

discussed in Chapter 17; it arises from the change in the dielectiic

constant and magnetic permeability ofa medium with frequency. These

changes can be related to the effect of electromagnetic waves on the indi

vidual electrons in an atom, but for the present we shall regard tie

dielectric constant and magnetic permeability as macroscopic quantities

whose values are obtained by experiment.

The fundamental laws of electromagnetism which have already bem
derived may be summarized as follows:

(a) the theorem of Gauss applied to electrostatics (equation (1.20))

divD = p; (lOJl)

(6) the corresponding result for magnetic fields (equation (5.24)):

divB = 0; (10|2)

(c) Faraday's and Lenz's law of electromagnetic induction (equation

curlE=-^; (10
8t

3)
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{d) Ampere's law for magnetomotive force (equation (5.21)):

curlH = J'. (10.4)
The reason for writing J' rather than the ordinary current density J

in this last equation is as follows. Since (div curl) of any vector is
identically zero, it follows that equation (10.4) implies that div J' is zero.
If we had written J instead of J', we should have had divJ = 0, and
this conflicts with the equation of continuity (3.3) which gives

dlvJ = -W <
10 -5>

This equation represents the law of conservation of charge, and is con-
firmed by all experiments. Maxwell realized that the difficulty arose
from an incomplete definition of the total current density in equation
(10.4), which is not entirely given by the current flow due to the motion
of electric charges. By using equation (10.1) we may write (10.5) in the
form

p,

divJ = T* (divD) = div(—sD/et),

or div(J+KH-
(10.6)

Hence if we define J' as J' = J _u—T
dt'

then divJ' = 0, and Ampere's law takes the form

curlH = J+^ = (TE+^. (10.7)

The term J is generally called the 'conduction current' and the second
term (dD/dt) the 'displacement current', since it arises when the electric
displacement D is changing with time. We may obtain some physical
picture of what is implied by the displacement current by considering
a simple circuit such as in Fig. 10.1, where a current J is flowing from
a battery to charge a capacitor C. Ifwe apply Ampere's law to a closed
circuit such as LMNL which encircles the wire we find that f H.ds
round this circuit is just equal to /. In defining the current which
threads the circuit we must take some surface bounded by the circuit,

and integrate the normal component of the current density crossing
this surface. Ifwe take a surface intersecting the wire, this clearly gives
just I, the current in the wire. But if we take a surface which passes
between the two plates of the capacitor, then

J J .dS = 0, since no con-
duction current flows through the surface. The value of this integral
should be independent ofwhat surface we choose, since f H .ds depends

851110 S
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only on the circuit bounding this surface; thus it is clear that we have

omitted some contribution. If for simplicity we take a parallel plate

capacitor with plates of area A, surrounded by a guard ring, the field

in between the plates is uniform, and the displacement D has the value

Fig. 10.1. Application of Ampere's law to calculate the magneto-

motive force JH.ds round the circuit LMNL for the case of a

current I charging a capacitor C.

D = q\A, where q is the total charge on the positive plate. Then th|e

total displacement current between the plates is

A(8D/8t) = Bqjdt = J

and our difficulties with the surface integral of the current density

disappear if we include the displacement current.

For the case ofan infinite homogeneous medium of dielectric constant

e and magnetic permeability /x, containing no free charges (p = 0) an|d

having zero conductivity (o- = 0), our equations become

divD = div(€€ E) = ee divE = 0, (10.*)

divB = div(/^ H) = /^ divH = 0, (10.0)

curlE = — dB/dt = —upoiBHIdt), (10.10)

curlH = dD/8t = eeo(0E/0t). (10.1 J)
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These form a set of simultaneous partial differential equations whose

solutions can be found by ehminating one of the dependent variables,

E or H. This can be done by means of the vector identity

curl(curlE) = grad(divE)—

V

2E = —

V

2E (using equation (10.8)).

Then V2E = — curl(curlE) = curl^eH/St)

= Wo! (curl H) = Wo«oW«^). (10.12)

Similarly it may be shown that

V2H = Wo ee (a2H/8«2). (10.13)

These two equations are each of the general form for a wave motion
in three dimensions; ifthe velocity with which the waves are propagated

is v, the general wave equation is

where X is some scalar or vector quantity. Comparison with our case

shows that the wave velocity must be

»=(Wo«o)-* (!0-l4
)

with the particular value in free space (ju. = 1, e = 1) of

c = 0*o to)"*- (
10 - 15)

Now the value of fi has been denned as 4n 10~7
, while the best value

of e is that of Rosa and Dorsey (see § 7.4) : this leads to a wave velocity

of our electromagnetic waves in free space (see Birge, 1941) of

299 784± 10 km/sec.

Within the experimental error this is the same as the velocity of light

determined by direct measurement, and it is now accepted that light is

a form of electromagnetic radiation, of the same form as radio waves,

heat waves, X-rays, and y-rays, which differ from light waves and from
each other only in frequency and wavelength. The frequency range is

from 104 to 1011 c/s for radio waves to 1020 c/s and over for y-rays.

Maxwell's theory does not give an adequate account of the interaction

ofelectromagnetic radiation with atoms, and it has been found necessary
(for example, in the photoelectric effect) to consider the electromagnetic

energy as travelling about in 'packets' or 'quanta', which are indivisible.

The size of a quantum for radiation of frequency v is hv, where h is a
universal constant known as Planck's constant. For radio waves such

quantum effects are too small to affect the interaction with matter

seriously, and we shall not consider them further at present.
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Ifwe accept the identification of our electromagnetic waves with light

and radio waves, then we may use one of the accurate methods of deter-

mining their velocity (see § 15.6) to infer the value of the constant e
,

since this gives a more accurate value than the direct comparison of

a capacitance and resistance. The value thus obtained is given in

Appendix B.

Equation (10.14) shows that the velocity of the waves in a material

medium is less than in free space, since

V = c/(ju,e)*.

For a light wave the velocity in a medium is v = c/n, where n is the

refractive index of the medium. Hence we have

n = (fie)K (10.16)

In using this equation we must remember that it applies only if we
determine the values of n, /a, and e at the same frequency, and non-

sensical results may be obtained ifwe use values determined at different

frequencies. Thus, for water the optical refractive index is 1-33, but
the static values of e and

fj,
are 81 and 1, leading to a refractive indes

(for very low frequencies only) of 9! This is one of the more glaring

examples of the misuse of equation (10.16) to compare values deter-

mined at different frequencies, to which we shall return in Chapter 17

10.2. Plane waves in isotropic dielectrics

In order to examine the behaviour of the electric and magnetic fields i

in more detail we shall consider the case of a plane wave. For simplicity

we assume that this is moving in the direction of the x-axis of a set of

right-handed Cartesian axes, x, y, z. Then the definition of a plane wave
is one in which the quantities have the same value over any plane

normal to the direction ofpropagation; mathematically this is expressed

by setting all partial differentials with respect to the y- and z-coordinateu

(i.e. djdy and 8\8z) equal to zero. If these conditions are put into thu

equations (10.8) and (10.9) we find that

8Ej8x = 8Hj8x = 0,

and from the ^-components of the curl equations ((10.10) and (10.11)1)

We have
8Ej8t = 8HJ81 = 0.

This shows that apart from a uniform steady field in the x-direction

which is not part of any wave motion, both Ex and Hx must be zero

The wave is therefore purely transverse in that no components of thj

electric or magnetic fields exist in the direction of propagation. Th
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remaining components of the curl equations are, taking the cc-com-
ponents ofE and H to be zero, and 8\8y = 8j8z = 0,

-8Ej8x = -Wo BHJdt, -BHJdx = ee 8Ey\8t,

8EJ8X = -w 8HJdt, 8HJ8x = eeQ 8Ej8t.

These equations show that the z-component of E is associated with the
y-component ofH, while the ^-component ofE is associated with the z-
component of H. The two components of E or H correspond to waves
which are plane polarized in directions normal to one another and normal
to the direction of propagation. Thus we have two linearly independent
solutions, in each of which the magnetic field is normal to the electric
field. They differ only in the plane ofpolarization, which we shall take to
be that of the electric vector; this differs from the convention accepted
in light before the electromagnetic nature of the radiation was under-
stood, which adopted the plane now known to be that of the magnetic
vector. The electric vector is more important in the theory of dispersion
(Chapter 17) as it determines the force on an electron in an atom.

Since we need consider only one state ofpolarization, we shaU take the
solution where the electric vector is paraUel to the y-axis; it then follows
that the magnetic vector has only a component parallel to the z-axis.
The wave equation for E

y (equation (10.12)) becomes

82Ey 8*Ey n-^-m«o-^ = o, (io.i7)

which has a general solution of the form

Ev = Fifr-vt)+F2(x+vt), (10.18)

where Fx ,
Fz may be functions ofany form. The two functions represent

waves travelling with velocity v, whose value is given by equation
(10.14). Fx represents a wave travelling in the direction of a; increasing,
since any given point in the wave moves according to the equation

x = vt-\- constant,

while F2 is a wave travelling in the opposite direction, a given point
moving as x = —vt+ constant.

We may find the value ofH
z by using one ofthe remaining components

of our curl equations. For

8HJ8x = - eeo 8Eyj8t = e^viF'^x-^-F^x+vt)},
where F' is the differential of F. Hence, since v = (ee ^ )-i, we find
on integration

Hz = KWK(^-rf)-^+rt)}. (10.19)



262 ELECTBOMAGNETIC WAVES [10.2

This shows that the value ofHz bears a constant ratio to E
y
in each of

the travelling waves, but has the opposite sign for a wave travelling to

the left. The ratio ofE
y
to Hz in a plane wave is often useful, and it has

been called the 'intrinsic impedance' Z of the medium. In our case of

a non-conducting medium, where the wave velocity is v,

Z = EyjH, = (/W«o) } = Wo»- (10-20)

For a plane wave in free space Z = (ju. /eo)*
=

/
Lto c = (

e
o c)

_1
> an(i ^s

value is approximately 376-7 ohms. The fact that the dimensions of ZQ

are the same as those of the impedance discussed in earlier chapters is

readily seen from the relations

jH.ds = /, jE.ds = F,

where V is the potential drop in a conductor; it appears also from the

fact that E is measured in volts/metre and H in amperes/metre. The

fact that the intrinsic impedance is a real quantity independent of x or

t shows that the wave form of Hz is everywhere the same as that of

Ey , without any phase difference, in a travelling wave. This is true only

of a non-conducting medium. Another important restriction is that the

wave velocity must be independent of frequency if the wave form is to

remain the same as the wave progresses. If it is not (i.e. if we have

a dispersive medium) we must perform a Fourier analysis of the initial

wave form and treat each component of a given frequency separately.

In the remainder of this chapter we shall assume that we are dealing

with waves of one frequency only, and our field components are the real

or imaginary parts of the exponential functions of the form

e^{j(x>{t±xjv)}.

Then the general solution for waves travelling both to the right and to

the left will be

Ey
= J.exp{jco(<—xjv)}+A' exp{ja){t+xjv)}

(10.21)
Z H2

= Aen-p{ja)(t—xlv)}—A'es.-p{ja)(t+xjv)}

The exponentials are sometimes written in the forms exp{jw(<±wa;/c)}

or expj(aot±fix); /? is called the 'phase constant', and is equal to 2irj\

where A is the wavelength in the medium. The phase velocity v is given

by the relation
v =^ (10 22)

It might be thought that a phase constant 8 should be included in one

of the waves in equation (10.21), since otherwise some particular choice

of zero is implied for either x or t which makes 8 = 0. We shall, however,
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allow A' (or A) to be complex, and of the form A"exp(j8), and thus
include the phase constant in A' rather than in the complex exponential.

10.3. The Poynting vector of energy flow
Since an electromagnetic wave consists of electric and magnetic fields,

we may expect that stored energy is associated with these fields. If the
energy density for which we now use the symbol U is given by the
equations derived for static fields, then for a plane wave in an isotropic
dielectric it will be

U = ftD.E+B.H) - ^E^+WoH2
).

For a wave propagated in the positive z-direction, the energy crossing
unit area per second will just be the velocity times the energy density.
This is

= i(EllZ +Z Hl) = EVHZ
= El/Z = Z Hl

These various relations show that the energy stored in the magnetic
field is just equal to that in the
electric field. If we denote the rate K
of energy flow by a vector N whose
direction is that of the energy flow,

then for this case we may write

Nx = EyHe ,

or in vector form, since Ey , Hz , andNx
form a right-handed triad of axes
(Kg. 10.2),

N = EaH. (10.23)

The vector N is known as the Poyn-
ting vector, and we see that the
direction of energy flow is reversed
for a wave travelling in the opposite

direction because the phase ofH rela-

tive to E is reversed (see equations

(10.21)). The value of N gives the
instantaneous rate of energy flow. In a periodic wave the values of
E and H at any point are oscillating functions of the time, and the
mean rate of energy flow is found by averaging N over a complete
period. If E and H are given as root mean square values, then N as
computed from (10.23) gives the mean energy flow.

— (.r-axis)

N

Fig. 10.2. Directions of the electric and
magnetic fields E and H and the Poyn-
ting vector N for a plane wave propa-

gated in the a-direction.
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The Poynting vector is of greater significance than might be thought

from the way in which it has been introduced above, and we shall now
derive it for the general case. Suppose there is a region of space where

an electric field E causes a current flow of density J. Then the power
dissipated per unit volume is E . J, and the total power dissipated will be

j E .J dr = j (E . curl H) dr- j E . (SD/8t) dr,

where we have substituted for J the expression given by equation (10.7)

Now, using the vector identity

div(EAH) = H. curlE—E. curlH
and the expression for curl E given by equation (10.3), we find that the

power dissipated is

-
J"
E . (0D/8O dr- j H . (8BlSt) dr- j div(E A H) dr.

Normally the permeability p and dielectric constant e do not vary with

time, and the first two terms may be written as

-iiJa>.*+B.H)*

while the last term may be transformed into the surface integral

- J*(EAH).dS

taken over the surface bounding the volume under consideration. Hence

the rate at which the field does work may be equated to the sum of twc

terms, the first of which we interpret as the rate at which the energy

stored in the electromagnetic field diminishes, and the second as the

rate at which energy flows into the volume under consideration. Thus

wetake ftD.E+B.H)

as the density of the electromagnetic energy, in agreement with our

earlier results, and the vector

N= EaH
as the rate at which energy flows across unit area of the boundary

Strictly speaking, only the integral of N over a closed surface has beer

shown to represent the energy flow, but in most cases N does represent

the flow of energy per unit area at each point. An obvious exception

to this would be the case of a region with an electrostatic and a static

magnetic field arising from different sources, but Problem 10.12 shows:

that the Poynting vector can be used in the case of a steady current
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flowing in a circular wire, where both electric and magnetic fields are
associated with the current flow.

10.4. Plane waves in conducting media
In a medium with a finite conductivity a the field equations are the

same as (10.8-11) except for the additional term +&E on the right-hand
side of equation (10.11). These equations may be solved quite generally
in the same way as in § 10.1, and elimination ofH gives the differential

equation

An exactly similar equation holds for H, and it may be shown that each
of these equations represents a damped wave motion where the ampli-
tude decays as the wave progresses owing to the extra term in 8E/8t or
BKjdt. We shall not pursue this general solution, but specialize to the
case of a plane wave travelling parallel to the #-axis. Then all partial
derivatives (8j8y) and (8j8z) vanish, and the same methods as used in

§ 10.2 show that both Ex andHx are zero, so that we again have a purely
transverse wave. Ifwe assume that we have a plane polarized wave with
a single component ofE parallel to the y-axis, the field equations reduce
to

8Ey\8x = -w (8HJdt)

~8Hj8x = eeo(8Ej8t)+aEv
j'

^^
These equations show that, as before, Ey is associated withHz . (There is

an independent solution, polarized in the perpendicular direction, where
Ez is associated withHy .) Elimination ofHz would give a wave equation
for E

y of the same type as the general equation above, but a simpler
method of solution is available on assuming that we are dealing with
waves ofa single frequency. It will appear that the velocity ofpropaga-
tion is now dependent on the frequency, so that it is necessary to con-
sider each frequency separately in any case; we therefore introduce this
restriction at the beginning, and take E

y and Hs to vary in time as
exp(jail). We will also try a solution where the variation with x takes
the form of a complex exponential, so that both Ey and Hz vary as

exp{jw(t-nx/c)},

where n is a complex refractive index. Then our equations become

ja>(n/c)E
y
= ja>wQHz

\

Mn/c)Hz = (ja>eeo+„)Ey )'
(1°,25a)
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1

Elimination ofE
y orHs shows that these equations are satisfied provided

that
n* = ^-^a/i/ceo), (10.26)

where we have substituted (/* € ) for 1/c2 .

To separate the real and imaginary parts ofn we write it as

n = n—jk, (10.27)

. . n2—
ifc
2 = ae )

giving ^
. (10.28i

nh — (<rju./2oje ) J

To understand the significance of n and h we note that the wave iu

propagated as

exp{jcu(t—nxjc)} = exp(—wkxlc)exp{ja>(t—nxjc)},

showing that the value of k determines the rate at which the amplitude

of the wave decays (k appears in the argument of the real exponential)

while n determines the wave velocity in the medium. Thus a complex:

refractive index n means that the wave is being absorbed as it proceeds,

because the finite conductivity of the medium gives rise to a power losu

through the Joule heating. The solutions we have given above apply

to a wave proceeding in the positive a;-direction; for a wave in the re

verse direction we reverse the sign of n, and hence of both n and h.

The intrinsic impedance of our medium is defined as Ey\Ez, so that

Z = c/Wn =
f

m% )*. (10.291

Thus the impedance is a complex quantity, but is independent of x or t

This means that the ratio of the amplitudes of Ey and Hz is everywhere

the same, but there is a phase difference between them. Since also

z = cnnojn+jk)

(w2 +jfc2
)

we see that the phase difference
<f>

is given by the relation tan<£ = kjn.

The full solution of equations (10.28) to find n and h gives rather

complicated expressions, but these simplify greatly for the case ofa good

conductor. For a metal the conduction current is enormously greater

than the displacement current at all frequencies up to those of ultra

violet fight, as will be seen by comparing the values of a and (coee
)

which occur in the second of equations (10.25 a). For most metals a is

107 (ohm-metre)-1 or greater, while for fight of wavelength 5000 A
(a>ee ) « (4X 1016 X 8-85 X 10~12 X e) « 3-5 X 104e. We do not know what
is for a metal, but provided it is not very much greater than the ordinary
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values found in dielectric substances, the displacement current even for

visible light will be much smaller than the conduction current. For
lower frequencies the inequality increases, and a good approximation
is obtained by omitting the displacement current. This is equivalent to
setting e = 0, and equations (10.28) then give

n = k = (ff/i/2o>e )*.

If we introduce a quantity 8 such that n == k = (c/wS), the field com-
ponents in the metal are propagated as

exp(—xl8)expj(wt-xl8), (10.30)

from which it can be seen that 8 has the dimensions of a length. S is

known as the 'skin depth', and the amplitude of the wave falls to 1/c of
its initial value in a distance 8, while the apparent wavelength in the
metal is 2tt8. The equation for 8 is (writing w = 2nf)

8 = (%aa)fifj, )-l = {irafftfi^ (10.31)

and the intrinsic impedance of our metal can be written as

Zo = (l+i)/(o«) = (l+j)(P[8), (10.32)

where p is the resistivity. The magnitude of the skin depth decreases
with the inverse half-power of the frequency, and of the permeability
and conductivity of the metal. An idea of its order of magnitude is

obtained from the fact that for copper it has the approximate values:
6-6 X 10-3 cm at a frequency of 1 Mc/s, 6-6 X 10-5 cm at 104 Mc/s (a
wavelength of 3 cm), and 2-7X10-7 cm at 6xl08 Mc/s (green light).

Thus the wavelength of the radiation in the metal is very small com-
pared with the wavelength in free space; and Z is also much smaller
than the value for free space (for copper it is about 0-026(1 +j) ohms at
10* Mc/s).

10.5. The skin effect

Since an electromagnetic wave varies in phase very rapidly inside a
metal, one must ask whether this affects the distribution of alternating
current inside a conductor. An electromagnetic field is associated with
such a current, and Problem 10.1 shows that there is a flow of energy
into the surface of a conductor which is just equal to the energy dissi-

pated as Joule heat. This implies that an electromagnetic wave is passing
through the surface, and from what has been found about the behaviour
of such a wave we should expect it to be very rapidly attenuated inside.
The current associated with it would therefore flow only in a thin skin
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of thickness of the order of 8, a phenomenon known as the 'skin effect'

For steady currents co = and S = oo, so that the current distribution

would be uniform, but as the frequency rises 8 decreases and the current

is increasingly confined to the surface. For this reason thin tubes aro

just as good conductors of high frequency currents as solid rods, bu;

the resistance is of course higher than for a steady current in a solid

rod owing to the smaller effective cross-section. We will now compute

the high frequency resistance of a wire. Neglecting displacement cur

rents, and writing J for o-E in equation (10.24), we have

V2J = ijl/j, a(8JI8t) = jcofj,fi crj (10.33)

for a current oscillating with frequency (w/27r). For a cylindrical wiri

we should express the operator V2 in cylindrical coordinates and the

general solution involves Bessel

functions with a complex argument

The values we have found for 8 in

copper show that at high frequencies i

it will ordinarily be small comparer

with the radius a of the wire. In

this case we may obtain an approx

imate solution by neglecting the>

curvature of the surface of the wiro

and regarding it as a thintubewhich

can be split and unrolled to form ar.

infinite flat strip of width 6 = 2-na

in which a current flows parallel to

the surface of the strip in the long;

direction. If (as in Fig. 10.3) wo
take this direction as the j/-axis anc.

the normal to the surface of the

strip as the a;-axis, then the current

density has a component aEy in tho

2/-direction which varies with a; and t as given by equation (10.30), so

that Jy = J
r

exp(—x/8)expj(a^-x/8),

where J is the current density at the surface of the wire (x = 0). Thii

equation shows that the current changes phase as we move into the wiro

as well as decreasing rapidly in amplitude.

To find the effective resistance R per unit length of the wire we must

calculate the total current / flowing in the strip at any instant and tho

A
Fig. 10.3. Current flow at surface of

cylindrical strip opened out to flat strip

of width b — lira.
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power dissipation per unit length W, and set W = %\I2 \R. Now
CO 00

I = b j Jy dx = bJ exv(jut) f exp{— (l+j)x/8}a!x
o o

=
(l4^)

exP^) =
^2

b8Jo^VJ(^t-i7r).

This expression shows that the total current has a different phase from
J

;
we require to know only the amplitude of the total current whose

squareis
\p\ = mJo?.

The instantaneous power dissipation per unit volume ofthe metal is pJ2
,

and hence the total average dissipation per unit length of the wire is

a> oo

W = b j iP |JJ| dx = \bPJ% f exp(-2xl8)dx = \bphJ*,
o o

where p is the resistivity of the wire. Hence the effective resistance per
unit length of the wire is

B = 2W/ \I2
\
= P/(bS) = Pl(2naS). (10.34)

This equation shows that the resistance is the same as if there were
a current J of uniform density flowing in a thin tube of radius a and
thickness equal to 8, and the reason for the name 'skin depth' is thus
apparent. The high frequency resistance of such a wire is thus greater
than the d.c. resistance by a factor (a/28), when 8<^a.

This type of calculation may be applied to the more general problem
of the power dissipated per unit area of a plane metallic surface when
there is a tangential magnetic field Hs

= H cosu>t at the surface. At
any point in the metal the current density is

Jv = oE
y = aZ Hs = (l+j)HJS (from equation (10.32)),

and hence J = V2# /S. From the above it is readily seen that the mean
power dissipation per unit area is

W = IpUl = \pHlJh. (10.34a)

This is just equal to the average value of Poynting's vector at the sur-
face (see Problem 10.1).

10.6. Reflection and refraction of plane waves at the boundary
of two dielectrics

The reflection and refraction of light waves at the surface separating
two media of different refractive indices is a familiar phenomenon and
we must now inquire whether electromagnetic theory offers a simple
explanation of it. We assume two non-conducting dielectric media,
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separated by a plane boundary which we take to be the xy-plane (the

plane z = 0). We also choose the direction of the a;-axis to be in the

plane of incidence, i.e. the incident ray lies in the plane y = 0, as i i

Fig. 10.4, making an angle 9 with the normal to the boundary. 6 is

known as the 'angle of incidence'. Then all field components of ths

incident wave vary with the space and time coordinates as

exp[ja){t—n^x sin 0-\-z cos 9)/c}],

where c/% is the velocity of the wave in the first medium, and coJ2tt h
its frequency of oscillation.

When the incident wave falls on the boundary there will in general

be both a reflected wave and a transmitted wave. We know nothing

about these waves, either as to their frequency or their direction. Wo
have, however, boundary conditions for the components of E and H
at the surface, and we assume that the behaviour of E and H must bo

the same as derived earlier in Chapters 1 and 5. Hence the tangential

components of E and H must be continuous on the two sides of tho

boundary at all times and for all values of x and y. The first of these

conditions shows that the reflected and transmitted waves must have

the same frequency as the incident wave. Secondly, at all points in the

boundary plane along a fine for which x is constant the field components

of the incident wave are constant in amplitude andphase. Our boundary

conditions can only be satisfied everywhere if this is true also of the

reflected and transmitted waves as well, and they must therefore also

travel in the plane of incidence. The corresponding rays are shown in

Fig. 10.4, making angles 9' and 9" with the normal respectively, known

as the 'angle of reflection' and the 'angle of refraction'. The field com
ponents of the two waves must be propagated as

(reflected wave) exp[j<o{t—^(xsinfl'—zcos#')/c}],

(transmitted wave) exp[ja>{t—

n

%(x sin 0"-fz cos 0")jc}],

where c/w2 is the velocity in the second medium. At the boundary planri

(z = 0), the boundary conditions can only be satisfied everywhere if

the arguments of the exponentials for the incident, reflected, and trans

mitted waves are all identical. Hence

n1xsm9 = nx x sin 9' = n2 xsind",

which gives 9 = 6',

so that the angles of incidence and reflection are equal, and

»i1 sin& = »2 sin^* i (10.35)

which is Snell's law for refraction.
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These laws of reflection and refraction are true not only for electro-

magnetic waves but for all kinds of wave motion, since they depend
only on the assumption that the characteristic quantities involved in
the wave motion (in this case the electric and magnetic fields) shall be
continuous at the boundary.

Fig. 10.4. Reflected wave OB and refracted wave OG at the boundary (z = 0) between
two media. AO is the incident wave, and the electric vectors are in the plane of incidence
as shown. The magnetic vector is parallel to the j/-axis, and hence normal to the plane
of the paper. Ifna > n1( and the permeability of both media is unity, then the direction
of E' is as shown when the angle of incidence is greater than the Brewster angle

tan 1(»^/n1 ), but in the opposite direction when it is less than the Brewster angle.

Intensity relations

In order to obtain the amplitudes of the reflected and refracted waves
we must examine the problem in more detail, and match the amplitudes
of the tangential components of the electric and magnetic fields on the
two sides of the boundary. To do this we must consider the two principal
directions of polarization of the incident wave separately. These direc-

tions are with the electric field in the plane of incidence and normal to
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the plane of incidence respectively. For the former of these there are

components of E parallel to the x- and z-axes, but E„ = 0; the only

component ofH is parallel to the «/-axis. These statements hold for all

the three waves, so that we have (see Fig. 10.4):

Incident wave:

Ex = A cos exp[ja>{t—«1(x sin 0+z cos 0)/c}]

Ez
= —A sin0exp[ja>{<—%(xsin0+zcos0)/c}]

}

(10.36J)

Hy
= (A/Z^ex-plJcolt—»1

(a;sm0+zcos0)/c}]

Reflected wave:

E'x = A' cos exp[j(o{t—

n

x(x sin 0— z cos 0)/c}]

E'z = A'sin.ee^[jo>{t—n^xsinO—zcos0)/c}]
} (10.37J)

#y = — (v4'/-^i)exP[iw{*—%(*sin0—zcos0)/c}]

Refracted wave:

E"x = ^"cos0"exp[jw{«—

W

2(a;sin0"+zcos0")/c}]

££ = —A" sin 0" exp[jw{t—

n

2(a; sin 0"+z cos 0")/c}] } (10.3^)

H"y = (A v
IZ2)ex-p[ja}{t-n2(x sin 6"+z cos 6") /c}]

where Zlt Z2 are the intrinsic impedances of the two media respectively

On making the tangential components of E and H (i.e. Ex and Hv )

continuous at the plane z = 0, we obtain the relations

A cos 6+A' cos = A" cos 6" (10.3^)

and {A-A')\ZX
= A"jZ

2 , (10A&)

, . , . A' Z2 cos8"—Z1 co&d /in ,,kwhich give — = -? — 1 (10.41)

, A" 2Z2 cos0 /^.okand -j- = * „ -. (10.42
^ Z2 COS0"+£1 COS0

V ^

If the media are such that /i
1
= /x2

= 1, as is the case for light of visible

wavelengths, Zx/Z2 = »2/ni
= sin0/sin0", and these formulae can be

written in the form ^ ^ sm 20"-sin20

A sin20"+sin20'
( '

A^_ 4 sin 0" cos

J. ~sin20"+sin20'

The condition that there shall be no reflection (A' = 0) is that

sin 20 = sin 20",

(10.44)
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which is satisfied if 20 and 20" are supplementary angles; that is

0+0" = \n,

so that the reflected and refracted rays are normal to one another.
Using Snell's law, we find that this occurs when

tan<9 = %%\nx . (10.45)

The angle which satisfies this relation is known as the Brewster angle.

Fig. 10.5. Incident wave AO, reflected wave OB, and refracted wave OC at the boundary
between two media. The electric vector is normal to the plane of incidence and hence
normal to the plane of the paper ; the magnetic vector is in the plane of incidence The
theory shows that if n% > nv and the permeability of both media is unity, the actual

direction of H' is opposite to that given in the figure for all values of 0.

The field components of the wave which is plane polarized with its

electric vector normal to the plane of incidence are as follows (see
Fig. 10.5).

Incident wave:

851110

Ev
= BFX

Hx = -(BIZ1)cos9F1
Hz = (BlZ1)sm9F1

(10.46)
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Reflected wave: v, „,„

H'x = (B'/ZJcosOFz
)

(10.47)

H,

B =(B'IZ1)aa0Ft
Refracted wave: ™ n,™

&v — B **

Hx = -(B"IZ2)coa 6"F3 }
(10.48)

Hl= (B"[Z2)smd"Fz

where for simplicity we have written Fv F% , F3 for the three complex

exponentials representing the propagation of the waves, which are the

same as in equations (10.36), (10.37), and (10.38) respectively.

The boundary conditions for Ey and Hx now give

B+B' = B",

{B-B')qos61Zx
= B"cos6"IZ2 ,

the solutions of which are

B' _ Z2 coaO-Z1 co8d"

B Zt ooae+Z1 w»6"
{

' '

, B" 2Z»cos6 /lrt ^vand
~B - vs?+vs?" (10 -50

^

These equations are similar to those obtained for the other direction

of polarization but not identical, so that the magnitudes of the reflected

and refracted waves are different. This is still true when we specialize

to the case of /^ = fi2
= 1, when the formulae become

B' sin(0"-0)

B sin(0"+0)'

B" 2 sin 6" cos

(10.51)

(10.52)B am(d"+6)

Since in general 0" is not equal to 6, equation (10.51) shows that there

is no angle at which the reflected wave for this direction of polarization

has zero amplitude. If therefore we start with unpolarized light, which

consists of light containing a superposition of many components with

their electric vectors in random orientations, and reflect it from
dielectric such as glass at the Brewster angle, the reflected wave will

only contain one direction of polarization, that with the electric vector

normal to the plane of incidence. This phenomenon can therefore be

used to produce plane polarized light, and originally it was used to define

the plane of polarization of the reflected light at the Brewster angle as
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being the plane of the reflected ray. Our treatment shows that this is

in fact the plane of the magnetic vector in the reflected light, not of the
electric vector.

The fact that the expressions for (A'/A) and (A"/A) are real shows
that the phase changes at the boundary between two perfect dielectrics

are always or w. Inspection of the equations shows that for a wave
with the electric vector in the plane of incidence, passing from a medium
of lower refractive index to one of higher refractive index, there is a
change of sign in the tangential component Ex (but not in Ez , Hy) ofthe
reflected wave when the angle of incidence is less than the Brewster
angle, whereas the reverse is the case when it is greater than this angle.

For the wave with the electric vector normal to the plane of incidence,

there is a change of phase in Ey and Hz in the reflected wave (assuming
n2 > ni)> but not in Hx, whatever the angle of incidence.

Equations (10.43), (10.44), (10.51), and (10.52) are known as Fresnel's

formulae, after their discoverer. For normal incidence they give indeter-

minate results, but it is readily seen from equations (10.41) and (10.42)
(or (10.49) and (10.50)) that we have then

A' _ Z2-Zx %-w2

A ~ Z2+Zx
~ nx+n2

{W^6)

and ^-f* _^_, (10.54)A Z2+Zx nx+n2

s
'

where the expressions on the extreme right apply only when

M = Mi = I-

The 'reflecting power' of the surface is equal to (A'/A) 2
, since the power

in the incident and reflected waves is proportional to the square of the
amplitude. If Z2 > Zx, A" > A so that the amplitude of the electric

vector is greater in the transmitted wave than the incident wave. Since
the power varies as (amplitude of electric vector)2/impedance, the trans-

mitted power is less than the incident power, and it is readily verified

that the difference is equal to the reflected power.

Total internal reflection

When the refractive index n2 of the second medium is less than nv
application of Snell's law (equation (10.35))

sintf" == (njnjam.0

to find the angle of refraction leads to values of sin 0" greater than unity
when sin is greater than n2]nx . Since there is no real angle for which
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the sine is greater than one, we conclude that there is no refracted wave
and that all the energy is reflected. This is confirmed by inspection of

equations (10.41) and (10.49), for when sin0" > 1, cos0" = (1—sin20")*

is a purely imaginary quantity, and the expressions for (A' IA) and
(B'jB) are each of the form {a—jb)j{a-\-jb) whose modulus is unity

Thus the reflection is total, but there is a change of phase on reflection

which is different for the two directions of polarization. If the incident

wave is plane polarized in a direction which is not in or normal to the

plane of incidence, the two components in these planes of the reflected

wave will not be in phase and the wave will therefore be elliptically

polarized.

The fact that there is no 'refracted wave' does not mean that there

is no disturbance in the second medium, for equations (10.42) and (10.50)

show that (A"/A) and (B"jB) are finite. In order to find what kind of

wave is propagated in the second medium, we write sin0" = coshy
(since coshy is always greater than one), and then

cos0" = (1—sin20")* = j(cosh2y— 1)* = ±jsinhy.

Hence the field components in the second medium are propagated as

exp[jco{t—

n

%(x cosh y—jz sinh y)lc}]

= exp{(

—

cjn2 z sinh y)/c}exp[jo{t— (n2 x cosh y )
jcj]

= exp{(— 27r2sinhy)/A2}exp[J6o{«— (nx x sm 9) jc}], (10.55)

where A2 is the wavelength of the radiation in the second medium
Equation (10.55) shows that the wave is rapidly attenuated on the far

side of the boundary, since at a distance z = A2 its amplitude falls by

exp(— 27rsinhy).

For a given value of x, there is no phase change as we proceed in the

z-direction, but there is a phase change as we move along the boundary
in the x-direction. This is because a wave front obliquely incident on
the boundary arrives at points of greater a; at a later time.

If all the incident energy is reflected, no energy can be transmitted in

the second medium. Ifwe compute the value of Poynting's vector for a
direction normal to the boundary (i.e the value oiNz = ExHy or —EyHa

according to the direction of polarization) in the second medium, we
find that it has a purely imaginary value, because Hy is \rr out of phase

with Ex . This means that the real part ofNs is zero, and no energy is

transported away from the boundary on the average. Energy does

flow into the second medium, since the stored energy must be finite if

the field components are finite, but the flow is in the opposite direction
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during a later part of the cycle and the stored energy is returned to the
first medium.

10.7. Reflection from the surface of a .metal
When an electromagnetic wave is incident on the plane surface of a

conducting medium, the amplitudes of the reflected and transmitted
waves can be calculated in a manner essentially similar to that used
for dielectrics. The refractive index and intrinsic impedance of a con-
ducting medium are now complex numbers, and the formulae deduced
for dielectrics may be taken over as they stand by use of a complex
value for n2 and Z2 . From equations (10.41) and (10.49) it is then
apparent that the phase change on reflection is not in general or tt,

so that a plane polarized wave will become elliptically polarized after
reflection. Here we shall only calculate the reflecting power of a metal
for a wave falling on it from free space at normal incidence, using equa-
tion (10.53). For a good conductor

za = (!+i)/(crS) from equation (10.32),

while for free space Zx
= p c,

where S is the skin depth in the metal and c is the velocity of light in
free space. Thus the reflection coefficient is

^ = Z2~Zi = (l+i)-Mooc8
A Z.^ (l+i)+f*ooeS*

where the complex value shows that there is a phase change even at
normal incidence, and the reflecting power is

41
A

(l-*)+j 2+ts—2t
2+t*+2t'

where we have written t for the quantity (^acS). For a metal, where
a « 107 (ohm-metre)-i, t « (4x 109

S), and is thus much greater than
unity at all frequencies up to that of visible light (/« 101S c/s). Hence
approximately

\(A'IA)\* = 1-4/t = 1-2-1 x 10-V//a)». (10.56)

This formula shows that metals should be almost perfect reflectors of
electromagnetic radiation for all frequencies up to those of visible light.
For copper at a frequency of 1010 c/s (a wavelength of 3 cm), the reflect-
ing power differs from unity by about 2-7 X 10-4

, and this formula would
lead us to expect that it should only fall below unity by about 0-09 at
a frequency of 101S c/s (a wavelength of 3000 A). The fact that copper
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appears strongly coloured shows that this formula fails for optical fre

quencies, when electrons in the atom other than those responsible for

the conductivity begin to play a role. In addition, the effective con

ductivity of a metal at high frequencies is less than the low frequency

value (see Problems 18.2 and 18.5).

The high reflection coefficient of a metal arises from the fact that its

intrinsic impedance is very much smaller than that of free space. For

copper at 1010 c/s, Z2 is 0-026(1 -\-j) ohms, while for free space

Zx
= 376-7 ohms.

Thus to satisfy the boundary conditions the wave must be almost totally

reflected with a phase change in the electric vector but not in the mag-

netic vector, making E almost zero at the metal surface, and H almost

twice the amplitude due to the incident wave alone.

10.8. The pressure due to radiation

When a plane electromagnetic wave travels through a conducting

medium in the a;-direction, a conduction current flows of density

Jy = oEy (assuming the wave to be linearly polarized parallel to tho

j/-axis). Associated with the wave is a flux of magnetic induction Be ,

which will exert a force on the current whose magnitude on a volume

element dr is ^ = (J A^ dr = ^^^
in the positive a;-direction. This force is in the direction in which tho

energy is travelling, and gives rise to a 'radiation pressure'. From
equation (10.7), Jy = —8Hj8x—8Dj8t, since all other componentu

vanish in a plane wave, and hence

dFJfc = (—8Hj8x-8Dj8t)Bz

= - {8Ez\8x)Bz-8{DyBz)/8t+ {8Bj8t)Du .

But from equation (10.3), 8Bj8t = —8Ev\8x, so that

= -(8Ul8x)- eeow (8Nj8t)

in a medium where D, B are linearly proportional to E, H. In tho

steady state the second term (dNxj8t) vanishes when averaged over a

cycle, and the significance of the minus sign before (dU/dx) is that the

force is in the forward direction provided that U diminishes as the wavs

travels onwards, as it necessarily will in a conducting medium. We can
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interpret the volume force as due to the gradient of a pressure P, and,
from the geometry shown in Fig. 10.6,

dFx = -{dPfdx)dxdydz = -{dPjdx)dr.

Hence P = U (normal incidence). (10.57)

The pressure is exerted in the direction of Poynting's vector N, and can
be attributed to a momentum G per unit volume which flows across unit
area at the rate TT „U = vG = N/t>. (10.58)

This result is consistent with quantum and relativity theory by which
radiation consists of photons of energy hv, whose momentum in vacuo

P dy dz

dFx
<-
(

p+d
£dx

)
dy dz

Fig. 10.6. Interpretation of volume force as gradient of a pressure.

is hvjc. For diffuse radiation, consisting of waves travelling in all direc-
tions, only one-third of the total energy density will on average be
associated with waves travelling normal to the surface, so that we have

P — %U (diffuse radiation). (10.59)

When a wave is totally reflected, its momentum is reversed so that
the pressure is doubled; however the energy density is also doubled so
that the equation P = U for normal incidence and equation (10.59) for
diffuse radiation still hold. These results are easily obtained from the
concept ofmomentum flow in the electromagnetic wave; other methods
are much more complex, as is illustrated by considering the radiation
pressure on a good conductor (such as a metal) on which a plane wave
falls at normal incidence. Let the surface of the metal be the plane
x — 0, with metal at x > 0, and vacuum at x < 0, as in Fig. 10.7. Within
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the metal there will be a force on the conduction current, which, from
above, is Jy \x,\i,^R

Si
dx per unit area in any thickness dx. Now from the

equation curl H = J, where we have neglected the displacement current

because it is very small in comparison with the conduction current in

Vacuum Metal

Stress on outer

surface =i/* Hl

Fig. 10.7. Pressure on a totally reflecting magnetic metal, arising

from stress at the surface and the volume force on the conduction
current.

a metal, we have Jy — —dHJdx. Hence the overall pressure due to the

force on the conduction current is

Wo j JyHz dx —wxo
J"
Hz(8HJdx)dx = iju/t ff§,

where H is the instantaneous value of Hz at the surface and we have?

used the fact that Hs = at x = oo.

In addition to this volume force, we must include the possibility of

stresses at the boundary due to the electric and magnetic fields. In

general such stresses take a tensor form (the 'Maxwell stress tensor';;

see § 1.7 and Problem 8.9), but in the present case the fields are paralle

to the boundary, and give rise to a pressure %(e Ey
J
t-/j, Hl) from the

vacuum side, and -|(ee ^+)u.^ J?f) on the metal side. For a good con

ductor the reflection coefficient is practically unity, and since the field^

are tangential and continuous across the boundary,

Ey = 0, Hs = H = 2H,
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where H is the amplitude in the incident wave alone. Hence the net
pressure on the metal is

(stress on vacuum side)— (stress on metal side)+

+ (force on conduction current)

= 2M0#0—Wo fio+iWo^o = i/*o#o

= 2/x iP.

Since the energy density in the incident wave is

the net pressure is just twice the energy density in the incident wave
alone; that is, it equals the sum of the energy densities in the incident

and reflected waves.

This example shows that in general we must include both the stresses

at a boundary and the volume force on the conduction current. In the
derivation of equation (10.57) we considered a case with no change of

medium so that the boundary stresses were absent, and we obtained the
correct answer from the volume force alone. On the other hand, when
an electromagnetic wave is partially reflected at the boundary between
two non-conducting dielectrics there is no force on any conduction
current and the pressure at the boundary arises entirely from the
difference in the Maxwell stress tensor on either side of the boundary. It

can again be calculated much more easily from the momentum balance
by considering the energy densities in the incident, reflected, and trans-

mitted waves; that the two approaches give the same answer in the case

of normal incidence is verified in Problem 10.14.

10.9. Radiation from an oscillating dipole

In Chapter 5 the concept of a vector potential A, such that

B = curl A, (10.60)

was introduced. The vector potential is not of great use in elementary
problems, but is of considerable assistance in calculating the radiation
from an aerial. The fundamental equations of the electromagnetic field

are A- rwdivD = P , (10.1)

divB = 0, (10.2)

curlE = ——

,

(10.3)

curlH = J+_. (10.7)



282 ELECTROMAGNETIC WAVES [10.<l

On substituting from equation (10.60) into (10.3) we have, as in § 6.1,

cml(E+^) = o,

the solution of which is

E=—i^-gradF, (10.61

1

where grad V is the 'constant of integration', V being some scalar func-

tion. Since curl grad of a scalar function is zero, any such function

satisfies equation (10.3). In a static problem, where A is constant,

equation (10.61) reduces to E = —grad V, where V is the ordinary scalar

electrostatic potential, as defined in equation (1.6).

Equation (10.60) does not define the vector potential A completely,

since A is the solution of a differential equation and we can add to thi3

solution any vector whose curl is zero. In equation (5.43) we added this

condition divA = 0, but for our present problem it is more convenient

to generalize this condition in the form

8V 1 8V
divA = -Wo6eo__ = —0-j£, (10.62)

where v = (jit|ti ee )
_i is the velocity of electromagnetic waves in the

medium. This definition reduces to that used previously when V is

constant, and has the advantage that it enables us to separate the

variables V and A. From equation (10.61) we have (using equation

(10.1))

_V2F = -div grad V = div^E+^j

= div EH—divA = — ;—-,
^8t e<= v2 8t2

so that _V2F+i ^J = -£-. (10.62)^V2 8t% ee
v ^'

Again,

1 ,8V— grad

—

v*
B

8t

while from equations (10.7) and (10.61)

BE
dt

curlB = curl(curlA) = grad divA—

V

2A = 2§rac^"57—

^

2A,

curlB = /^ curlH = w* fj-j-_J = /x/i J +/*/*„ ee -

=^J-^+ grad
w)-

Identifying these two equations for curl B gives

-V2A+^ = ^oJ- (10-6+)
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For static systems, or systems which vary with time only slowly,
equations (10.63) and (10.64) reduce to the equations (2.1) and (5.46)
obtained earlier. The general solutions of our new equations are also
similar to those of the earlier equations, and may be written as

[P]dr=— f
r

(10.65)

where the square brackets round p and J have the following significance.

The values of V and A at a time t and at a point distance r from the
element of volume containing p and J are related, not to the values of

p andJ at the origin at the same time, but to those values which obtained
at a time (t—r/v). In other words, the disturbance set up by the values
of p and J at the origin is propagated with the velocity v and reaches a
point distance r away at a time later by rjv. Thus the disturbance at
this point is related to what happened at the origin a time rjv earlier,

just as the light reaching the earth from a star tells us what was happen-
ing on the star, not at the same instant, but at the time when the light
left the star. The values of V and A given by equations (10.65) and
(10.66) are known as 'retarded potentials'.

These equations will now be applied to the case of a short length of
wire s at the origin of coordinates, carrying a current

I = I cos cot.

Then, since Jdr = Ids, the retarded value [J]dr = [I]ds, and if s is

very short compared with r, so that r does not change significantly
during the integration, we may write

A==S/Wds = S:W8 ' <
10 -67 >

where we have assumed that the wire is in vacuo and have set p. = 1.

Then we can also write v = c, the velocity of light in vacuo. Equation
(10.67) shows that the vector potential A is everywhere parallel to s,

as shown in Fig. 10.8.

The magnetic field H can now be found at any point, for

H = B//i = (l//i )curlA

= (l/47r)curl([J]s/r)

= (l/4^)j^lcurls-8AgradLQ]

= -(l/4w){8Agrad([i]/r)}
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since curls = 0. Now grad([i]/r) = rx 8([I]lr)l8r, where r± is a unit

vector in the direction of r, since [/] varies in space only with r. Hence

H=-(l/4w){SA r1}|-{[/]/r} )

showing that H is normal to s and to rv and it has thus only one com
ponent, H^ in spherical polar coordinates.

Fig. 10.8. Radiation from a short dipole s ; at the point (/•, Q, <f>)
the

magnetic vector potential A is parallel to S ; Poynting's vector N is

along the radius vector r, and the field components are E
(j
(along a

line of longitude) and H$ (along a line of latitude).

The retarded value [/] = I co8co(t—rjc), and hence

|{MM = -^cos^-r/cj+^rinc^-r/c)

= 5cos<o(£

—

rjc)-\ ^sino)^— rjc),

where A is the wavelength of the radiation. The magnetic field is then

given by the sole component

H
sl sin 6 si"„ sin .HA = *"? ~"

"

cos to{t—rlc)-"-~~ ednai(f-r/c). (10.6$)
4irr2 2rX

The first term predominates at short distances (r <^ A) from the origin,

and will be recognized as just the field given by the law of Biot and

Savart (equation (5.37)). It is known as the 'induction field'. At large

distances of many wavelengths from the origin only the second term {is
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significant; it falls off as (Ar)-i instead of r-» and is known as the 'radia-
tion field'.

The electric field may be found by using equation (10.3), or it may
be found from equation (10.61) if the scalar potential V is first computed
by means of equation (10.62). We are interested only in its value at
a large distance from the origin, when our spherical wave front has very
smaU curvature and over a small region may be taken as a plane wave.
As we would expect, E is then normal both to H and to the direction of
propagation, and its only component is

Ee = Z H+ = (^Jeo)iH^.

The energy crossing unit area per second is given by Poynting's vector

N = BeH^ = Z H%
showing that the energy flow is radially outwards. The mean value ofN averaged over a cycle of oscillation is

N = ±Z (I slr\)* SmW (10.69)

and the total energy radiated in all directions per second is

W = J2^Nsined0 = V-^±\
(

'

10 .70)

The power radiated may be expressed in terms of a resistanceRr, called
the 'radiation resistance', obtained by writing W = iSr Il since this
is just the mean power which would be dissipated in a realresistance Rr .

For our current element equation (10.70) gives

Rr = ^p^j
2

= 789(S/A)2 ohms, (10.71)

showing that the radiation resistance depends only on the square of the
ratio of the length of the wire to the wavelength.
We may imagine our oscillating current element to be due to two

oscillating charges ±q sin<vt, separated by a short distance s. This is
an oscillating electric dipole of moment p sin^ = sqoSmwt, and the
current is

1 = dq/dt = coq cos ost,

Siving s/=cUp coso>i! or s/ = ct>p .

The total radiated power may then be written as

w = ttZ a?p% _ 4^ _ Z ^pl ^pl
3A2 3e„A* ~~l2^-~-[2^- (10 -72

)

(using Z = (<r c)-1 = Mo c), showing that W is proportional to the square
of the osciUating dipole moment and the fourth power of the frequency.
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Since the oscillating current element can be regarded as an oscillating

electric dipole, it is interesting to calculate the scalar potential and

compare it with our earlier results for a static dipole. Since A has a

component only parallel to the polar axis (which we will call the z-axis)

divA = dAJdz. In the differentiation x, y are constant and

(8\8z)x„ = (zlr)(8l8r) = cos0(3/0r) (cf. § 2.2).

Hence, using equations (10.62) and (10.67),

dVldt = -c2 divA = _ cVoV cos 8 , _x cQg^

_

rft.o
4tt 8r

Since r and t are independent variables we may integrate with respecb

to t inside the differential, giving

V — ^-2-2 {r-1 smu}{t—rJc)}
4ttu) 8r

£2 ir^amcoU—r c)\
47re 8r

4*re

—[Po-grad^sinw^—r/c)}]. (10.73)

Comparison with equation (1.11a) shows that this is of the same forui

except that allowance must be made for the retardation in taking th*

gradient.

It must be emphasized that the equations we have derived apply only

when the length ofthe oscillating dipole is small compared with thewave

length. Most of the radiation emitted by atoms is due to oscillations of

electrons, and is therefore 'electric dipole' radiation. The size ofthe elec

trie dipole will be of the order of the electronic charge times an atomi 3

dimension, and the effective length of the dipole is thus about 10-8 cm

since the wavelength of visible light is about 10~5 cm, our theory could

be applied to this case ifthe restrictions due to quantum theory could b 8

neglected. Thus classical theory predicts that an electron moving in an

orbit round the nucleus would behave as a two-dimensional oscillator

and lose energy continuously by radiation until it finally spirals into th9

nucleus. This difficulty could not be overcome in attempts to find a satis

factory model ofthe atom untilBohr introduced the concept of stationar f

orbits in which the electron did not radiate. Thus the difficulty arose

from the use of classical theory, which is a good approximation for macrc

scopic oscillators, in an atomic problem where it was not applicable

Nevertheless, the classical theory gives a good explanation of the phenc

mena of dispersion and scattering (see Chapter 17), and most of the
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qualitative results which it provides, such as the polarization of the
radiation and the absence of radiation in the direction in which the
dipole is pointing, are valid for atomic systems.
At radio frequencies the aerial or antenna used for the reception or

transmission of broadcast signals is not in general short compared with
the wavelength. Its radiative properties may be calculated by methods
similar to those used above, the value ofA being obtained by the use
of equation (10.66). For a single straight wire this gives

4w J r
(10.74)

where the integration is along the wire and / is the current in the element
ds. Two points must be noted in performing the integration: (a) the
current is not in general constant along the wire, since it must fall to
zero at the ends; (6) in evaluating the retarded potential, allowance must
be made for the phase difference in signals coming from different parts
of the wire owing to the change in the distance. The problem is similar
to that of the diffraction pattern of a single slit where the amplitude
varies over the aperture. The interference concepts used for light waves
may be applied in finding the radiation pattern produced by an aerial
array consisting ofmany elements; the problem is essentially similar to
that of a diffraction grating.
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PROBLEMS
10.1. A metallic sheet is bounded by the plane x = and a tangential osculating
magnetic field Hv = HB cos cot exists at the surface. Show that the total current /
per unit width ofthe surface flowing in the metal has an instantaneous value equal
to Hv and that its direction is normal to Hy . Verify that this conforms with
equation (5.22), if the / H. ds is taken round a suitable rectangular circuit withtwo sides parallel to the *-axis and two parallel to the y-axis, one of the latter
being just outside the metal and the other inside at a depth much greater than
the skin depth.

Compute the magnitude of Poynting's vector just inside the surface of themetal and show that its mean value (averaged over a period of oscillation) is
just equal to the power per unit area dissipated in heating the metal as givenby equation (10.34a).
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10.2. Show that the superposition of two waves of equal amplitude, one witli

angular frequency w+dw and phase constant j3+ dfl, the other with co—da) ani

j8— dfi, gives a wave of frequency cd and phase constant /?, whose amplitude varit s

\

m
)(tdio-

\cos/
j— xdfi). Hence a point ofmaximum amplitude moves as

(tdco — xdfi) = constant,

or with velocity u = (da>/dfl). Since the energy is proportional to the square of

the amplitude, u gives the rate at which energy is propagated, known as the

'group velocity'.

Show that in a good conductor, such as a metal, where the displacement curreiit

can be neglected, the phase velocity v (= a>//?) is o)8, and the group velocity

(= dcojdfl) is 2coS, where 8 is the skin depth.

10.3. Show from equation (10.41) that the condition for there to be no reflected

wave at the boundary between two insulators (e^/Xi; e2 ,fjL 2 ) when the electa <

vector is in the plane of incidence requires that

ex tan0 = e2tan0*\

This equation shows that at this particular angle the lines of electric field are

refracted as in the electrostatic case (cf. Fig. 1.13) so that the boundary condi-

tions are satisfied without any reflected wave. Similarly, when the magnet: <

vector is in the plane of incidence, the condition for no reflection is

fiitand =
fj.2

tsbnd"

so that the lines of magnetic field are refracted as in the magnetostatic case.

Verify that in general the boundary conditions for the normal components of

D and B are automatically satisfied in the theory of § 10.6 when the conditions

for the tangential components of E and H are satisfied.

10.4. The rate at which solar energy falls on the earth's surface is approximately

2 cal/cm2/minute. Calculate the r.m.s. values of the electric and magnetic fields

at the earth's surface, and the pressure exerted on it, assuming it to behave ns

a perfect absorber.

(Answer: E = 730 V/metre; H — 1-9 A/metre; pressure, 4-7 >; lO^6 newton/ms

10.5. Show that by the introduction of a complex dielectric constant e = e'—je
1

where e" = (cr/a>€ ), the equations (10.25 a) may be written in the same form

for a non-conducting dielectric. Show that this leads to the relation n2 = juje,

and that e"je' = tan 8, where tan 8 is the loss tangent of the dielectric (i

Problem 9.12).

10.6. A slightly imperfect dielectric has a small loss tangent. Show that in the

first approximation the velocity of electromagnetic waves is the same as if tar 8

were zero, but the power falls as exp(—aZ x) in travelling a distance x, where JJ

is the intrinsic impedance of the medium neglecting the conductivity a. This

result has the simple interpretation: in a thickness dx the power dissipated psr

unit cross-section is oE% dx, while the incident power W = E 2 !Z . Hence

-dW/dx = aZa W.
Show also that

oZf, = 27t(1oss tangent of the dielectric)/A,

where A is the wavelength of the radiation in the dielectric.
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10 7 Whenaplanewaveis incident on a conducting wire the electric field set upin the wire ,s equal to the tangential component of the electric field strength in

to

e

ZT„i Z tht* a ^°n Stmlght WiTS *he P°WeF Picked UP » Proportionalto sin ftwhere 6 m the angle between the wire and the direction of travel of thewave. This shows that the directional properties of the wire are the same forreceiving as for transmitting (cf. equation (10.69)).

10 8. When a plane wave falls on a small plane loop of wire, the e.m.f. inducedm the loop is determined by the rate of change of magnetic flux through it. Showthat the du-ectwnal properties of the loop are the same as those ofthe short wire
if is measured from the normal to the plane of the loop, but the planes of the
electee and magnetic vectors in the wave must be interchanged. This is consistentwith the fact that a loop carrying an alternating current behaves as an oscillating
magnetic dipole. 8

Show that the ratio of the e.m.f. set up in a short wire of length * to that in asmall loop ofareaA is (Xs^A), where A is the wavelength of the radiation. If the
linear dimensions of the loop are roughly the same as those of the wire IA « s 2

)this shows that the loop is a much poorer aerial when * < A.

10.9. A transmitter radiates a power W from a short dipole aerial. Show that the
r.m.s. electric field at a distance D in the equatorial plane of the dipole aerial is

E = (32 W/8ttD*)K

where Z„ is the intrinsic impedance of free space.

n MiZr
1 kW

'
Sh°W that th6 fi6ld BtefflWth »* • distance of 10 km is about

0-021 V/metre.

10.10. A transmitter radiates a power IT from a short horizontal dipole aerial
located at a height H above the sea. Show that the signal received at a target
whose distance isD and height above the sea is h (D > H, h) is a maximum when
h = 1M/4H, whereAis the wavelength ofthe transmitter. The sea may be assumed
to act as a flat, perfectly reflecting (conducting) surface.
Show that if the height of the target is very much smaller than this value, the

power mcident on unit area of it (assuming it to lie in the equatorial plane of the
dipole) is (hrWHW/DW. This equation shows that the effect of the sea is to make
the power fall off with the inverse fourth power of the distance instead of the
inverse square; it shows also the improvement gained by using short wavelengths

If W = 1 kW, D = 10 km, H = h = A = 10 metres, show that the r m.s!
electric field strength at the target is about 2-7 x 10"4 V/metre.

10.11. Obtain equation (10.56) by the use of equation (10.34a) and the Law of
Conservation of Energy.

10.12. A cylindrical conductor of finite resistance carries a current /. Calculate
the value of Poynting's vector at the surface of the wire, and show that the energy
flowing into the wire is just equal to that dissipated in heating the wire.

10.13. At high frequencies the magnetic field falls inside each lamination of a
transformer owing to the skin effect; the effective permeability at high frequen-
cies is found by calculating the total flux in a lamination in phase with that at
each surface of the lamination. Show that the effective r.f. permeability is less
than the static value by a factor 8/a when the skin depth S is very much smaller
than the thickness a of the lamination.

851110 U
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What thickness of lamination is required to make 8 = a for a material ol:

permeability 105 and resistivity 5 X 10-7 ohm-metre at a frequency of 50 c/s ?

{Answer: 0-16 mm.)

10.14. A plane wave falls at normal incidence on the boundary (a = 0) between

two media with constants (e1( /*i) and (ea, ju.a ) respectively. If the field components

at the boundary are Ex, Hv, show that the stress is

and that this is equal to the sum of the momentum flows in the incident and

reflected waves less that in the transmitted wave ; i.e. to

E2+E'% E"*

Zt vt
~Z2 v2

'

where E, E', E" are the electric intensities in the incident, reflected, and trans-

mitted waves respectively, and Zx, vx ; Zv v2 are the impedance of and phase

velocity in the two media.

Hint: Note that Ex = E", Hv
= E"/Z2 and show that both expressions can

be reduced to
( 1 Z 2 \

iE'\'z 1̂
+zfr1~'^'J'

10.16. In a region of space containing n particles per unit volume of charge q

andmass to, where the pressure is so low that collisionsmay be neglected, equations

(10.3) and (10.7) may be written

curlE = -fridH/dt); curlH = wgv+e (SE/e«).

Show that by using the equation of motion gE = mlfiwldt), and eliminating v

between these equations (taking graddive E = grad(ng) = 0), one can obtain

the equation ~2F - %_j-^ E = c2V2E.

This is the equation ofTonks and Langmuir for propagation ofwaves in an ionized

medium. Show, by assuming E to vary sinusoidally with frequency/ and wave-

length A, that j, = (jigi/^^mJ+tcVA1
).

For very long wavelengths this reduces to the equation for plasma oscillations,

equation (4.47).
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FILTERS, TRANSMISSION LINES,
AND WAVEGUIDES

11.1. Elements of filter theory
A frequent requirement in radio and telephony is the separation of
two signals of different frequencies. Any circuit whose impedance varies
with frequency can be used for this purpose, a simple example already
considered being the tuned circuit, which can be employed to accept
or reject a narrow band of frequencies centred on its natural resonant
frequency. This acts as a 'band pass' or 'band stop' filter. Another
type of filter may be required to pass all frequencies up to a certain

A*-

£•-

nsws^- >G

Fig. II. I. Simple low-pass filter section.

+D

value, and stop all higher frequencies; this is a 'low-pass' filter The
reverse case is a 'high-pass' filter, which rejects all low frequencies up
to a certain value, and passes all higher frequencies.
The action of a filter can be understood by considering a simple

example, the low-pass filter shown in Fig. 11.1. A common use of such
a filter is to remove the ripple voltage from the output of a rectifier unit
which is converting an a.c. voltage to a steady voltage. The output is
applied to the terminals AB of the filter, which is required to pass the
steady voltage component on to the terminals CD, but not the alter-
nating component. If the latter has a frequency of, say, 100 c/s, and
the capacitance G is chosen to have a low impedance at 100 c/s while the
inductance L has a high impedance, only a small fraction of the input
voltage at this frequency will appear at the terminals CD, because the
inductance and second capacitance act as a voltage divider. The fraction
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is approximately XcjXL = (lla>C)l<oL = l/(co2LC), and if = 10 pF,

L = 25 henries, the fraction is about 1/100. On the other hand, if there

is no leakage in the capacitor, the full steady voltage component will

be passed on to CD. Thus the filter accepts the signal of zero frequency,

'-VTJMWVlHRRroVTKroWrv-«

^•D

Fig. 11.2. Chain of low-pass filter sections.

and partially rejects the signal at 100 c/s frequency. Better rejection

is obtained by adding more sections of this kind, as in Fig. 11.2. This

arrangement is called a step- or ladder-type filter. It is clear that

evaluation of the currents and voltages in the different elements by

,/<_

Zi Zi Zi

z2 (in-l z 2 (T
z2 <c z2

Fig. 11.3. Generalized type of uniform ladder filter.

application of Kirchhoff's laws would be very laborious, and it is prefer-

able to proceed in a different way, making use of the recurrent nature

of the elements.

We shall begin by considering a uniform filter, consisting of a chain

of similar sections, as in Fig. 11.3, which are repeated indefinitely,

forming an infinite chain. If a generator is applied at some point earlier

in the chain, currents will flow in the various sections; let the currents

in successive sections be In_x , In , In+1 . Application of Kirchhoff's law to
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the central section gives ,
•

z,(4-4-i)+Zi4+z,(4-4+i) = o ' _;_./... _L .

or
. -Z24_1+(Z1+2Z2)4-Z2 7B+1 = 0. / (IU1)

We may write /„ = «4-i. where a is a real or complex number; then in

an infinite chain where we cannot distinguish between sections we must
slso have In+1 = aln . Equation (11.1) then gives

i(o+l/o) = l+Z1f2Zt . (11.2)

This equation determines the attenuation constant a. We shall con-
fine our attention to the case where Zj/Z2 is real, which corresponds to
Z1 and Z2 being both pure resistances or pure reactances. Then a can
be either real or complex, but not a purely imaginary quantity. The
real roots arise when the right-hand side of equation (11.2) lies outside
the range +1 to — 1, i.e. Z^Z-j lies outside the range to —1. We
consider separately the three cases where it is greater than 0, between
and — 1, and less than — 1.

(i) (ZJ4Z,) >
a is real and positive. Since the network is 'passive' (i.e. it contains

no power-generating elements), the currents must decrease as we move
away from the generator attached to one end of the filter. Thus we take
a < 1 for a wave travelling towards the right (i.e. generator attached to
the left-hand end of the filter) and a > 1 for a wave travelling towards
the left. This interpretation is consistent with the fact that the roots
of equation (11.2) are reciprocal; thus the wave is attenuated by the
same amount per section in the direction in which it progresses, which-
ever way it is going. The significance of the positive sign of a is that
the wave is attenuated without change of phase. If we write a = e~a

,

where a is the attenuation constant per section, equation (11.2) becomes

cosha= 1+ZJ2Z2 . (11.3)

(ii) > (ZJ4Z.) > -1
a is complex, with modulus unity, so that we may write a = e~iP.

The wave is not attenuated at all, but suffers a phase change by an
angle /} in each section, where

oos^=l+Z
1/2Z8 . (11.4)

(iii) (Z1/4Za) < -1
a is then real and negative, so that the wave is attenuated with a

phase change of 77 in successive sections. If we write a = — e~a equation
(11.2) becomes -cosha = 1+Z./2Z,

'

(
n.5)
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Here we have already spoken of the current as part of a 'wave' and
this terminology needs some justification. If the current in one section

alternates at a given frequency, so that we can write /„ = I%exp(jcot),

then the current in a later section (n+m) will be

Ifwe write a = exp(— h), the current in the section n+m will be

4+m = /"exp(—Am)exp(jo)*) = I*exp(jwt— Jim),

which is similar to the expression for a wave motion in a continuous

medium except that m, the number of sections, which can only be an
integer, replaces x, the distance travelled in the medium. If h is real,

we write it as a, and we have an attenuated wave, but if h is a pure
imaginary quantity j/J we have an unattenuated wave with a phase
change /} per section. The values of a and /J are given by equations

(11.3-5). The reciprocal roots are obtained by changing the sign of h,

corresponding to a wave travelling in the opposite direction. The third

case (iii) above, where the attenuated wave changes sign in successive

sections, could not arise in a continuous medium. The behaviour of

the filter is determined immediately from the value of (ZJ4Z2). If it

lies within the range to —1, we have a 'pass band' with no attenua-

tion; outside this range we have a 'stop band'.

The word 'section' has been used so far without any precise definition

of its meaning. The uniform chain can be regarded as made up of

similar sections joined together, but two types of section can be obtained

by cutting the chain in different ways. These two types are shown in

Figs. 11.4 and 11.5 and for obvious reasons are known as T-sections

and w-sections respectively. It is clear that a succession of either type

of section joined together gives the same chain filter (see Fig. 11.6), so

that the transmission characteristics derived earlier apply to either type

of section.

If a generator of voltage V is connected to a semi-infinite chain and

the current I drawn from it is measured, a definite value of the ratio

(V/I) is obtained, known as the 'characteristic' or 'iterative' impedance

of the chain. It is obvious that the same value would be obtained if a

number of sections were removed and the impedance of the semi-infinite

chain measured at a later point. Again, the chain may be severed at

some point and the infinite tail replaced by an impedance equal to the

iterative impedance without altering the impedance measured at the

input terminals. This gives us a method of calculating the iterative im-

pedance. Fig. 11.4 shows a T-section terminated by an impedance ZT ;
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the impedance measured at the input terminals AB can be calculated

by standard methods, and on equating this to ZT we have

Solution of this equation gives

Zj. = (ZiZ.+JZJ)* = (Z1 Z1)*(1+Z1/4Z1)*. (11.6)

A» . iZi iZi
c
>

z2 i«JT

£• 2)

Fig. 11.4. r-seotion ABCD terminated by its iterative impedance.

Zi

2Z8

B'*-

C

2Z2

Z>'
—•-

Fig. 11.5. 77-seotion -4'.B'C"£>' terminated by its iterative impedance.

This is the value of the iterative impedance ZT for a T-section. By
applying the same method to a 77-section, as shown in Fig. 11.5, we find
the iterative impedance of a 7r-section to be

Z„ = (Z1 Z,)i(l+Zj4Zt
)-i. (H.7)

Thus Zj.z.^z,.
(n. 8)

The importance ofthe iterative impedance hes in the fact that sections
of different kinds may be joined together to form a non-uniform filter,

without disturbing a wave travelling down the filter, provided that they
have the same iterative impedance. If sections with different iterative
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impedances are used a 'reflection' of the wave occurs at the junction
and the simple filter theory is no longer applicable. Similarly, the filter

must be terminated by a load equal to its iterative impedance in order
to avoid a reflection at the output terminals. Any such reflection will

diminish the power dissipated in the load, since part of the incident
energy will be reflected.

r r-sectior— -1*- T-section 1*t

^i 17 A'i
\zx

c\
JZ t

Ic 17
2 L,x

1

1

|

2Z2

1

1

1

2Z2 2Z
2 2Z2 I,

1

1

1

B\
, 'i.

B
1

k 7T-

D\ \D'

section J
Fig. 11.6. Filter of T-sections such as ABCD terminated by the iterative impedance ZT .

It may also be divided into 7r-sections terminated by the network to the right of CD'.

$'

Q^

v
iZ,

? -*

—

l»
'

z„
2Z 2 £jq<

•—

—

—

»

JZ,

Juj<
2Za

(a) (6)

Fig. 1 1. 7. Half-sections used aa transformers (a) converting ZT to Z„; (6) Z„ to ZT .

A filter correctly terminated by the iterative impedance ZT is shown

in Fig. 11.6, where it is regarded as made up of T-sections (ABCD).

Alternatively, we may regard it as made up of 7r-sections (A'B'G'D'),

which must still be correctly terminated. Thus the impedance of the

portion to the right of CD', shown separately in Fig. 11.7 (a), must

be Zw . Hence the half-section acts as a transformer from the impedance

Zr to Z„, as may also be verified by direct calculation. Similarly, the
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other half-section shown in Kg. 11.7 (6) transforms the impedance Zw
to ZT . To a limited extent such half-sections can be used to match a
load to a filter, but their especial importance comes in the design of
composite filters (see Problem 11.4).

11.2. Some simple types of filter 1
L

'

Low-pass filter

The simplest type of low-pass filter is that shown in Kg. 11.2 with
capacitances in the shunt arms and inductances in the series arms. Then
Z2 = ja>L and Z2 = l/(ja)C), giving

ZX/4Z2 = -w2iC/4. ^'rZ^
The cut-off frequency w is obtained by setting this equal to — 1, giving
co = 2(LC)~i. Frequencies below this are passed without attenuation,

Vr
Fig. 11.8. Variation of a, $ and the real part of ZT for a simple low-pass filter.

while higher frequencies are attenuated. In the pass band the phase
change is given by

cos£ = l-o>2LC/2 = 1— 2(o)/o>
)
2

,

showing that £ changes from to -n as the frequency increases from zero
to the cut-off value. The characteristic impedance of a T-section is

(v-^-m-^-
which is resistive in the pass band, but varies from (L/C)* to zero at
the cut-off frequency. In the stop band ZT is a pure reactance and the
attenuation is given by

—cosh a = 1— a>
2£C/2,

which rises with frequency from zero at w = co . The negative sign
shows that currents in successive sections are reversed in direction.

The general behaviour of a, yS, and ZT is illustrated in Fig. 11.8. The
variation of Zw is easily found from the relation

Z„ = Zt Z2/ZT = L/(CZT).

n~n
,t

Z^
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As an example, we may take the problem of smoothing the output of

a rectifier considered at the beginning of this chapter. Then C = 10 ju.F,

L = 25 henries, and the ripple frequency is 100 c/s. The attenuation

per section at this frequency is given by

—cosh a = ea+e-a
= 1-^LC = (1— 49-3).

Hence ea « 100, or the attenuation in power is approximately 104 per

section. If we have n such inductances and capacitances, it is very

20 20

V(£/C)

Fig. 11.9. T-section of simple high-pass filter, with variation of real part ofZT, a, andjS.

much better to join them as a ladder filter of n sections than to lump

them all into one section. The latter would reduce the ripple voltage by

a factor ea' « (aiVIG) = lQOn? approximately, while the ladder type

filter will reduce it by ena m (100)n . Thus three sections would reduce

the ripple voltage by 106
, while the single section with three inductances

in series and three capacitances in parallel gives only a factor 900.

The high-pass filter

As wouldbe expected, the simplest high-pass filter is formed byputting
capacitances in the series arms and inductances in the shunt arms, and

a typical T-section is shown in Fig. 11.9.
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Then Zx = 1/jcoC, Z2
= ja>L, and

ZJ4Z, = -l/4o>2LC.

This lies between zero and — 1 for o> ^ £(L(7)-*, the latter being the
critical frequency <o . The phase change per section in the pass band is

given by
cosjff = l-l/(2w2iC) = l-2p)

,

and the modulus of this expression gives also the value of cosh a in the
stop band.

iL 20, 20,
iL ZT

A
CO, ft),

2 »)

Ky
a>2

>eu

Fig. 11.10. Simple type of band-pass filter, showing T-section, and real part of ZT, a,
and ]8 as functions of frequency.

The iterative impedance is

which is imaginary in the stop band, and rises from zero at the critical

frequency to a limiting value of (L/C)* in the pass band. The behaviour
of a, fi, and ZT is illustrated in Fig. 11.9.

Band-pass filters

A simple type of band-pass filter is shown in Fig. 1 1 . 1 0. Qualitatively
its behaviour can be seen as follows. At very low frequencies the im-
pedance in the series arm will be dominated by the capacitance, so that
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the section will act as a simple capacitance-type attenuator (see Problem
11.1). At frequencies higher than the resonant frequency of the com-
bination L and C1} coL > (cdC^ -1 and the impedance of the series arm
is inductive; then the section behaves as a low-pass filter, the highest

frequencies again being stopped. Quantitatively, the analysis is

Z1 =ja)L+ll(jcoC1 ),

Z2 = l/(ja>C
2 ),

ZJ*L*=\ \-fW\>

which is positive at zero frequency, but tends to — oo as o> -> oo. When it

lies between and —1, we have a pass band whose lowest frequency is

o>x = {LCj)-i, where ZX/4Z2 = 0,

and highest frequency is / +- .__£»..

The behaviour of a, /}, and ZT is shown in Fig. 11.10.

Disadvantages of the simple filter

A simple filter, consisting of a chain of similar sections, suffers from

two principal disadvantages:

(a) the iterative impedance varies with frequency in the pass band,

making it impossible to terminate the filter correctly throughout

the pass band;

(6) the attenuation in the stop band varies with frequency, being low

near the cut-off frequencies.

These drawbacks can be reduced by using a composite filter, contain-

ing sections of different types, instead of a uniform filter. For example,

the attenuation just above the cut-off frequency of a low-pass filter can

be made high by using a section with a parallel tuned circuit in the series

arm, or one with a series tuned circuit in the shunt arm (as in Fig. 11.11),

adjusted to resonate at a frequency just above the cut-off frequency.

If there were no resistive loss in the components, this would give infinite

attenuation at the resonant frequency. Such a section will have low at-

tenuation at the high frequencies, but it can be combined with a simple

low-pass section so that the composite filter has a sufficiently high at-

tenuation throughout the stop band. In such a composite filter each

section must have the same iterative impedance at all frequencies, or
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reflections will occur at the junctions between sections. This can be
achieved by the use of 'm-derived' filters, an example of which is given
in Problem 11.3. Half-sections may also be used to make the impedance

-^nnnr^

(6)

Fig. 11.11. T-section and terminal half-section of an m-derived filter. The values must
obey the equations L

x
= mi, Ca = mC, L2 = i(l—

m

2)/4m.

to

Fig. 11.12. T-section of constant k band-pass filter (L^C^ = -L^Ct
= fc

2
).

more constant in the pass band (see Problem 11.4). The simple low-
pass and high-pass filters considered earlier belong to the class of 'k-

derived' or 'constant F filters, since their impedances obey the relation

ZXZ2
= jfc»,

where k is a constant independent of frequency. The band-pass filter

considered earlier is not of this type, but the ^-section shown in Fig.
11.12 does obey this relation provided that L^C

X
= LJC2

= Jfc
2 (see

Problem 11.2).
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11.3. Travelling waves on transmission lines

In the electrical circuits considered hitherto we have been able to

identify the circuit elements as inductances, resistances, capacitances,

or combinations thereof, known as 'lumpedimpedances ' . These elements

are connected together and to generators and detectors by lengths of

wire whose effect is assumed to be negligible. This is true only when the

lengths of wire involved are very small compared with the wavelength

V+dV

I 1 I
I+dl

1
v

1

|
-dl = V(Y dx)

|

-7i Y-(I+dI)

x x+dx

Fig. 11.13. Infinitesimal section of transmission line, showing current and voltage (the

lower conductor is assumed to be earthed, so that V is the voltage between the two
conductors).

ofthe radiation flowing along them. When this condition is not fulfilled,

the signal changes phase as it flows along the wires, in much the same
way as in the pass band of a filter. In fact we may regard the wires as

a limiting case of a low-pass filter where the elements are made infinitesi-

mally small, but there are an infinite number of sections per unit length

so that the 'distributed impedance' per unit length remains finite.

Normally two wires are required to complete the circuit between any
two pieces of apparatus, and we shall assume that these take the form

either of two parallel wires, or two coaxial cylinders. In an element dx

of two such conductors, as shown in Kg. 11.13, the voltage and current

will be linearly related to one another, so that the voltage drop in a

length dx will be

V-(V+dV) = -dV = I(Zdx),

where Z is the series impedance associated with unit length of the two
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wires. Similarly, the current flowing across between the two wires in

the element dx may be written

—dl = V(Ydx),

where Y is the shunt admittance between the two conductors per unit

length. Since charge is conserved, (+dl) is the change in the current

flowing in the wires when we move the distance dx. In general Z and Y
will be complex; both the series resistance and the inductance of the
wires contribute to Z, and the leakage conductance and capacitance

between the conductors to Y. Thus, if we assign a resistance B and
inductance L, a conductance G and capacitance C, all per unit length,

to the two conductors, our basic equations become

-(BV/dx) = IB+L(dI/8t), -(dl/dx) = GV+C(8V/dt). (11.9)

These form a pair of simultaneous differential equations which may be
solved by eliminating either / or V, when a second-order differential

equation similar to equation (10.24) for a one-dimensional wave motion
is obtained. We may anticipate this result by assuming that equations

(11.9) possess a solution in which both voltage and current vary with
t and x exponentially, so that they change as exp(ja>t—hx). Then the

partial differentials (d/dt) and (d/dx) may be replaced by multiplication

byjco and —h respectively, so that the equations become

hV = I(R+ja>L), hi = V(G+ja>C). (11.10)

Elimination of I and V between these two equations gives

-A2 = LCaj*-ja,(RC+GL)-IlG. (1M1)

Since this equation is quadratic in h, it always has two solutions of

opposite sign. These correspond to waves propagated in opposite direc-

tions, just as in the filter there were two solutions, a and 1/a, correspond-

ing to exp(—hx) and exj>(-\-hz) in our present nomenclature.

The general solution of equation (11.11) gives a complex value of A,

indicating that the wave is propagated with attenuation, as we should

expect when there is resistance and conductance present. To obtain a
clearer picture of the wave motion we shall first consider the case when
both M and G are zero; that is, a loss-free line. This is generally a good
approximation for short, non-resonant lines (see§ 11.5). Equation (11.11)

then reduces to ,„ Tri „ ... ,_.

Hence h is a purely imaginary quantity, which may be written h = jfi.

Then = o>J(LC), and the wave velocity is w/j8 = ljyj(LC).
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For a pair of coaxial cylinders, radii a and b (b > a), we have

C = 27ree /log
e(6/a) (Problem 1.8),

L = (2Tr)-1MJ. log
e(b/a) (equation (6.18)),

while for a pair of parallel cylinders radius a, separation 2d (2d p- a)

G = Tree /loge(2dla) (equation (2.51)),

L = (7r)-Vz loge(2cZ/a) (Problem 6.2),

where the units are farad/metre and henry/metre respectively, and e, [i

refer to the medium between the cylinders. It is readily seen that the

product (LC) is independent of the geometry of the cylinders, and the

wave velocity is

,D = (iO)-i =
(Kom)-i = c/Mi.

This is the same as for an electromagnetic wave travelling in the un-

bounded medium, and it can be shown that this is the case whatever

the shape or size of the parallel conductors. The reason for this only

becomes apparent if the problem is solved rigorously by starting from
Maxwell's equations, when it is found that a purely transverse wave
(that is, with the electric and magnetic fields both normal to the direc-

tion of propagation) is possible if the conductivity of the cylinders is

infinite. This treatment shows also that the assumptions of our method,

expressed in equations (11.9), are valid for perfect conductors but not

for imperfect ones. The approximation is quite a good one, however, so

long as R <^ a>L and G <^ coC, conditions that are generally fulfilled in

practice (see § 11.5).

Since the wave velocity is independent offrequency on a loss-free line,

we need not confine ourselves to sinusoidal waves, and the general solu-

tion of equations (11.9) (with B = G — 0) is

V = F^x—vfi+F^x+vt), (11.13)

with v — (LC)-*. Fx and F2
represent waves of arbitrary wave form

travelling in opposite directions with velocity ±v. Further application

of equations (11.9) shows that the corresponding expression for the

current is Z I = F^x-^-F^z+vt), (11.14)

where Z = (LjCf. (11.15)

The derivation of these equations is similar to that of equations (10.18-

19) j and Z is known as the 'characteristic impedance' of the line. It

plays a similar role to the intrinsic impedance of a medium for electro-

magnetic waves, or the iterative impedance of a filter (it is equal to the
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limiting values of ZT and Zv for a low-pass filter, if the inductance and
capacitance per section are allowed to go to zero keeping their ratio
constant). In a wave travelling towards positive values of*, the ratio
of the voltage to the current is Z , while for a wave in the opposite
direction the ratio is —ZQ .

From the values of L and C for our two special types of line, we have :

coaxial line: Z = ~l^f loggia),

parallel wire line: Z = ifcU log
e(2d/a).

Typical values of Z are: for an air-spaced coaxial line with b « 3a,Z pa 70 ohms; for a parallel wire line, 2dja « 20, and Z « 400 ohms!
In a coaxial cable a continuous dielectric is used to support the inner
conductor, and the ratio b/a is adjusted to make Z some standard value
usually either 70 or 50 ohms.
An important quantity is the power flowing along the line. If we

confine ourselves to a wave travelling along towards positive *, the
energy flowing past any plane normal to the *-axis is, at any instant,

= IPZ +IV/Z = I*Z = V*/Z = IV. (11.16)

Here we have given all the equivalent expressions for W, and we see
that Z behaves like a pure resistance, except that W represents the
energy flowing along the line per second rather than the energy dissi-
pated as Joule heating of a real resistance. In a sense the energy stored
in a section of the line is being dissipated, since it flows away from that
section, and the stored energy would therefore diminish unless it were
continually replaced by the energy flowing into it from the previous
section. W represents the energy crossing a given point in the line at
any instant; the average flow of energy is found by using the root mean
square values /and fin equation (11.16). The fact that Z is real shows
that the phase difference between V and / is or *, according to whether
the wave is travelling towards positive or negative x. From equation
(11.16), IF has the same sign as Z , showing that the energy flows in
opposite directions in the two waves, as we should expect. This result
follows also from the direction of Poynting's vector (see Problem 11.5),
since V and i" are linearly related to the electric and magnetic fields E
and H.

851110 X
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11.4. Terminated loss-free lines

Hitherto we have regarded the two waves travelling in opposite direc-

tions along a line as two quite independent solutions of the wave equa-

tion. Usually, however, there is only one generator attached to the line,

producing a wave travelling, say, towards positive x. If the line is in-

finite in this direction, there will be no return wave. If the line is termi-

nated in some way, a reflection may occur at the termination and this

A+-

B •-
x = -I >x x =

Fig. 11.14. Line terminated by impedance Z at x = 0.

will generate a return wave, which will not be independent of the

incident wave. If the latter has a given frequency, the return wave

must have the same frequency in order that the ratio of current to

voltage at the termination (assumed to consist of some constant im-

pedance) shall be independent of the time. If Z is the terminating

impedance (as in Fig. 11.14), the fact that Vjl must equal Z at this

point for all values of the time constitutes the boundary condition, from

which one can calculate the magnitude and phase of the reflected wave

relative to the incident wave.

If the terminating impedance is not a pure resistance, its value

depends on the frequency, and so also will the reflection coefficient. We
must therefore assume a wave of a given angular frequency to. (If the

wave is not purely sinusoidal, we must perform a Fourier analysis and

treat each harmonic separately.) The equations for current and voltage

may then be written as complex exponentials, where, as always, the real

or imaginary part must be extracted at the end, according to whether

the input voltage is a cosine or sine function. Equations (11.13) and

(11.14) become

V = Aexp{j(o(t—xlv)}+A' e^p{joj(t+xlv)}\ (n n)
Z 1 = A exp{jco(t-xlv))-A' exv{ja>(t+xlv)}j

'

For simplicity we shall take the termination to be at the origin of

coordinates x = 0, noting that all points on the fine will then have
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negative values of a;. Inserting the boundary condition, we have

(V/E.1^ = Z/Z =^±^ = (A+A^A-A').

Hence A'/A = (Z-Z )/(Z+ZQ), (11.18)

which defines the reflection coefficient A'/A. IfZ is complex, A' will be
complex (assuming A real, which can always be made true by choosing
the zero ofthe time scale correctly), showing that there is a phase change
in the reflected wave. If Z is a pure resistance, A' is real and there is
no phase change (we may exclude a phase change of w by allowing
negative values of A').

Ifthe line is open-circuited, the voltage at the end is 2A, since A' = A.
If Z is finite, the voltage across it is A+A' = 2AZ/{Z+Z ), showing
that the line behaves as a generator of voltage 2A, with an internal
resistance Z . The power transferred to the load, ifZ is a pure resistance
B,iaW= ?*/B = 2A*B/(B+Z )\ IfZ = B = Z , the power trans-
ferred to the load is a maximum; that is, the load is matched to the
generator. Reference to equation (11.18) above shows that under this
condition A' = 0. Thus maximum power transfer to the load corre-
sponds to no reflected wave; hence the matching condition has a simple
physical meaning, since any reflected wave would carry energy away
from the load and reduce the power dissipated in it. The power in the
incident wave is \A*/ZQ , and that in the reflected wave is %A'2JZ . The
difference will be found to equal the power dissipated in the load, as
calculated above.

Examination of the formula for A'/A, when Z is a pure resistance B,
shows that as B goes from zero to infinity, A'/A changes continuously
from - 1 to + 1. When B < Z

, the reflected voltage wave has opposite
sign from the incident wave, while the reflected current wave has the
same sign. The voltage across B is then less than A, and the current
through it greater than A/Z . The reverse is true if B > Z .

When Z is a pure reactance jX, A'/A is complex and its modulus is
unity. This is to be expected, since no energy is dissipated in a pure
reactance, and the amplitude of the reflected wave must therefore equal
that of the incident wave. We may write the reflection coefficient A'/A
in this case as e3

'

s
, and an algebraic reduction shows that

e*S = (X*-Z*+2jXZ )/(X*+Z*).

Hence tan 8 = 2XZ /(X*~Z*), which may be written in the more con-
venient form tan £S = Z /X.
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In the general case, when Z is complex, the formulae are rather

cumbersome, but may be reduced somewhat by writing Z = Z
1 e

i'f',

A' = A x efi. Then, on clearing imaginary terms from the denominator,

one finds , Z\-Z\^ZXZ^^
A Zl+Zl+2Z1 Z coscf>'

giving il= UZl+2Si-2Z1 Z oOB4^
8 ^ A V \ZI+ZI+2Z1 Z,oob4,)\ (ui9)

The maximum voltage on the line is (A+Aj), and occurs at a voltage

antinode where the incident and reflected voltages are in phase; the

minimum is (A—A-^ at a node where they are in anti-phase. The ratio

(A+AJKA—A x ) is called the voltage standing wave ratio (v.s.w.r.),

and measurement of it together with the position of the node (which is

related to §) form the basis of a method of measuring an unknown im-

pedance Z at short wavelengths (see § 15.3).

Transmission line terminated by another line of different impedance

A special case of a terminated line is one with impedance Zx joined

on to another line of different characteristic impedance Zt . In this case

there will be an incident and a reflected wave on the first line, and a

transmitted wave on the second line. Our equations are then:

first line: yi = A expjwit—x/vJ+A' expjwit+x/vj,

Z1 I1 = Aexj)ja>(t— xjv-l)—A' expjcuit+xlvj);

second line: ^ = A „^^^^
Z2 I2 = A"expja>(t—x/v2 ),

where vx , v2 are the wave velocities on the first and second lines respec-

tively. If the junction is at x = 0, the voltage and current at this point

must be the same on the two lines, so that

A+A' = A",

{A-A')\ZX
= A"\Z2 ,

the solutions of which are

A'/A = (Zi-ZJKZi+ZJ, A"/A = 2Z2
/(Z

2+Z1 ). (11.20)

The former of these is the same as for a line terminated by a resistance

Z2 , as we should expect. The reflected power is the same as in the case

of a real resistance Z2 , and the transmitted power the same as would be
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dissipated in a real resistance. Note that if Z2 > Zlt the voltage on the
second line is greater than that in the incident wave. The power is less,

however, since the characteristic impedance is higher.

Equations (11.20) are identical with the formulae for reflection and
transmission of a plane electromagnetic wave at normal incidence at the
boundary oftwo media (equations (10.41), (10.42), (10.49), and (10.50)).
This shows that there is a close analogy between the characteristic im-
pedance of a transmission line and the intrinsic impedance of a medium
transmitting an electromagnetic wave. The similarity appears also in
the expressions for the power transmitted: in a plane wave we have
(power transmitted across unit area) = N = E%[Z = Z #f(see§ 10.3),
while for a transmission line W = V*/Z = Z 12 (equation (11.16)). The
analogous behaviour makes it possible to adapt many of the formulae
derived below to the case of plane waves.

Input impedance of terminated lines

When the reflection coefficient due to the load Z used to terminate
a line is known, it is a simple matter to calculate the current and voltage,
and hence the effective impedance, at any point in the line. This can
be done for an arbitrary load Z, but we shall limit ourselves to a few of
the simpler and more interesting cases.

For a short-circuited line, Z = and A' = —A in equations (11.18),
so that at a point x = — I on the line (i.e. at the terminals A, Bin Fig
11-14) rrV = A[exp{jto(t+lfv)}-exp{}<oit-lfv)}]

= j2A expjatt sin col/v

= j2A expjwt sin 2ttZ/A

and Z 1 = 2A expjcot cos 2nljX.

The impedance at this point is then

Vjl =jZ ta,n2irl/\. (11.21)

This formula shows that a section of short-circuited line behaves as
a pure reactance. If I is less than a quarter of a wavelength, then
tan27rZ/A is positive and the line behaves like an inductance. If I lies

between a quarter- and a half-wavelength, the tangent is negative and
the line behaves like a capacitance. These statements hold also if we
increase I by an integral number of half-wavelengths.

If the line is open-circuited, A' = +A, and the equations for V and
Z 1 are just interchanged. The impedance at x = —I is therefore

VII = -JZ cot 2ttZ/A. (11.22)
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An open-circuited line, less than a quarter-wavelength long, therefore

behaves like a capacitance; if its length lies between a quarter- and a

half-wavelength, it behaves like an inductance. If its length is exactly

a quarter-wavelength its impedance is zero. Thus if we have an open-

circuited line we can cut off a quarter-wavelength and replace it by a

short circuit without affecting the conditions earlier on the line. For

we then have a short-circuited line of length (I— |A), so the impedance

at the input terminals becomes +jZ ta,n(27rl/\—\ir) — —jZ cot(27rZ/A),

in agreement with the value found directly from equation (11.22).

These results show that a lumped reactance X at the end of a line

can be replaced by a suitable additional length of line, either open- or

short-circuited. We found earlier that the wave reflected by a reactance

has the same amplitude as the incident wave, but a phase change 8,

where tan £S = Z jX. If the reactance is replaced by an open- or short-

circuited length of line, then the wave reflected from the far end will

have the same amplitude as the incident wave, but the phase change

arises from the time taken by the wave to travel the extra distance to

the end of the line and back. At metre wavelengths, suitable lengths

of either coaxial or parallel wire lines are commonly used as inductances

because they have a lower resistance than a coil of wire of the same

'nominal' r.f. resistance. By 'nominal' r.f. resistance is meant the value

which would be calculated from the skin depth for a straight wire. In

a closely wound coil there is an additional energy loss because of eddy

currents induced by the oscillatory currents in neighbouring turns; this

is known as the 'proximity effect', and increases the effective r.f. re-

sistance. Its effect is minimized by using straight wires, as in a section

of a transmission line.

The transmission line as a transformer

Since the voltage and current are in different ratio at the input

terminals of a line from the ratio they bear at the output terminals, it

follows that a line can be used as an impedance transformer. The case

of greatest interest is that of a line one-quarter wavelength long. If the

terminating impedance Z is at x = 0, then at the point x = — JA, the

voltage and current are

V = Aexpj(wt+%TT)+A'expj(cot— \tt) = j(A—A')expja>t,

Z I = j(A+A')exvjwt,

and V/I = Z (A-A')l(A+A') = Z\\Z, (11.23)

showing that the terminating impedance has been transformed to Z\\Z,.
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In this respect a quarter-wave line behaves like a tuned circuit, which
transforms a series resistance R into a parallel resistance L[CR. Since

%o = L/C, the formulae are similar in the two cases.

The quarter-wave transformer may be used to match a load Z to a
transmission line of impedance Z by inserting immediately before the
load a JA section of line whose impedance Zx is such that Z\jZ = Z .

If Z and Zx are lines of the same dimensions but in different dielectric
media, the situation is exactly analogous to the 'blooming' of optical
lenses. The fraction of the incident intensity reflected from an air-glass
surface is about 4 per cent, and the loss of light in an optical system
with ten or twenty surfaces is serious. The reflection may be reduced by
depositing on the surface a quarter-wave thick layer of material of low
refractive index, ideally equal to the square root of the refractive index
of the glass. The thickness is adjusted to be correct for the middle of
the optical region, and is thus not quite correct for the ends of this
region. 'Bloomed' surfaces appear slightly purple, therefore, owing to
reflection of the red and blue rays. Quarter-wave films have also been
used to produce highly reflecting layers. If the film is of characteristic
impedance Zx ,

and the initial and final media are the same (impedance
Z ), the film acts as a medium of impedance Z\/Z , or refractive index
»~2

, where n is the actual index of the film, assumed to be in air. A film
of glass (n = 1-5) will then reflect 38 per cent of the incident intensity.
Further details of these optical applications are given by Kuhn (1951).
The half-wave transformer is also of interest. It may be regarded as

two consecutive quarter-wave transformers, giving an impedance

ZSKZS/Z) = Z.

Alternatively, this result may be obtained directly, since ifwe move one
half-wave along a line, all voltages and currents are the same except for
their reversed sign. The half-wave line is therefore a 1:1 transformer A
typical use is that of a connecting link between two pieces of apparatus,
which makes the impedance of either appear unchanged. This is often
useful at very short wavelengths where connecting wires sufficiently
short to give no impedance transformation are not practicable.

11.5. Attenuation on lossy lines, and resonant lines

When there is loss present on a transmission line (R, G not zero), the
velocity of a wave is altered, and it is attenuated. Writing h as «+ift
equation (11.11) can be separated into real and imaginary parts, giving

«2-/?2 = RG-LCa>\ 2ap = (GL+RC)o>.
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These equations may be solved exactly for a and /J, but it is more
instructive to solve them approximately, assuming R, G to be small.

Then

The velocity is approximately

^-irnhMv-*!}- <n '25)

showing that it is altered only in the second order. The power flowing

along the line decays as it travels along as (using Z = ^J(LjG))

exp(— 2ax) = exp{— (BIZ +OZ )x).

The two terms in the exponential represent just the fraction of the

stored energy which is dissipated per unit length in the resistance and
conductance respectively. We see that if B/Z and 6Z are both small,

the line is distortionless in the first approximation, since neither the

velocity of the wave nor its attenuation depend on the frequency to

this order. In the next approximation, distortion arises from the change

in velocity with frequency and this is most serious at low frequencies.

At high frequencies (owing to skin effect) the resistance rises, increas-

ing a. If O is negligible, distortion may be reduced by increasing L. On
telephone land lines this is accomplished by introducing inductances in

series with the line at regular intervals. This also reduces the attenua-

tion, since it increases Z , but gives the line a periodic structure so that it

behaves like a low-pass filter. The cut-off frequency must be kept above

the audio-frequency range, and to do this the spacing of the inductances

must be small compared with the shortest wavelength which it is re-

quired to transmit. The distortion can also be greatly reduced by trans-

mitting a voice-modulated signal of, say, 100 000 c/s frequency, instead

of the actual voice frequency range of 100 to 10 000 c/s. Although the

band-width required is the same, the fractional change in frequency

involved is very much smaller.

In the laboratory, the lengths ofline used are so short that attenuation

is negligible except at the highest frequencies, where B rises owing to

the skin effect. To obtain a numerical value, let us take an air-spaced

coaxial line at a frequency of 3 X 109 c/s (A = 10 cm). Then for copper

the skin depth 8 is about 1-2 X 10~4 cm. If the conductor dimensions are

a = 2-5 mm, 6 = 8 mm (giving a 70-ohm line),

R = pi——J _| = 1-2 ohm/metre.
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Then a. = 8 x 10~3 per metre, and the power transmitted along the line
will fall by a factor of 1/e in a distance of 60 metres.

If the space between the conductors is filled with a dielectric, the
attenuation due to dielectric loss will be important unless the dielectric
is of the highest quality. If its loss tangent is tanS, then G = a>C tan S,

2« = GZ = w(iC)UanS = (w/w)tanS = (fcr/AJtanS,

where Ax is the wavelength in the dielectric. If its dielectric constant is

2-2, and tan 8 = 2x 10-*, a = 9x 10-3 per metre at A = 10 cm, which
is as large as that due to the resistance. For this reason high-frequency
cables are often made with some device such as an open spiral of poly-
thene string supporting the centre conductor in order to reduce the
amount of dielectric in the position of maximum electric field.

In calculating the loss on the line we have taken no account of energy
lost by radiation, though we might expect each element ofthe conductors
to radiate since it carries an alternating current. A transmission line
has two conductors carrying equal and opposite currents, however, and
in computing the radiation we must allow for the destructive inter-
ference between their two radiation patterns. For a parallel wire line
this does not give an exact null, but the maximum phase difference
between the signals from the two wires in any direction will differ from
n at most by 27r(2d)/A, where Id is the separation between the two con-
ductors. Hence the radiated energy is less than that from a single wire
by a factor of the order (djXf, and is small if d < A. The coaxial line
gives an exact null because the one current entirely encloses the other,
and the magnetic field at any external point is zero. For this reason
coaxial lines are to be preferred at wavelengths less than about a metre.

Transmission lines as tuned circuits

If we have a quarter-wave section of loss-free line, short-circuited at
one end, then the impedance measured at the other end is infinite.
Similarly, if it is open-circuited at one end, then the input impedance
at the other end is zero. We have already seen that if a resistance R is

connected across one end, the impedance at the other end is

Z\\R = L/CR.

Thus in all respects the section behaves like a tuned circuit. If R is zero
or infinity, the input impedance will only be infinity or zero so long as
the line is completely loss-free. This, of course, will never occur in
practice, and to assess the properties of the section as a tuned circuit
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we must include the effect of distributed losses. We can do this by

bringing in the attenuation constant a.

We will assume that the section is open-circuited at the far end, so

that A' = A. Then the voltage and current at a point x = — I are

(since A is the incident voltage amplitude at x = 0)

V = A expjjL*+-^|+aZJ+expH|w*—^j_ajj ,

Z I = A\eiqeuLt+^\+ocl\-exvULt—~j_ az}j-

The impedance Z at this point is then given by

Z = l+arp{-j4»rf/A-2«Q

Z 1—exp{-j^ttIJX— 2<xl}'
K

' '

We now assume that the length of the line I is close to an odd multiple

of a quarter-wavelength, and examine how the impedance changes in

the neighbourhood of this point. In the complex exponentials of equa-

tion (11.26) the imaginary part of the argument gives a rapid variation

and the real part (which is assumed to be small) a slow variation. We
therefore treat them separately, and write I = {(2»+l)A/4}+AZ in the

imaginary part only. Then the exponential becomes

exp{—j(2n+l)ir—j^ttAIJX—2x1} — —exp(—j^Al/X— 2<xl)

« —(1—j4rrAZ/A— 2oZ),

where we have assumed that both Al/X and oil are small. Thus the im-

pedance becomes

(11.27)

where only small quantities of the first order have been retained. This

equation is of the same form as equation (9.20) for a series tuned circuit

near resonance, which is

Z = r(l+j2QAo>K)

since Al/l = —AA/A = Aa>/w (here the minus sign is introduced in re-

lating Al/l to AA/A because increasing the length of the line has the same

effect as shortening the wavelength of the applied radiation). Hence

at resonance the quarter-wavelength line (or a line an odd multiple of

this length) behaves as a series tuned circuit with a resistance Z al and

a quality factor Q = tr/aX.
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In making measurements at short wavelengths it is always advisable
to keep the generator frequency constant, if possible, and vary the
element under test, since this avoids errors due to detectors, connecting
lines, etc., being frequency sensitive. Equation (11.27) shows that we
may conveniently measure Q by finding the fractional change in length
of the line (M/l) required to move between the points at which the im-
pedance rises to V2 of its minimum value.

To find a numerical value for Q we take the value a = 8 x 10-3 per
metre found earlier for an air-spaced coaxial line at 10 cm wavelength.
This gives Q = 4000, which is very much higher than can be obtained
normally with a lumped circuit at medium radio-frequencies. Q is inde-
pendent of the number of quarter-wavelengths in the section, but the
series resistance r = Z cxl = 1-4 x 10-2(2rc+l) ohms. Thus r increases
when we make n larger, but Q does not change. This is because Q
depends on the ratio of the stored energy to the energy dissipated, and
both of these increase as the length of the line increases.

The impedance of a short-circuited quarter-wave line can readily be
calculated from the above, since in this case A' = —A, and the formulae
are the same, if we interchange V and Z 1. This gives

showing that at resonance the impedance is Z /al = Z\\r = L/Cr, the
same expression as for a parallel tuned circuit. For a single quarter-
wavelength of the coaxial line considered previously, the parallel im-
pedance is 350 000 ohms, showing that the line makes a good anode
load for an oscillator or amplifier. In practice the line would be rather
shorter than a quarter-wavelength, when it behaves as an inductance
which can be adjusted to resonate with the anode capacitance of the
vacuum tube (see Chapter 14).

11.6. Guided waves—propagation between two parallel con-
ducting planes

When an electromagnetic wave is launched from an aerial into free
space (or a non-conducting medium) its amplitude falls off inversely
with the distance owing to the spreading out of the wave in a spherical
wave front. There is no dissipation of energy, but the power flowing
through unit area normal to the wave front falls off according to the
inverse square law. On the other hand, a wave sent along a coaxial line

suffers no diminution in amplitude, apart from that due to resistive
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losses, because it is confined to the space between the conductors and
does not spread out. Such a wave is a guided wave, and a more rigorous

approach than that adopted in the preceding sections would be to

solve Maxwell's equations with the boundary conditions that the tan-

gential components of the electric field must be zero at the conductors

(assuming these to be perfect conductors). Such an approach would

Fig. 11.15. Coordinate system for propagation between two parallel planes.

have shown that with two parallel conductors a solution can be found

giving a purely transverse wave (no components of E or H in the direc-

tion of propagation) which is freely propagated at all frequencies with

the same velocity as a wave in the unbounded medium. With a single

hollow conductor this is no longer the case, though the fact that it is

possible to see down a metal tube shows that some form of electro-

magnetic wave can be propagated through it. Such a wave is again

a guided wave, since it must move in the direction of the tube. As a

preliminary to studying propagation through such a tube (known as

a 'waveguide'), we shall investigate the problem ofpropagation between

two parallel infinite perfectly conducting planes, separated by a distance

c, as shown in Fig. 11.15.

A Cartesian coordinate system may be defined by taking the con-

ductors to be the planes 2 = and z = c, and assuming that the wave
is propagated parallel to the rc-axis, which is normal to the plane of the

paper. The boundary conditions now demand that any components of

the electric field (Ex or Ey ) tangential to the planes must vanish at the

planes z = and z = c. We try to find the simplest possible solution

of Maxwell's equations consistent with these demands, and begin by
assuming a purely transverse plane wave in which both Ex and Hx are

zero, such as we would have in the absence of the conductors. If this

wave is polarized with its electric vector normal to the planes (i.e.
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Ey = 0) it is readily seen that the boundary conditions are satisfied

automatically, and a wave of this polarization is possible. The solutions
are of the same form as for a wave in the unbounded medium, and the
velocity is also the same. On the other hand, a plane wave in which
the field components do not vary with z is obviously impossible if the
electric vector is parallel to the planes, since Ey must be zero at z =
and z — c and will be zero everywhere unless we allow it to vary with z.

We must therefore examine whether it is possible to have a wave in

which Ey is finite, but Ee and Ex are both zero, so that the electric field

is purely transverse. The field components ofH can then be computed
from Maxwell's equations. We shall assume that the wave is propa-
gated as exp(ja>t—hx), so thatwe can replace differentiation with respect
to / and x by multiplication by jco and —h respectively. Then, if the
medium between the planes has dielectric constant e, magnetic permea-
bility n, and zero conductivity, the curl equations (10.3) and (10.7) give

the following components

:

-JWo^ = -8E
yldz\

-fan^Hy = , (11.29)

~jo}fifx, Hs
= —hEv J

= dHJdy-dHJdz}
jcoet Ey = dHJdz+hH, , (11.30)

= -hHy-8HJ8y)
where we have already assumed Ex = Es

= 0. Equations (11.29) show
immediately that Hy = 0, but Hx cannot be zero unless dEyj8z is zero,

and this is not allowed by the boundary conditions. Hence the wave
will not be purely transverse, but will have a component of H in the

direction of propagation. On putting Hy
= in equations (11.30), we

see that SHjBy and dHJdy are both zero, so that there is no variation

in the ^/-direction, and examination of the components of divE =
shows this to be true also ofEy . The remaining components ofequations

(11.29) and (11.30) therefore reduce to

ja>w Hx = 8Ej8z \

ja)Hj, Hz = hEy . (11.31)

ja>eeo Ey = BHJdz+hHj
Elimination of Hx and He between these three equations gives

-wVo«o^v = 8*EyldzZ+h*Ey
or d*EJ8z* = ~(h*+a>2y)E

y , (11.32)

where v = (ju/x ee )~* is the velocity of an electromagnetic wave in the



318 FILTERS, TRANSMISSION LINES, AND WAVEGUIDES [11.6

unbounded medium (in the absence of the conducting planes we could

put 8/8z = and obtain this result directly from equation (11.32), since

h must then be an imaginary quantity jfi, and v = oj//3). The solution

of equation (11.32) can be written in the form

Ey — A sin(imz/c)

+

B cos{Trnz/c)

and the boundary conditions Ey = at z = and z = c require that
B = and n must be an integer. To satisfy equation (11.32) we must
haV6

(mr/c) 2 = A2+a>>2

and hence h=^-^. (n.33)

Hence h is either real or purely imaginary according to whether the
quantity inside the square root is positive or negative. It is clear that
at low frequencies h will be real, and the wave will then be attenuated.

At sufficiently high frequencies h will be imaginary, and waves will be
freely transmitted without attenuation; thus the system acts as a high-
pass filter. The condition for free transmission of waves is that

w/v > rnrjc.

Since u/v = 2tt/X , where A is the wavelength of the radiation in the
unbounded medium, this condition may be written in the form

A < 2c/n.

Hence 2c/n is the cut-off wavelength Ac , and only radiation of shorter
wavelength is freely transmitted. In the pass band we may write

h=jfi= j{2ttI\), where Xg is the apparent wavelength of the radiation
in the guide; that is, it is the distance between points along the o;-axis

where the phase differs by 2tt. Equation (11.33) then reduces to

This is known as the 'waveguide equation', and it is found to hold for
any shape of waveguide, although it has here been deduced only for a
simple special case. The cut-off wavelength A„ depends on the shape
and dimensions of the waveguide, and on the mode of propagation (i.e.

in the present case, on the values of c and n respectively).

Equation (11.34) shows that the wavelength in the guide is always
greater than that in the unbounded medium A . When A < Ac, Xg ap-
proaches Ao, while when A -+ Xc, Xg tends to infinity. The phase velocity
in the guide behaves in the same way as Xg, since

»IP=f\, (11.35)o>
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showing that vg is always greater than the velocity in the unbounded
medium. If the guide contains no material medium, the phase velocity
will be greater than the velocity oflight (/A ) in free space, since \g >V
This does not mean that energy is transmitted with a velocity greater
than that of light, since we have dispersion: the phase velocity depends

Fig. 11.16. Variation of the phase velocity »,, (broken line)
and group velocity ue (full line) in a waveguide.

on the frequency, and does not equal the group velocity ug = dco/d/J.

From equation (11.33)

and hence 2P(dp/dw) = 2wjv2
,

8iving (co/p)(da>ldp) = v
g
ug = v\ (11.36)

Since v
g
is always greater than v, it follows that ug is always less than v,

and is thus always less than the velocity of light. The behaviour of ug
and vg is illustrated in Fig. 1 1 . 1 6 ; these relations hold for all waveguides,
since they depend only on the waveguide equation (11.34).

The propagation of waves between two- parallel conducting planes
may be considered in another way which is illuminating, particularly

in respect of the group and phase velocity. The wave motion may be
regarded as consisting of an ordinary plane wave, with the same pro-

perties as a wave in the unbounded medium, which is multiply reflected
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from the two planes. The normal to the wave front is assumed to make
an angle 6 with the normal to the conducting planes, as in Fig. 11.17.

From Figs. 10.4, 10.5, if we replace 6 by n—d, the components of such

incident and reflected waves are given by equations (10.36) and (10.37),

if the electric vector is in the plane of incidence, or equations (10.46)

and (10.47) if it is normal to the plane of incidence. In either case we
must satisfy the boundary conditions, that the tangential components
of E must be zero all over the planes z = and z = c. For the former

L" M" L' M'

/.\ \
x V

>!__ *,__}*

Fig. 11.17. Reflection of ordinary plane waves between two parallel planes. FO, OH
normals to wave fronts incident and reflected at plane z = 0. LL' , MM' incident wave
fronts ; LL", MM" reflected wave fronts, differing in phase by 2v. LM gives the guide

wavelength A
ff

.

case (electric vector in plane of incidence) the first of these conditions

gives A' = —A in order to make the x-component of E zero at z = 0;

the same condition is obtained at z = c if we take cos 9 = (6 = \tt).

This makes the ^-component of E zero everywhere, but E
z and Hy are

finite, so that we have a simple plane wave moving in the ^-direction;

this wave is purely transverse, and moves with the same velocity as in

the unbounded medium.

When the electric vector is normal to the plane of incidence, to make
the ^-component of E zero at z = 0, we must take B' = —B in equa-
tions (10.46) and (10.47). At other points the amplitude of the ^-com-
ponent of E is then (replacing 8 by it— 6)

Ey
= B{FX-F2 )

= B exp{jw(t—x sin 0/i;)}{exp(jaiz cos 0/v)—exp(—jcuz cos Ojv)}

= 2jBsm(wzcos6/v)exp{ja>(t—xsm6/v)}, (11.37)

where we have written v for the velocity in the unbounded medium. At
the plane z — c the field component given by equation (11.37) is zero

provided that a , „ „,..r coc cos 6/v = 2ttccos6/X = nn

or cos0 = X (n/2c) = A /Ac , (11.38)
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where Ac is the cut-off wavelength as previously defined, and A is the
wavelength in the unbounded medium. This equation shows clearly
that no wave is possible for A„ > AC) for then there is no real value of 6
which satisfies it.

The wavelength A is defined as the normal distance between two wave
fronts such as LU and MM' in the plane waves where the phase differs
by 2tt; these wave fronts have an intercept LM on the plane z = 0, and
the length of this intercept, which gives the apparent wavelength A of
a wave propagated in the ^-direction, is AJsin 0. Hence

'

sin0 = A<A, (11.39)
and on combining this with equation (11.38) we have

1/A§ = (sin20+cos20)/A§ = 1/Ajj+l/A?,

which is the 'waveguide equation' already derived (equation (11.34)).We see that it follows from the fact that only one angle 8 is possible for
the direction of our multiply reflected plane wave in order to satisfy
both the boundary conditions. The energy flow travels with velocity v
in the plane wave in a direction normal to the plane wave front (that
is, along FG or GH); the component of this velocity in the a;-direction
is v sin 0, and this is the speed ug at which the energy flows in the guided
wave. On the other hand, the phase velocity vg ofthe guided wave, from
equation (11.37), is vjsm6; hence u

g
vg = v\ as shown earlier (equation

(1 1.36)). (It should be noted that the possibility of v
g being greater than

v is not peculiar to electromagnetic waves; the effect can be observed
by watching the movement parallel to a reflecting boundary of a crest
in any wave motion, as, for example, in water waves being reflected at
an angle from a breakwater.) The behaviour of our guided wave when
Ao is equal to the cut-off wavelength Ac can be understood ifwe remember
that this requires 9 = 0; that is, the wave motion is an ordinary plane
wave being reflected at normal incidence between the two planes. Then
no energy is propagated in the ^-direction, so that ug = 0; but the phase
at a given value of z is independent of x, so that the apparent phase
velocity vg in the a;-direction is infinite.

11.7. Waveguides
The type ofwave we have been considering, propagated between two

parallel planes, has the following components:

Ev = Asm{2TTZJX^B\n{(ut—2TTXJ\
g)

Hx = —^(Ao/£iAc)cos(2t7z/Ac)cosM—217^) \. (11.40)

Hs = A{XQIZ1 Xg)sin(27TZJXc)sm{a)t-27TxlXg)
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These components may either be obtained from equations (10.46) and

(10.47) (e.g. Ey is found by taking the real part of equation (11.37) and

writing 2B = —A), or by taking Ev as the appropriate solution of equa-

tion (11.32) and using equations (11.31); Ztx is the intrinsic impedance

of the medium between the conducting planes. These equations show

that for a given value of Ac , the component Hx in the direction of propa-

gation diminishes in amplitude as A is decreased, so that the wave

« b *\

E,

»

c

*~

" It

itt
-

I ' i mi i
* I j+m

/ (a) (6)

Fig. 11.18. Rectangular waveguide with TE01 mode.

(a) Lines of electric field .

(6) Lines of magnetic field and current flow •— >.

approaches a purely transverse wave travelling along the x-axis. As

A„ -> Ac, Hs
-> since A /A

ff

-> 0, giving in the limit a transverse wave

travelling along the z-axis.

Since the only electric field component is in the ^-direction, it is pos-

sible to insert conducting planes normal to the 2/-axis without introduc-

ing any new boundary conditions. We have then a closed rectangular

waveguide, as shown in Fig. 11.18(a), bounded by the perfectly con-

ducting planes z = 0, z = c; y = 0, y = b. The field components within

the guide are given by equations (11.40), and are zero outside. This

type of wave is designated TE0n (or iEf0m ); TE means 'transverse elec-

tric', indicating that there is no electric field component in the direction

of propagation; the subscripts 0, n mean that there is no variation in

the y-direction of any field component, while in the z-direction they vary

as sin or cos (tttiz/c). The simplest wave (n = 1) is shown in Fig. 11.18,

and this is also the mode with the largest cut-off wavelength Ac = 2c.

It is therefore used as the standard mode for waveguide propagation,

and the guide dimensions are chosen so that 2c > A > c for the wave-
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length it is desired to propagate. No higher mode (with n = 2 or more)
can then be propagated; this has the advantage that waves of higher
modes, set up by a local disturbance of the field (due to discontinuities

or changes in the guide dimensions), decay exponentially along the
guide. By making the dimension b less than Aq/2, no TE mode can be
propagated with the electric vector polarized in the z-direction; and it

can be shown that all other modes have still smaller cut-off wavelengths,
and so cannot be propagated.

The field components in the TE01 mode are shown in Fig. 11.18.

Ey is a maximum in the centre of the guide, and zero at the planes

2 = and z = c; it varies sinusoidally with z, with just one half-period

of variation (modes with higher values of n make n half-periods of
variation, and so require a correspondingly larger value of c for a given
A ). The components of the magnetic field are everywhere tangential to
the boundaries, and the lines ofmagnetic field are shown in Fig. 11.18(b),

where the guide is viewed looking down on the broad face. The lines of

magnetic field encircle the points at which 8Eyjdt is greatest; that is, the
points where the displacement current is greatest. This corresponds to

Maxwell's equation curlH = SDjdt, which implies that a displacement
current (a changing electric displacement) is encircled by fines of mag-
netic field. The lines of displacement current flow are completed by
conduction current flowing in the conducting walls; such current flow

is always normal to the magnetic field at the surface of the wall. The
direction of conduction current flow is also shown in Fig. 11.18 (6). The
lines of current flow (displacement plus conduction) encircle the regions

of changing magnetic flux, corresponding thus to curlE = —dBjdt.
We may form a physical picture of the propagation of the wave in

this way, since an oscillating electric field sets up and is encircled by an
oscillating magnetic field, which in turn sets up and is encircled by an
oscillating electric field; this has a component further on, a half-wave-
length from the original disturbance. The lines of E and dBjdt are in

perpendicular planes (similarlyH and dD/dt), and may be crudely repre-

sented by the links of a chain. In an ordinary plane wave in free space
the lines of force go to infinity, and may be considered to join up there.

Study of the propagation characteristics of waves in guides of other
than rectangular shape involves the use of more complex mathematics,
and we mention only the cylindrical waveguide. This involves the
solution of the wave equation or Maxwell's equations in cylindrical

coordinates, and requires the use of Bessel functions. Waves may be
designated as TMmn or TEmn , according as there is no magnetic or no
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Fig. 11.19. Approximate configurations of electric and magnetic fields in a cylindrical
waveguide. Propagation is directed away from the observer or to the right.

(a) TEn or Hn mode; (6) TMttl orE01 mode; (c) TE01 or H01 mode (after Southworth,
1936, Bell System TechnicalJournal, 15, 287 (by courtesy of Bell Telephone Laboratories)

;

or see Proc. I.R.E. 1937, p. 237).

electric field in the direction ofpropagation; the first subscript indicates

that the field components vary as cos or sin m<£, where cf> is the azimuthal
angle, while the second gives the number of values of the radius at which
the electric field components other than the radial component E

T are

zero. The simplest modes are TEn , which is rather similar to the TE01

mode in rectangular guide; the electric field is purely transverse, and
distributed as shown in Fig. 11.19 (a); the cut-off wavelength is l-707d,
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where d is the diameter of the guide. The 2W01 mode has a transverse
magnetic field whose lines of force are circular; the cut-off wavelength
is 1-30&Z, and the mode is similar to that in a coaxial line except that
the conduction current in the centre conductor is replaced by displace-
ment current, with lines of E running down the centre and turning
outwards to terminate on the wall as in Kg. 11.19 (6). The TE01 mode
is rather similar, but with the lines of electric field and magnetic field
interchanged; the electric field has closed circular lines of force and is
purely transverse, while the magnetic field is greatest down the axis
(see Fig. 11.19(c)); the cut-off wavelength is 0-820d.

Cavity resonators

If a length of waveguide is closed by conducting walls at each end,
it will resonate at wavelengths such that the distance between the end
walls is a multiple of half a guide wavelength. In the case of a rectan-
gular guide closed by conducting walls normal to the z-axis a distance a
apart, the distance a must be $\g where I is an integer, in order that the
electric field (which is tangential to the end walls) may be zero at the
two ends. From equation (11.34) the wavelength A in the unbounded
medium at which the rectangular cavity will resonate in a TE mode
is thus given by

1

ArM+y- (11 -41)

This is a special case of the more general formula for a TEmn mode, for
which .

Ai=y +(i)+g)
2

<»**>

for a rectangular cavity of dimensions a, b, c; this formula may be recog-
nized as that used in the theory of heat radiation in computing the
resonant modes of a hollow rectangular cavity (see Problem 11.12).
The most important quantity for any resonant system is its quality

factor, #; this may be found for a waveguide cavity by using the relation
(see § 9.3)

Q = to(energy stored)/(energy dissipated per sec).

The total stored energy may be computed by integrating the energy
density in the cavity, while the total energy dissipated in the metallic
walls (owing to their finite resistivity) can be found by using equation
(10.34 a). The order of magnitude of Q can readily be found without
carrying through the details of the integration in the following way. If
the amplitude of the oscillating magnetic field in the cavity is H , the
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stored energy « %p Ho ^> where V is the volume of the cavity (assumed

to be evacuated), while the energy lost at the walls « \pHlAj8, where

A is the total wall area, p and 8 the resistivity and skin depth in the

wall. Hence

Q » a>(& Hl V)l(ipHlAIS) = (V/A^wB^p) « V/(A8) (11.43)

assuming the magnetic permeabihty of the wall to be unity, and using

equation (10.31). This result shows that at a given wavelength the

value of Q increases with the linear dimensions of the resonator; while

at different wavelengths, if the linear dimensions are scaled in propor-

tion to the wavelength, Q varies as A$, since 8 varies as A^, and V/A as

A . For a given wavelength and size of cavity Q does not vary greatly

with the mode of resonance, with one exception. The TE01 mode in

a cylindrical cavity has rather a high Q, and there is no radial flow of

current on the end walls; for this reason it is used in wavemeters (see

§ 15.4) where one end is a movable plunger. A good contact between

this and the cylindrical wall is not essential to a high Q, since there is

no current flow across the contact. A value of 10 000 may be obtained

for Q at centimetre wavelengths, and the sharpness of resonance is thus

rather higher than for a resonant coaxial line, mainly because there is

no centre conductor with its rather high current density to contribute

to the dissipation of energy.
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PROBLEMS
11.1. Show that if 2,x and Z2 in a simple filter are both pure resistances or pure

capacitancesthe filteracts asanattenuator at all frequencies. Calculate the attenua-

tion per section when both Zx and Z2
are pure resistances of 100 ohms, and find

the iterative impedance of a T-section.

(Answers: Power falls by factor 6-8 per section; Zr = 112 ohms.)

11.2. A filter where Zt Z2
= k*, a constant independent of frequency, is called

a constant-A; filter. Show that the simple low-pass and high-pass filters of § 11.2

are of this type, but the band-pass filter of Fig. 11.10 is not.

Show that the filter section of Fig. 1 1 . 1 2 is a band-pass section of the constant-fc

type provided that LtCx
= £aC2 , when &a = LJQ = LJC^. If/i,/2 are the lower

and upper frequency limits of the pass band, show that they satisfy the relations

iK/i-A) = */£i = (fcc-*)-1
; ZjJlj-7)

= LJk " Wl '

k 41

t
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11.3. The values of the components in the m-derived 7-section shown in
Fig. 11.11 (o) obey the relations (ra < 1)

Lt = mL, C2 = mC, L2 = L(l-m*)/4m.

Show that the section behaves as a low-pass filter with the following properties:
(a) the cut-off frequency /„ is independent of m; (b) the iterative impedance is
ZT = (L/C— <o2Z2

/4)*, and is thus the same as that of a simple low-pass filter
section in § 11.2; (c) the attenuation in the stop band is infinite at a frequency
f = fo/(l~m*)i.

11.4. A chain of the T-sections of Fig. 11.11 (a) is terminated by the half-section
shown in Fig. 11.11(6), where the values ofthe components obey the same relations
as in the preceding problem. Prove that the impedance at the terminals CD is

z = /£\*{l-(l-m')/y/g}
\c) (1-/V/2)* '

If m = 0-6, show that this does not depart by more than 4 per cent from the
value (L/C)* for frequencies up to 85 per cent of the cut-off frequency /„. Thus
the use of a half-section as a transformer gives a more uniform impedance in the
pass band.

1 1 .5. Find expressions for the electric and magnetic fields in a coaxial transmission
line carrying a current /and a voltage V, and showby integrating Poynting's vector
over the cross-section between the two conductors that the power flowing along
the line is IV.

If the conductors have a finite resistivity, compute the power flowing into them
per unit length by means of equation (10.34 a), and show that this gives the same
attenuation as calculated in § 11.5.

11.6. In an infinite transmission line a leak develops at one point whose resistance
is just equal to the characteristic impedance of the line. Show that of the power
in the incident wave one-ninth is reflected, four-ninths is transmitted, and four-
ninths is dissipated in the leak.

11.7. A length of loss-less transmission line is first short-circuited at one end and
then open-circuited; the impedance measured at the other end is Z

x in the first
case and Z3 in the second. Show that Z^ = Z%, where Z is the characteristic
impedance of the line. This is a convenient way of measuring Z„ for a cable of
unknown electrical length.

11.8. A film of cryolite (refractive index 1-35) one-quarter wavelength thick
is deposited on a glass surface (n = 1-50). Show that the reflected intensity is
reduced to about 1 per cent.

A reflecting film is made up of a layer of cryolite (w2 = 1-35) placed between
two layers of Ti0

2 (n
x = 2-45). Each layer is one-quarter of a wavelength thick.

Show that the ratio of the reflected to the incident amplitude is (n\— ni)/(ri$+ni),
and that the reflected intensity is about 81 per cent of the incident intensity
(assume normal incidence).

1 1 .9. A quarter-wavelength, air-spaced, parallel wire transmission line is found to
be in resonance with an oscillator when its length is 25 cm. When a capacitance
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of 1 fifiF is connected across the open end, it is found that the length of the line

must be reduced to 12-5 cm to obtain resonance. Show that the characteristic

impedance of the line is approximately 530 ohms.

11.10. Show, either by the use of equations similar to (11.29) and (11.30) but
with the assumptionsHx = H^ = 0, or by the use of equations ( 10.36) and (10.37),

that a wave can be propagated between two parallel conducting planes with the
following field components:

Hy = (A/Z1)eos(2irz/X,.)ooa(o)t— 2irx/\,),

Ex = (4A /Ac)sm(27rz/Ac)sm(co<-27ra;/A(,),

Ez = — (^A /A,)cos(27re/A
c)cos(o><— 2Trx/Xg ),

where Ac and A„ have the same values as for the transverse electric wave derived
in § 11.6. This wave is a transverse magnetic wave, and may be designated as

TMon ; note that it cannot exist in a closed rectangular guide because the tangential

components of E must then vanish at the walls y = and y = b. The lowest

transverse magnetic wave then possible would be TMn , with componentsHv , Hz,

Ex , Eg each varying sinusoidally in both the y- and z-directions.

11.11. A hollow cubical box ofside a resonates in the TE101 mode (that is I = n = 1

in equation ( 1 1 .41 )). Calculate the energy stored and energy dissipated per second,

and show that the value of Q = a/2S,'where 8 is the skin depth in the metal walls

at the resonant frequency.

11.12. A hollow rectangular box is bounded by perfectly conducting planes at

x = 0, x — a; y = 0, y = 6; z = 0, z = c. Show that the standing wave system

Ex = ^cosaajsin/fysinyzexpyarf),

Ey = Ay sinotxcoaf}ysinyzexp(jci)t),

E% — AgSinaxsin^ycosyzeKpfjcot)

satisfies the boundary conditions provided that oca = lir, j86 = mn, yc = wrr, and
that the wave equation is satisfied if

i«^y.- (£)•+£)+©' -(£)-*
Show also that, to satisfy divD = 0,

<xAx+pAy+yAt = 0.

(In general there can be only two independent amplitudes, corresponding to the

two possible polarizations of an electromagnetic wave.)
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THERMIONIC VACUUM TUBES

If a tungsten wire is heated in vacuo to a temperature of about 2500° K,
it is found that electrons are emitted from the surface of the metal.
Other metals and some metallic oxides show the same effect, known as
thermionic emission (§ 4.4). If a second electrode is placed in the same
evacuated envelope, and held at a positive potential with respect to the
first, then the emitted electrons will be attracted to the second electrode,

and a current will flow. This phenomenon is the basis of the radio tube,
and the device just described is known as a diode. The surface emitting
electrons is called the cathode, and that receiving them the anode. If the
anode is cold, and emits no electrons, then no current will flow if it is

made negative with respect to the cathode; the device acts as a valve,
permitting only a unidirectional flow of current. The diode may thus be
used to 'rectify'; that is, to convert an alternating current into a direct
current. If a third electrode in the form of a grid is inserted between the
cathode and the anode, a 'triode' tube is formed, which may be used to
amplify an alternating voltage, or to sustain an alternating current in
a tuned circuit; that is, to act as a generator of oscillations. In these
two operations the tube is converting energy from a d.c. source into a.c.

energy while, in rectification, a.c. energy is transformed into d.c. energy.
The generic name for the diode, triode, and similar devices utilizing the
flow of electrons from a hot surface is the thermionic vacuum tube, and
it is one of the fundamental tools of modern physics and of modern
technology. In this chapter an outline is given of the mode of action
of the thermionic vacuum tube and its chief uses.

12.1. Construction of the thermionic vacuum tube
The number of materials available for use as cathodes is severely

limited by the requirement of high electron emission at temperatures
where the material does not disintegrate. The emission current per
unit area of a cathode surface at absolute temperature T is given by
equation (4.21)

J = AT2e-<HkT
,

where the constants A and
<f>
depend on the material, a few values being

given in Table 4.1. The temperature at which adequate emission is
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obtained is determined primarily by the value of the work function,
<f>.

Ofthe materials listed in Table 4. 1 those in most general use are tungsten,

thoriated tungsten, and a barium oxide-strontium oxide mixture. The
temperatures required are approximately 2500°, 1900°, and 1100° K
respectively for current densities of the order of 1 A/cm 2

.

Tungsten and thoriated tungsten (often known as 'bright emitter'

and 'dull emitter' respectively) are used in the form of fine filaments

heated by the passage of electric current through them, this being the

only practical method of maintaining the high temperatures required.

Pure tungsten is very resistant to 'poisoning' by residual gas and will

give long life in transmitting tubes where the anode potential may be
10 000 V or more. Thoriated tungsten is less good in these respects, but
the lower operating temperature is a considerable advantage. One to two
per cent of thorium oxide is added to the tungsten during manufacture,

and after the tube has been evacuated the filament is 'activated' by
temporarily running it at a very high temperature. Some of the thorium

oxide is thereby decomposed, the thorium atoms migrating to the sur-

face where they form a monatomic layer with a lower work function.

The oxide-coated cathode, owing to its low working temperature, has

the great advantage that it can be heated indirectly, thus making it pos-

sible to have an equipotential cathode. In small receiving triodes the

voltage drop along a directly heated filament is comparable with the vol-

tage difference between grid and cathode, so that this voltage difference

cannot everywhere be the optimum. In addition, the filament cannot

be heated with a.c, since the alternating voltage difference between

various parts of the filament and the grid would be amplified and cause

an intolerable hum. The indirectly-heated cathode is generally made
of a nickel tube, of circular or rectangular cross-section, with an internal

heater of tungsten wire coated with a refractory insulator such as

alumina. For cathode ray and other tubes where a flat cathode is re-

quired, a hollow disk is used with the heater in the form of a flat spiral.

Since the barium-strontium oxide mixture is unstable in air, the material

is deposited in the form of carbonate, usuallyby spraying on a suspension

of it in a volatile organic solvent. On heating in vacuo carbon dioxide

is evolved and pumped away, and in some cases the cathode surface has

to be activated by drawing current from it at an elevated temperature.

It is generally believed that the emission takes place from particles of

free metal (barium) at the surface of the oxide coating. The free metal

gradually evaporates and has to be replaced by reduction of the oxide;

this is caused partly by positive ion bombardment, partly by electrolysis
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through the potential gradient in the coating, and partly by reaction

with the surface on which the oxide is deposited.

As in the case of the thoriated tungsten filament, the oxide-coated

cathode is easily 'poisoned' by the presence of gas, especially oxygen.

It is therefore essential to maintain a high vacuum for the whole life

of the tube. Most metallic surfaces contain occluded gas, which is very

gradually evolved if the surfaces are maintained in vacuo at room tem-

perature, but is rapidly evolved at high temperatures. Nickel is com-

monly used for the anode and other electrodes, and is 'out-gassed' by

heating to about 1300° K in vacuo or in hydrogen before the tube is

assembled. Grids are generally wound of tungsten wire, owing to its

stiffness and high melting-point. After the tube has been assembled, it

is evacuated and, while still on the pump, is heated to just below the

softening point of the glass envelope to remove occluded gas from the

glass. The metallic electrodes are then outgassed at red heat by inducing

eddy currents in them with a high frequency oscillator. The advantage

of this method is that the glass is not heated directly, and the electrodes

can therefore be raised to a temperature well above the melting-point

of glass. The cathode is then activated, and immediately before the tube

is sealed off a film of an active metal such as barium is deposited by
evaporation over part ofthe inside ofthe glass envelope. The purpose of

this 'getter' is to absorb residual oxygen and nitrogen by chemical action.

12.2. The diode

The simplest type of thermionic vacuum tube is the diode, and we
shall discuss first the way in which the current flow to the anode depends

on the anode voltage.

If the electrons were emitted from the cathode with zero velocity, and
there were no contact potential difference between anode and cathode,

we should expect the current flow to be zero when the anode voltage is

negative, and to rise immediately to a constant value, equal to the total

emission from the cathode, as soon as the anode is made positive. In

fact the electrons are emitted with finite velocities, corresponding to a

Maxwellian distribution. The number with an energy between W and

(W+dW) is then Cexp(— W/kT)dW, and, if a negative potential V is

applied to the anode, only those electrons with energy W greater than

(—e)V will reach the anode. Hence the current is

I = C j exp(- W/kT)dW = ChT exp(eV/kT) = 7 exp(eV/kT)
W=-eV

(12>1
)
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and the rate of change of / with V, known as the slope of the charac-

teristic, or tube conductance, is

(dl/dV) = (ejkT)I ex-p(eV/kT) = (e/kT)I. (12.2)

For a diode with an oxide-coated cathode whose temperature is about
1100° K, the value of (dljdV)jI is approximately 10 V

-

1
. In practice

this slope is not attained because the flow of current to the anode is

limited, not by the velocity of emission, but by the mutual repulsion of

the electrons in the space between cathode and anode. These electrons

are known as the 'space charge', and the current flow under these con-

ditions is called 'space-charge limited' . Only at very low current density,

when the space charge is small, is the current 'temperature limited'.

The origin ofthe latter term arises from the fact that both the maximum
current, and the shape of the characteristic, are determined by the

temperature ofthe cathode. In general tubes are operated under 'space-

charge limited' conditions and it is possible for most purposes to neglect

the finite velocity of emission and its spread. Similarly, any contact

potential difference between anode and cathode, which has the effect of

shifting the characteristic up or down by a few volts, will be neglected.

12.3. The three-halves power law

To examine the effect of space charge on the flow of current, we shall

consider the case of a diode where the cathode and anode form parts

ofparallel planes denoted respectively by the equations x = and x = d.

We shall further assume that the potential of the cathode is zero, while

that of the anode is Va . The potential between the electrodes can be

determined by solving Poisson's equation

d2V _ p _ne
(12.3)

where — c is the electronic charge, and n the number of electrons per

cubic metre. If the mass of an electron is m, and its velocity u at the

point x where the potential is V, then the energy equation gives

%mu2 = eV, (12.4)

while the current density is

J = neu. (12.5)

(Here the flow is unidirectional and it is not necessary to treat J as a

vector quantity; we have omitted the negative sign which denotes that

the direction of positive current flow is from anode to cathode.) The
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velocity can be eliminated between these equations, giving

Substitution of this in Poisson's equation gives

dW/dx* = aV-K

where a = (J/e )J(m/2e). This equation may be integrated if both sides

are multiplied by 2(dV/dx), giving

\dx) \dx)
AaVK

(dV/dx) is the electric field at the cathode, where V and x are zero.

Since the constant a is proportional to J, it is evident that the maximum
current density is attained when (dV/dx) = 0. Then we may write

dV[dx = 2a*F*,

integration of which gives

F* = feAr, (12.6)

where the constant of integration is zero because V = at x = 0.

Since at the anode x = d and V = Va , we have

VI = 9od!2/4 = (9/4eo)V(m/2e)dV, (12.7)

showing that the current density J is proportional to the three-halves

power of the anode voltage, and inversely proportional to the square
of the separation between cathode and anode. This relation was first

derived by Child, and is sometimes known as Child's law.

Since the current density is independent of x, it follows from equation

(12.5) that the density of electrons is greatest where their velocity is

smallest; that is, near the cathode. It is this concentration of electrons

which reduces the electric field at the cathode, since their electric field

is oppositely directed at this point to that due to the positive potential

on the anode. The electron concentration cannot rise to a greater value
than that required to make dV/dx zero at the cathode, since no elec-

trons could then leave the cathode, and the space charge would fall as
electrons move away to the anode, without their being replenished from
the cathode. Near the anode the electric field is greater than that due
to the anode potential alone, because the field is here increased by the
repulsive force due to the negative space charge near the cathode. The
potential variation is shown in Fig. 12.1. Curve A shows the linear po-
tential gradient which would exist in the absence of space charge, while
curve B is that calculated above, on the assumption that the electrons
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are emitted from the cathode with zero velocity. It is easily seen from

equation (12.6) that the equation of curve B may be written in the form

VjVa = (xjd)*. Owing to the finite velocity of emission, electrons can

leave the cathode even when there is a small reverse electric field, and

the space charge can then increase to the extent of setting up a potential

z = * x x=d
Fig. 12.1. Potential distribution in a diode with plane parallel electrodes.

Curve A no space charge.

Curve B space charge limited, electrons emitted with zero velocity.

Curve G space charge limited, electrons emitted with finite velocity.

minimum, as shown by curve C. The depth of this minimum is of the

order W/e, where W is the average energy of the emitted electrons, since

only those electrons with sufficient energy to penetrate the potential

minimum will eventually reach the anode.

On inserting numerical values, the equation for the current density

may be written J = 2 .34 x 10-6F»
/rf

2
) (12 .8)

where J is in A/cm2
, Va in volts, and d in cm. Obviously this equation

cannot hold indefinitely as Va is increased, since the current density will

eventually be limited by the emission from the cathode, and will then

reach a constant value. The current will depart from the three-halves

power law as soon as the space charge is no longer sufficiently dense to

nullify the electric field at the cathode. The form of the current-anode

potential curve will therefore be as in Fig. 12.2. At low anode voltages,

the current is limited by the space charge, and its magnitude is inde-
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pendent of the cathode temperature. At high potentials the size of the

current is limited only by the cathode emission, and thus, in the first

approximation, depends only on the cathode temperature. In practice

it will be found that the saturation current does increase slightly with

Va , owing to field emission (§ 4.4). This increase is more noticeable with
oxide-coated cathodes than with pure tungsten cathodes.

J
(amp/cm2

)

2,000 4,000 6,000 V„(Volts)

Fig. 12.2. Current-anode potential curve for a diode with plane parallel electrodes, 1 cm
apart, for two different cathode temperatures Tx and Tj (ys > Tt).

Although the derivation of the three-halves power law has been given
here only for the case of the diode with plane-parallel electrodes, it has
been shown to hold also for electrodes in the shape of coaxial circular

cylinders and of concentric spheres. By a dimensional argument it may
be shown to hold for any electrode geometry, assuming always that the
electrons are emitted with zero velocity. Most vacuum tubes for low
frequency applications are constructed with electrodes in the form of
coaxial cylinders, sometimes, but by no means always, with circular

cross-section. At very high frequencies, where the clearance between
the electrodes must be made very small, the plane-parallel arrangement
is used for special tubes.

12.4. Uses of the diode

The primary use of the diode is as a rectifier, converting an alternating
voltage into a steady voltage. The basic circuit for this purpose is shown
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in Fig. 12.3. The diode is connected in series with a load resistance R
to a source of alternating voltage such as a transformer, and a capacitor

C is placed in parallel with R. To understand the mode of action, con-

sider first the case where R is infinite. On applying the alternating

voltage, current will flow round the circuit through the diode only when
the anode of the diode is at a positive voltage with respect to the cathode.

While the capacitor is uncharged this occurs every other half-cycle. Since

the cathode loses electrons to the anode during this half-cycle, and

Fig. 12.3. The diode as a half-wave rectifier.

cannot regain them during the reverse half-cycle, the cathode and the

plate of the capacitor connected to it will become positively charged.

The flow of electrons from cathode to anode will continue so long as the

anode reaches a positive voltage with respect to the cathode at any
point during the cycle. The charge on the capacitor will thus continue

to rise, the limit being reached when the voltage across the capacitor is

equal to the peak value V of the alternating voltage V cos out. At this

point the voltage across the diode is —V+V coa <ot, showing that the

anode never becomes more positive than the cathode, and hence no
current flows. At one point in the cycle the anode-cathode voltage

difference is —2V . This is known as the 'inverse peak voltage', and
the diode must be constructed so that it can withstand the inverse peak
voltage without failure.

If a voltmeter is placed across the capacitor, it will register a voltage

equal to the peak value V of the alternating voltage. This is the basic

circuit for the use of the diode as a 'peak' vacuum tube voltmeter. If

the capacitor has no leakage, it will remain charged to the greatest peak
voltage ever applied to the system, but if the voltmeter has a finite
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resistance R, it will be able to follow changes in the peak voltage so

long as they do not occur within a time of order RC, the time constant

of the R-C combination.

In general the circuit ofKg. 12.3 is used to deliver direct current into

a load R. Under these conditions the capacitor will discharge slightly

through the resistance during that part of the cycle when the diode is

not conducting, being recharged to the peak voltage when the diode

conducts. The voltage across R is therefore not constant, but contains

"\ Ripple voltage

Half-wave rectification Time

Full-wave rectification Time

Fig. 12.4. Half-wave and full-wave rectification. V = voltage across R.

a component fluctuating at the frequency of the applied alternating

voltage, as in Fig. 12.4. This component is not sinusoidal, owing to the

asymmetrical nature of the capacitor charge-discharge system. The
'ripple voltage' , as the fluctuating component is generally called, becomes
larger if R is reduced, since the time constant of the R-C combination
is then smaller, and the capacitor discharges to a lower voltage before

being recharged. The ripple voltage is therefore more serious when the

diode is on load. The ripple voltage must be eliminated or very con-

siderably reduced if the system is used to supply d.c. power for an
amplifier or other electronic device, since any alternating voltage ap-

plied to the early stages will be greatly magnified at the output. Reduc-
tion of the ripple is effected either by using a very large capacitance C,

so that the time constant RC is very long compared with the period of

the alternating supply, or by the use of a simple low-pass filter circuit.

Either of these may be used with a full-wave rectifier, whose circuit,

with a filter section, is shown in Fig. 12.5.

The advantage of full-wave rectification over half-wave rectification

851110 Z
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can be seen from a comparison of the two without the filter section, that

is with a circuit consisting of the capacitor G in parallel with a load

resistance R connected across the terminals AB in each case. With the

full-wave rectification the capacitor is charged to the peak voltage by
the passage of current through one diode during the first half of the

cycle, and is then again charged during the second half-cycle by current

Supply
voltage

nSM^

Fig. 12.5. A full-wave rectifier with filter circuit.

flowing through the second diode. If the time constant of the G-R
combination is long compared with the period of the supply voltage, so

that the voltage drop during the discharge period is only a small fraction

of the initial peak voltage, then the voltage on C will fall nearly linearly

with time during the discharge interval. With full-wave rectification,

this interval is only half a cycle, and the size of the ripple is thus only

half as great as with half-wave rectification (see Fig. 12.4). In addition

its fundamental frequency is now twice the supply frequency, making
the filtering problem easier. The simplest type of filter, as shown in

Fig. 12.5, consists of the capacitance C with a series inductance L and

a second shunt capacitance Cx . These must be of such a magnitude that

the impedance of Cx at the ripple frequency is very small compared

with R, while the impedance of L is very high compared with that of Gv
This arrangement acts as a potentiometer which delivers the full steady

voltage output across R, but reduces the ripple voltage roughly in the

ratio (l/coC1)/(ct)i) = ljco^LC^ where co is the ripple frequency. For a

full-wave system delivering about 100mA at 300V (i.e. R « 3000 ohms)

from a supply frequency of 50 c/s, the conditions laid down above are

amply fulfilled for most purposes if L is about 25 henries, and G and Cx
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about 10 ju,F. If the reduction of ripple is insufficient, further filter sec-

tions may be added (see Chapter 11).

The system described in the last paragraph is known as 'capacitor

input', since a capacitor is connected immediately across the terminals

AB. If the impedance of this capacitor at the mains frequency is small,

then the whole of the transformer output voltage is applied across the

diode and, on no load, the capacitor charges up to the peak voltage

developed between the centre tap and either end of the transformer

secondary winding. On load, the current through the diode consists of

short pulses centred on the instant when the secondary voltage reaches

its peak value. The peak current is therefore much higher than the

steady current drawn by the load, and if the latter is many amperes,

the peak diode current may be so high as to damage the tube. This is

avoided by omitting the first capacitor C, so that an 'inductive input'

system is used. Since the action of the inductance is to oppose any
change in the current flowing through it, the current through each diode

is substantially constant during the half-cycle when it conducts, the

current being switched to the other diode in the second half-cycle. The
voltage output is lower than with capacitor input, and the percentage

ripple is higher. On the other hand, the 'regulation' (the change of out-

put voltage with output current) is improved. Where the load current

is fairly constant, and not more than a few hundred milliamperes (e.g.

in a radio receiver), capacitor input is generally used for the power
supply unit.

12.5. The triode

In the triode tube a third electrode, known as the grid, is interposed

between the cathode and the anode. If the electrodes are planar, the

grid takes the form of a coarse wire mesh; if the electrodes are cylindrical

the grid is wound in the form of a helix. The total current drawn from
the cathode will now depend on the potentials of both grid and anode,

since both control the field at the cathode. In the absence of space

charge, the charge on the cathode, assumed to be at zero potential, is

equal to

-(ccovg+ccava) = -c„(v
e+^) = -^+jf)>

whereGcg , Cca are the coefficients of capacitancebetween cathode and grid

(at potential Vg) and anode (at potential Va ) respectively. These capaci-

tances are in the same ratio as the division of lines of force from the

cathode between the grid and the anode when Va — V
g

. The ratio
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fi = Ccg/Cca is known as the 'amplification factor' of the tube (however,

the values of Ccg, Cca given in tube manuals do not normally fit this

relation because they include the capacitances of the leads). If the

current from the cathode is limited by space charge, so that the field

at the cathode (as in the assumption made in deriving Child's law) is

zero, then no lines of force will reach the cathode, but all will terminate

on the space charge. Since the latter is mainly located very close to the

cathode, it is affected equally by lines of force from the grid and from

the anode, and it follows that the current leaving the cathode depends

on the equivalent voltage V'a = (Vg+VJn). Experimentally it is found

that the current depends very nearly on the three-halves power of this

equivalent voltage in the region of complete space charge limitation,

corresponding to the fact that near the cathode the potential distribu-

tion is the same as in an 'equivalent diode'. We may therefore write

j = Wg+yj^w, (i2.9)

where d is known as the 'equivalent diode spacing' ; for tubes with fairly

high values of \l (i.e. when nearly all the lines of force terminating on

the space charge come from the grid) d is nearly equal to the cathode-

grid spacing in a plane triode. The constant b has the same numerical

value as for the diode. In general the triode is used with the grid voltage

negative, so that no current flows to it, and the total current leaving

the cathode (to which equation (12.9) applies) is also the anode current.

It is obvious that current will leave the cathode so long as the equivalent

voltage (Vg+VJfi) is positive, and a small negative grid voltage must be

combined with a large positive anode voltage. This has the advantage

that a source of voltage applied to the grid will influence the anode

current without any current being drawn from the source by the grid.

12.6. Characteristics of the triode

Characteristic curves may be drawn for the negative grid triode show-

ing the anode current as a function of the grid voltage for various values

of the anode voltage. A typical set of curves is given in Fig. 12.6. Since

the anode current depends on the expression (Vg+VJ/j,), it is obvious that

all the curves will be similar, but will be displaced to more negative

values of Vg as Va is increased, the shift in Vg being — (l//x) of that in Va.

A second set of characteristic curves may be formed by plotting the

anode current as a function of the anode voltage for various values of

the grid voltage, as shown in Fig. 12.7. A third set of characteristics

may be obtained by plotting the grid voltage against the anode voltage

at various constant values of the anode current.



12.6] THEKMIONIC VACUUM TUBES

(mA)
200 150 100

10

Oil
*-* /

s
^ /
IP 1

III j

5

n

^7 /

/ 1 1

341

-8 -4 +4 V„ (volts)

gm ~ 4 mA/V, fi ~ 30.

la

(mA)

15

J/ ,1

/°

10 / /
-1

y-2

/ /-3

5

i 1

100 200 300 Va (volts)

Fig. 12.7. Ia-Va curves for a small triode tube.

gm ~ 4 mA/V, ju ~ 30.

In order to carry out calculations on the performance of a triode tube
in various applications, it is convenient to have some simple method of

specifying the tube characteristics. The three-halves power law of equa-

tion (12.9) is clumsy to handle and not amenable to calculation, as well

as being only approximately true. For most applications, we are in-

terested in small changes in /„ resulting from the application of an alter-

nating grid voltage. For this purpose the anode currentmay be expanded
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in the form of a Taylor's series, for small changes about its mean value.

We have then, for small changes v
g , va in the grid and anode voltages

respectively,

'°+M^l.+"#l+

M^il+"-<^L.Mwi} {-.... (12.10)

The presence of the second-order terms results in the change of anode

current not being linear with the change in the applied voltages. This

is generally undesirable, since it causes 'distortion' of the applied signal.

It can be avoided by keeping the magnitude of vg and va small, when the

second-order terms become relatively less important. If we adopt the

convention of using lower-case symbols for small changes (e.g. we write

ia for I—1 ), we may simplify the notation and, on omitting the second-

order terms, equation (12.10) becomes

Here gm = (8lJdVg )Va is known as the mutual conductance of the tube,

and p = (dVJBIa)p is called the anode slope resistance (or often just the

anode resistance of the tube. If ia is zero, then

which gives a simple relation between the three constants of the tube.

These 'constants' will vary with the working conditions of the tube, and

are constants only in so far as the approximations we have made are

justified. These approximations are equivalent to considering the charac-

teristics of the tube as straight lines in the neighbourhood of the working

point.

When the three-halves law (equation (12.9)) is a good approximation,

the value of gm is

gm = |(6V/^ = c/*,

showing that gm increases with the one-third power of the anode current

Since ju. = Ccg/Cca , it is substantially independent of the working condi-

tions, being determined by the geometry of the tube. It follows from

equation (12.12) that p will decrease as the inverse one-third power of

the anode current.

Typical values of the tube constants for small triodes are as follows.

gm varies from 1 to 10 mA/V, which is sometimes expressed as 1000 to

10 000 micromhos. /x varies from 20 to 100, and p from 5000 to 100 000

ohms. The working voltages are about—3 V on the grid, and +100 to
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+250 V on the anode. The value of p. is controlled by the closeness of

the winding of the grid, and the relative distances of grid and anode
from the cathode. If the number of lines of force reaching the cathode

from the anode is very small compared with the number from the grid

(as is the case with a closely wound grid), the magnification factor p, is

high. If the grid is fairly openly wound, p, is low.

wvwvwv
R

+ •

H.T.

Fig. 12.8. Triode tube with resistance in anode circuit

12.7. Equivalent circuit of the triode

The most important use of the triode is as an amplifier. If the voltage

applied to the grid is changed by a small amount, there will be a corre-

sponding change in the anode current. If the anode is connected to its

high tension source through a resistance R, as in Fig. 12.8, the change
in anode current will cause a change in the potential drop across R. The
ratio of the change in this voltage to the change in the grid voltage is

known as the voltage amplification. The change in the potential drop
across the load resistance R will cause a corresponding change in the

anode voltage, which will fall if the grid voltage rises. This fall reduces

the anode current, and hence to calculate the voltage amplification we
proceed as follows.

If ia , va represent the changes in anode current and voltage due to

a change v
g in the grid voltage,

ia = gm vg+vaip.

But va = —ia R, and hence the voltage amplification is

A _ va_ »«-R_ gmpR fJ-R »«,«
vg v

g (R+p) (R+py
l "'

This result is the same as would be obtained from a generator of voltage
—fiVg with an internal resistance p, as can be seen from the circuit of

Tig. 12.9 (a). This is known as the equivalent circuit of the triode, and
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its use greatly facilitates calculation. For example, the anode load is

often not a pure resistance R but a complex impedance Z = R-{-jX.

The voltage amplification is then

/xZ n(R+jX)A = *«z
(12.14)

v
g

Z+p
(p+R)+jX

In this expression the presence of a complex number shows that the

anode voltage change is not in phase with the grid voltage change, where-

as with a pure resistive load they are exactly in anti-phase. Usually the

A/VWWWV
Svfi.

o /">, ©
(a) (b)

Fig. 12.9. (a) Equivalent circuit of a triode tube, considered as a voltage generator.

(6) Equivalent circuit of a triode tube, considered as a current generator.

phase shift between anode and grid voltage is of no significance, and
the useful amplification is given by taking the modulus of equation

(12.14). If the reactance X is a function of frequency, as is usually the

case, the voltage amplification will also vary with frequency unless

Z^> p over the whole range of frequencies which it is desired to amplify.

For this reason, resistive loads are generally used forwide band amplifiers

An alternative equivalent circuit for the triode which is often useful

is shown in Fig. 12.9(6). The tube is replaced by a current generator

ofmagnitude —gm v
g , which has infinite internalimpedance, acrosswhich

is the anode resistance p of the tube. The external load Z is connected

in parallel with p, and a fraction pj(Z-\-p) of the current from the genera-

tor flows through Z. The voltage across Z is thus —gm v
g Zp/(Z->rp),

giving the same result as in equation (12.14).

12.8. Input impedance of the triode

At radio frequencies (105 c/s and upwards) the effects of the finite

capacitances between the various electrodes ofa tube become important.

The full treatment of this problem is complicated, since the grid-cathode,
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grid-anode, and cathode-anode capacitances form a network together

with the anode resistance and load as in Tig. 12.10. A simplified treat-

ment is given below, where Cca is deemed to be part of the load Z, and

the currents through the other electrode capacitances are assumed to

be small compared with the anode current through the tube.

Cathode

Fig. 12.10. The triode with its electrode capacitances (above) and its full equivalent

circuit (below).

The principal effect of the capacitances from the grid to the other

electrodes is to draw a finite current from the source of the voltage

applied to the grid. If this voltage is v relative to the cathode (taken as

the zero of voltage) then the current flowing from grid to cathode is

jcnCgc v. In addition, there is the current flowing through the grid-anode

capacitance, which also completes its return path through the signal

source. To compute this we note that the anode voltage is Av, where

A = —fiZj(Z-\-p) is the amplification produced by the tube working
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into an anode load Z. Thus the total voltage across the grid-anode

capacitance is ., ,.v—va = v(l—A),

and the resulting current flow isjwCga(l—A)v. Thus the total admit-
tance associated with the grid is

Y„ = 1/Z, = 3<oCge+ja>Cga[l+vZ/(Z+p)]. (12.15)

If Z is a pure resistance B, then the input impedance of the grid is

that of a pure capacitance C
g
of magnitude

Ca = Ogc+Cga[l+^BI(B+p)]. (12.16)

If Z is complex = B+jX, then

ac+ aa
\
+

(P+R)*+x* j\ {p-+RY+xi- <
12 - 17 >

Thus 1/Z
ff
contains a resistive component whose value is negative ifX

is positive, i.e. if the anode load is inductive. This negative resistance

means that power is flowing back to the grid through the grid-anode

capacitance, and if this power ismore than isrequired to supply the power
dissipated in any positive resistance in the source of the grid voltage,

oscillations will result (see Chapter 13). This is one of the chief diffi-

culties in the use of triodes as amplifiers at radio frequencies. On the

other hand, if the anode load is capacitative, the resistive component of

the grid input impedance is always positive.

In this treatment we have neglected the fact that the current through

the grid-anode capacitance flows also through the anode load, thereby

altering the anode voltage slightly. A more accurate treatment shows

that Cga in equation (12.15) should be replaced by

M 1 +(zT^<

l/*, = „^[l+^| (£*-), (12.18)

This introduces a resistive component to the grid input impedance
even when the load Z is a pure resistance B. Its value is then approxi-

mately
MP = ,,,2/72 lu

B+P\

and it is in parallel with the grid input capacitance. When the anode

load is inductive, this reduces the negative conductance effect at the

grid.

To estimate the magnitude of these effects we take p = 30, p = 104

ohms, B = 2-5 X 10* ohms, o> = 106 , Ogc = Cga = 5 p.pF. Then

B
g « 2-5 X 105 ohms, G

g « 120WF.
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At this frequency Cg corresponds to a reactance of only 8000 ohms, so
that the input impedance of the triode is very low, and almost wholly
capacitative. The bulk of this capacitance is due to the grid-anode
capacitance, which is magnified because it has the amplified signal
voltage across it. The input impedance will be greatly increased if Cga
can be diminished, and for this purpose the screen-grid tetrode tube was
introduced.

12.9. The screen-grid tetrode

In the screen-grid tetrode a fourth electrode is inserted in the form of
an extra grid between the control grid and the anode of the tube. This
extra electrode, the screen grid, is maintained at a fixed positive poten-
tial with respect to the cathode, so that the voltage on it does not change
when a signal is applied to the control grid. The screen grid is wound
so that most of the lines of force from the control grid terminate on
the screen grid, and comparatively few reach the anode. In this way the
grid-anode capacitance is reduced to about 10-»P, and although the
capacitance between the control grid and screen grid is of the same order
as that between grid and anode in the triode, the alternating voltage
across this capacitance is the same as that across the grid-cathode
capacitance and is not magnified by the action of the tube. Thus
the capacitance between the two grids is just added directly io the
grid-cathode capacitance.

Since the screen grid is at a positive potential with respect to the
cathode, it will collect electrons which would otherwise have gone to
the anode. Most of the lines offorce which penetrate through the control
grid to the space charge round the cathode will come from the screen grid
rather than the anode, and the former will exercise much more control
over the current than the anode. Thus the anode resistance of the tube
will be high since (dIa/8Va)Vt is small, and so will be the amplification
factor, which depends on the ratio of the number of lines of force reach-
ing the space charge from the grid to the number from the anode.
The screen current and anode current in a tetrode for given voltages

on the screen and control grids are shown as functions of the anode
voltage in Pig. 12.11. As the anode voltage is increased from zero, the
anode current shows initially a steep rise, followed by a fall and a second
rise when the anode voltage becomes of the same order as the screen
voltage. The screen current shows the inverse behaviour, and the sum
of screen and anode currents is substantially constant since the total
current leaving the cathode depends practically only on the control
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and screen-grid voltages, which are both constant. The fall in the anode

current and rise in the screen current are due to secondary emission of

electrons by the anode. This is negligible at very low anode voltages,

but appreciable when the anode voltage rises above 10 V or so. The
ratio of the number of secondary electrons to the number of incident

primary electrons may be high when a composite surface (see § 4.4) is

formed on the anode by barium evaporated from the cathode. In the

(mA)

10
(I.+J.) I)

'

8

A
6

BJ
v, = o

4

C

2 V
n A ^

1 1

100 200 300 Va (volts)

Fig. 12.11. Curves of screen current and anode current against anode potential, with
zero control grid voltage, for a tetrode tube. (Screen voltage ~ 60 V.)

Initial rise of Ia in region AB occurs when anode voltage is too low to give appreciable

secondary emission. The latter sets in at Va <—> 10 V and increases over range jB(7,

causing net anode current to fall. It rises again in region CD when Va becomes greater

than screen voltage V
s, since secondary electrons are then attracted back to the anode.

triode, secondary electrons are emitted by the anode with low velocities,

but they find themselves in a strong potential gradient which returns

them to the anode, so that there is no net effect on the anode current.

In the tetrode, however, the field at the anode is reversed when the

screen is at a higher potential than the anode, and secondary electrons

emitted by the latter will therefore travel to the screen. This causes a

reduction in the net current flowing to the anode, and an increase in that

flowing to the screen. The resulting kink in the anode current charac-

teristic is a considerable drawback, since strong distortion of the ampli-

fied signal will occur unless the tube is worked so that the anode voltage

is always greater than the screen-grid voltage. This is possible with

small signals, but not with large signals.
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12.10. The pentode

The undesirable kink in the characteristic of the tetrode is eliminated
in the pentode, where an extra electrode is inserted between the screen
grid and the anode. This electrode, a grid of coarse mesh or an open
helix, is known as the suppressor grid, and is maintained at cathode
potential (in many tubes it is internally connected to the cathode). Its

Va (volts)

Fig. 12.12. Curves of screen current and anode current against anode
potential, at zero grid voltage, for a pentode.

function is to maintain the field at the anode always in a direction such
that the force on any secondary electrons emitted by the anode will
return them to the anode, and they will not reach the screen. As would
be expected, the anode current is practically independent of the anode
potential, so that the anode slope resistance is very high, and so also is
the amplification factor /», since hardly any lines of force from the anode
penetrate to the space charge near the cathode. The voltage amplifica-
tion obtained from a pentode with a resistance B as the anode load may,
from equation (12.13), be written in the form

A = -8W */(!+.»//»),

which is approximately -gm Eifp^R. It is obvious that the ampli-
fication is greater than that obtained from a triode which has the same
mutual conductance gm, but a lower value of p.

The anode current and screen current of a typical pentode are shown
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as functions of the anode voltage in Fig. 12.12. The current drawn from
the cathode is virtually independent of the anode voltage, which affects

only the division of current between screen and anode. The capacitance

between the control grid and the anode in the pentode is usually of the

order of a few thousandths of a micromicrofarad, and its contribution

to the input capacitance is negligible.

The kinkless characteristic of the pentode may also be achieved in

special tetrodes known as 'beam-power' tetrodes. In these tubes the

space charge formed by the electrons in the region between screen grid

and anode produces a potential minimum in front of the anode which,

like that due to the suppressor grid in the pentode, returns to the anode

any secondary electrons emitted by it. The effect of the space charge

is enhanced by using a rather large spacing between screen grid and

anode, and by making the screen grid of the same pitch as the control

grid (ordinarily it is much coarser). The screen-grid wires are in the

'shadow' of the control grid wires, so that the electrons flow in beams

between them and the screen current is smaller than in an ordinary

tetrode. The beam action (enhanced by the use of side plates at cathode

potential which limit the area over which current flows) increases the

electron density and the space charge effect near the anode.

GENERAL REFERENCE
Roiun, B. V., 1964, An Introduction to Electronics (O.U.P.).

PROBLEMS
12.1. Calculate the anode voltage V'a of the equivalent diodo for a triode with

plane parallel electrodes in which the grid-cathode spacing is 003 cm and the

current density is 0-02 A/cm2
, assuming that the 'equivalent diode spacing' is

the same as the actual grid-cathode spacing.

If Vg = — 3 V, Va = + 1 50 V on the triode, what must be the value of /j, ?

(Answer: V'a = 3-9 V; ju = 22.)

12.2. Prove that in a plane-parallel diode the transit time ofan electron is 3/2 times

as long under space charge limited conditions as it would be in the absence of

space charge.

What will be the transit time between cathode and grid in the triode of

Problem 12.1?
(Answer: 7-7 X 10~10 sec.)

12.3. In the arrangement of Fig. 12.3, assume that the capacitor charges instan-

taneously to V when the diode conducts just at the peak of the applied voltage

V cos cot, and that the time constant RG = t of the capacitor-resistor combina-

tion is so long that the voltage on the capacitor falls linearly during the discharge

period. Show by Fourier analysis that the amplitude of the component sin(najt)

of the voltage on the capacitor is (2VJnwT).
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APPLICATIONS OF THERMIONIC
VACUUM TUBES

In the previous chapter the chief characteristics of the basic types of
thermionic vacuum tubes were outlined. In this chapter their main uses
as amplifiers, oscillators, and detectors will be considered in more detail.

13.1. Audio-frequency voltage amplifiers
Amplifiers may be classed under various headings, and we shall deal

first with small-signal amplifiers, where the magnitude ofthe alternating
voltage applied to the grid of the tube is such that the resulting changesm the anode current are only a small fraction of the mean anode current
The fundamental circuit for the use of the triode as an amplifier was
discussedinf 12.7. Ifmore amplification is required than can be obtained
from a smgle tube, several stages may be used in cascade. Some form
of coupling is then required to transfer the amplified voltage appearing
at the anode of one tube to the grid of the next tube, while preserving
the correct steady potentials on these electrodes. The most common
method employs i?C-coupling. A capacitor C is connected from the
anode of the previous stage to the grid of the next, as in Fig. 13 1 and
the grid is connected to earth (or to its bias battery) through a large
resistance Rv It is important that the capacitor G (known as the
blocking capacitor) have a very small leakage current under the steady
voltage which it has to sustain, since otherwise this leakage current will
flow also through the grid resistance R1 and change the grid voltage
from its optimum. The size of the capacitor must be such that its im-
pedance is small compared with R, at the signal frequency, since then
all the amplified voltage at the anode will be impressed on the grid of
the next tube.

The equivalent circuit of an .RC-coupled amplifier is shown in Pig
13.2. Smce the high tension supply must form a low impedance for the
signal frequency, both terminals are at earth potential as far as signal
voltages are concerned. The resistances R and Rx have therefore acommon terminal, as also has Cg, which represents the input capacitance
of the following tube. At low audio-frequencies the impedance of C is
large compared with Rlt and may be neglected. If the impedance'of

is small compared with R1} as should be the case, then it will be seen
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that the grid resistor Rt is effectively in parallel with R, and the com-

bination forms the load for the first tube. It is usual to make Bx large

compared with R, so that the effective load is not materially smaller

than R.

Fig. 13.1. .RC-coupled amplifier.

HWWAMV

(Q-"'

Fig. 13.2. Equivalent circuit for Fig. 13.1.

The effect of the capacitances C and Cg can readily be seen from con-

sideration of a common requirement, an audio-frequency amplifier to

cover the range of 50 to 10 000 c/s with constant amplification. We shall

assume that the triode constants are ju, = 30, p — 10 000 ohms; then,

with R = 25 000 ohms, the input capacitance of the triode Cg is approxi-

mately 120 jujuF (see § 12.8). Rx may be made 1 megohm, so that its

shunting effect on R is negligible. At the low frequency limit the effect
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of Cg is negligible and the ratio of the voltage across Rx to that across
i?is Rt

R1+l/jwC (

1 +
o.

2G2
i?fJ

*

Thus the required condition is (l/a>C) < Rv which is amply satisfied by-

making C = 01 fj.¥, when the ratio differs from unity by just over
1 per cent at 10 c/s. At the high frequency end, the shunting effect of
the input capacity of the next triode must be considered. (Reference
to § 12.8 shows that the input resistance of the triode will be about 60
megohms at a frequency of 10 kc/s, and its shunting effect may there-
fore be neglected.) The capacitance Gg is in parallel with both B and Rx ,

and its presence becomes noticeable only when its impedance becomes
comparable with the lower of these, R. The effective load for the tube
is then Og and R in parallel, and the amplification becomes

I+P/Z,
f*

l+pJR+jwCgp
P

{(l+p/R)*+a>*ClW
(13,1)

showing that the amplification is affected only when coCgP becomes
comparable with 1+p/R. The values of these two quantities are [re-

spectively 0-075 and 1-4 at 10 kc/s, so that the effect of Gg is negligible.

At 100 kc/s the amplification would be reduced by 13 per cent, and falls

rapidly as the frequency is increased still further. Phase shifts in the
amplifier may also be important (see Problem 13.7).

In certain applications, such as pulsed radar, the amplification of
short pulses of the order of microsecond duration is required, and if the
output is to be undistorted the amplifier must have a uniform magnifica-
tion from very low frequencies up to several megacycles per second. It
is clear that triodes cannot be used in such an amplifier, owing to then-

large input capacitance, and pentodes must be used instead. The second
point is that the anode load is shunted by small capacitances from several
sources: (a) a capacitance of 5 to 10 fifiF between the anode and the
suppressor- and screen-grids, (6) the input capacitance of the next stage,

again from 5 to 10 /^F, and (c) stray capacitance from the wiring. The
total capacitance may be as much as 15 n^F and its effect may be ana-
lysed as follows. Since the anode resistance of the pentode is very high,

it is convenient to use the constant current generator for the equivalent
circuit, as shown in Fig. 13.3. Here R is the load resistance and C the
total capacitance shunted across it. The voltage across the load is

-g»v
a \Z\

= -gm v
g
R/(l +a>2C^)i,

showing that the magnification per stage will fall by a factor V2 when
851110 A a
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caCE =1. If C = 15 fMfiF and R = 10000 ohms, this point is reached

at a frequency of 1-1 Mc/s. If the amplifier has altogether n stages, each

with magnification A, then the overall magnification is A n
, and at 1-1

Mc/s the overall amplification will be down by 2™<'2
. If n is 5 or 6, this

is far too much distortion. A more uniform magnification per stage can

be secured by reducing R, which reduces the stage gain in proportion.

~9nfi,

Constant
current generator

Fig. 13.3. Current-generator circuit for a pentode. The anode resis-

tance of the tube would be shunted across E, but it is so high it can
be neglected.

R = load resistance. O = total capacitance shunted across load.

More stages must be added, but the overall magnification will be more

uniform because the distortion depends on the R2 term in the denomina-

tor. A second method ofmaintaining the stage gain at the high frequency

limit is to introduce a small inductance in series with the resistance,

which, shunted by the capacitance, forms a low Q resonant circuit. The

values of R and L should be chosen so that their impedance is about the

same as that of the capacitance C at the highest frequency it is desired

to amplify.

13.2. Negative feed-back amplifiers

In a negative feed-back amplifier, a fraction of the output voltage is

fed back to the input in such phase as to reduce the net input voltage.

A schematic diagram is shown in Kg. 13.4. The gain of the amplifier in

the absence offeed-back is A, and /J is the fraction of the output returned

to the input. The output voltage v is then

giving v = AvtHl-Afi). (13.2)

The gain is now .4/(1— Aft), and it is therefore reduced if y3 is negative,

i.e. if the feed-back voltage opposes the input voltage. This drawback

is offset by several advantages, in particular the reduction of distortion.
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Any distortion voltage which would appear at the output is fed back
to the input and reduced in the same ratio as the amplification. If now
the input voltage is increased by means of a preceding amplifier until the
overall output is restored to its former level, the distortion voltage will
remain at the reduced level provided the preceding amplifier does not
introduce distortion. This condition is generally fulfilled because the
signal is at a low level in the preceding amplifier, and distortion arises
only when the signal is high, as in the last stages of an amplifier.

1 1

; !

Amplifier

1

1 l»

Fig. 13.4. Amplifier with feed-back.

If(-Ap) is made large compared with unity, then the voltage ampli-
fication becomes simply 1/0. Thus it depends only on the feed-back ratio
and not at all on the actual amplification factor of the receiver. It is
therefore independent of any variations in A due to fluctuations in the
h.t voltage, etc. If the feed-back ratio is independent of frequency a
wide-band amplifier with a very uniform frequency response is obtained.
For these conditions to be satisfied in a receiver with considerable net
gam, p must be small and A, the amplification in the absence of feed-
back, large. Great care is then required in the design, for if the feed-back
P becomes positive at any frequency whereA is sufficiently large to make
(1-^) zero or negative, oscillation will set in. To avoid this, the feed-
back must be negative over a wider range offrequency than the receiver
will amplify. -

13.3. Audio-frequency power amplifiers
The discussion so far has been concerned with 'voltage amplifiers'

where an amplified voltage output is required working into such a highimpedance that no power is drawn. This is true for the intermediate
stages of low-frequency amplifiers, but the last stage is generally re-
quired to supply power to a finite load. If this load is a pure resistanceM then use of the equivalent circuit of the triode (Fig. 12.9(a)) shows
that the mean power developed in the load will be

-%R = l*%BHp+B)>. .......: (13.3)
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If B can be varied, then maximum power will be developed in B if it

is made equal to p, as can be shown either by use of the maximum power

theorem (§ 3.3) or by direct differentiation of equation (13.3) with regard

to B. For most triodes this means that the optimum value of B is in

the region of 10 000 ohms or more. Since the power output under the

optimum condition B = p can be written as p?vg/4p, it is obvious that

for a fixed value of p.vg, more power can be obtained by reducing p. For

this reason low impedance triodes, with p of the order of a few thousand

ohms, are used for output stages. In practice the allowable value of pxg
is fixed by the size of the h.t. voltage, for the voltage swing on the load

will be %p.vg , and this cannot approach the h.t. voltage too closely with-

out causing considerable distortion (see below). Low impedance triodes

have low values of p., since gm is fixed by the cathode emission, so that

to obtain the desired power output larger values of vg are required.

Typical values for an output triode are gm = 2-5 mA/V, p = 1500 ohms,

p. = 3-75.

Push-pull amplifiers

In order to reduce distortion in the output, a method of working using

two identical tubes in 'push-pull' is commonly employed. The circuit is

shown in Fig. 13.5, the grids being excited in antiphase by means of a

transformer with centre tapped secondary winding. The anodes of the

two tubes are connected to the h.t. supply through the two halves of

the centre-tapped primary of a transformer whose secondary winding is

connected to the load. Since the change in the grid voltage of one tube

is -\-vg
while that on the other is —v

g , the anode currents of the two

tubes can be expressed as series expansions

b +b1 vg+b2
vg+b3 vg+bi vg+...\ (134)

and b —b1 vg+bz vg—b3 vl+bi vg—...j

These flow in opposite directions through the two halves of the output

transformer, so that it is their difference

2(61 «B+63^+65^+-) (
13 -5)

which forms the magnetizing current for the transformer, and which

induces a voltage in the secondary winding. Thus, if the two halves of

the circuit are equally matched, all the even harmonics disappear from

the output. So also do the steady components b of the anode currents

since they flow in opposite directions through the two halves of the

primary. This has the advantage that saturation of the transformer

core by the steady components of the anode currents is avoided.
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Use ofa transformer has two further advantages: (a) ifthe turns ratio
is n : 1, the load seen by the tube is n2 times greater than the actual load
(see equation 9.41), and n can be chosen to match the load to the tube;
(b) the d.c. resistance of its primary winding is low so that the mean
voltage on the anode is almost equal to the h.t. voltage.

Input
> Output

Fig. 13.5. Push-pull amplifier.

Efficiency ofpower amplifiers

We consider now the source of the a.c. power which an amplifier
delivers into a load. It clearly cannot come from the signal source
applied to the grid, for the power drawn from this source is practically
zero because of the high input impedance of the valve. The ultimate
source of the outpat power is the h.t. supply, though this is not imme-
diately obvious, for the current drawn from the h.t. supply does not
change when a signal is being amplified if there is no distortion. For
simplicity, we shall analyse the case of a triode whose anode is con-
nected through a resistance R to a h.t. supply of V volts. If the anode
current is Ia , the power drawn from the h.t. is Ia V , of which a part
IlR = Ia(V—Va), where Va is the anode voltage, is dissipated in the load
resistance. The remainder, Ia Va , is dissipated in the tube and appears
as heat at the anode. The electrons forming the current Ia through the
tube gain kinetic energy IaVa as they move through the potential differ-
ence Va between cathode and anode, and this kinetic energy is destroyed
when they collide with the anode, being turned into heat. When a signal
is applied to the grid, an alternating component is added to the anode
current, which becomes Ia+ia sincot, while the anode voltage becomes
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V—R{Ia -\-ia sin cut). The mean power dissipated on the anode is now the

mean value of the product of these two expressions. On multiplying out,

it is seen that the product contains terms in sin cot whose average value

is zero, and the remainder is

(V-RIa)Ia-Rilsm*oot.

The first term is the same as the anode heating in the absence of a signal,

but the presence of the second term shows that there is a reduction in

the mean power dissipated on the anode of %Ri%. This is j ust equal to the

a.c. power dissipated in the load R. The physical reason for the reduc-

tion in the anode heating arises from the fact that the anode potential

falls as the anode current rises. Thus more current reaches the anode
while its potential is lower than the average value, and less current

while it is higher than the average, with a consequent reduction in the

mean power dissipated at the anode.

Since the source of the a.c. power is the h.t. supply, we define the

efficiency of the power amplifier as the ratio of the a.c. power output to

the power drawn from the h.t. supply. Thus in the above example, the

efficiency is ^.^
To find the theoretical efficiency we take an idealized case where the

characteristics of the tube are straight lines passing through the point

Ia = at Va = 0. We assume the load resistance R to be connected

through a 1 : 1 transformer with zero resistance in its primary winding
so that no voltage drop across the primary occurs in the absence of a
signal. Then the mean anode voltage is T^ and its instantaneous value

is V—va sin cot, where va is the amplitude of the alternating voltage

developed across the load. If the characteristics are straight down to

T^ = 0, we can increase va without introducing distortion up to the

value V , when the instantaneous anode voltage becomes zero at one

point in the cycle. The a.c. power is then %Vl/R, while the power drawn
from the h.t. is JaV = (Vl/p), where p is the anode slope resistance of

the tube. As was shown earlier, R should be made equal to p for opti-

mum output, and the theoretical efficiency is then 50 per cent.

Practical values of the efficiency are much less because the curvature

of the characteristics prevents large voltage swings being employed. In
the push-pull amplifier, with its cancellation of the even harmonics,

bigger swings can be tolerated. It is then possible to depart from the

type of working (known as Class A) we have considered hitherto, and
to use Class B working, where the tubes are biased to the cut-off point
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on the grid. Current flows in each valve of the push-pull pair only during
the half-cycle when the alternating voltage applied to its grid is positive.
During this half-cycle the anode voltage is low, and no current flows in
the other half-cycle when the anode voltage is high. This makes the
efficiency high, the theoretical value being 78 per cent (see Problem
13.5). In practice, values of 50 to 60 per cent are realized.

Input

Pig. 13.6. Amplifier with tuned circuit as load. For radio
frequencies a screen grid or pentode tube would be used.

13.4. Radio-frequency amplifiers

At radio frequencies (by which is meant frequencies of the order of
1 Mc/s and higher) it is usual to employ a tuned circuit for the anode
load. Resistive loads are unsatisfactory because they are shunted by low
reactances formed by the input capacitance of the next tube, the anode to
earth capacitance, and stray capacitance in the wiring. A parallel tuned
circuit is employed, as in Fig. 13.6, to obtain a high impedance for the
anode load; these various capacitances are then shunted across the tuned
circuit, and form part of the total capacitance C required to tune the
coil to the desired resonant frequency. Since the impedance of a parallel
tuned circuit is high only near the resonant frequency, such an amplifier
is selective, the magnification falling rapidly on either side of resonance.
Near resonance the impedance of the parallel tuned circuit may be
written approximately as (see Problem 9.1)

where R = L/(Cr), and Aw is the departure of w from the resonant
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value &) = 1/(LC)*. Hence the amplified voltage across the tuned

circuit is

-flVg -jLVg ~gm Vg ,jo 6 N

1+p/Z l+p/R+2j&a>Cp l/p+l/R+2jAa>C v
'

'

At the resonant frequency the magnification is p,l(l+p/R) and it falls by
a factor V2 at frequencies deviating from the resonant value such that

±2AwC = (1/p+l/JB).

If the selectivity is defined as//(2A/) = o)/(2Aa>), so that it is analogous

to the Q of a resonant circuit, we see that the selectivity is the same as

that of our tuned circuit shunted by the anode resistance p of the tube.

Reference to the equivalent current generator circuit of Fig. 12.9 (6)

shows that p is effectively in parallel with the load Z.

The values of inductance and capacitance for the tuned circuit are

determined as follows. The desired resonant frequency is usually fixed,

so that LC = 1/cojj. For high voltage amplification, B should be as high

as possible, say about 105 ohms. Now R = Q*](LjC), and a good working

rule is that Q is of the order of 100 at frequencies of a few megacycles

per second. Thus at a frequency of 1-6 Mc/s (w = 107
), we have

J(LC) = 10-7
, <J(L/C) = R/Q = 103

,
giving L = 100 ^H, C = 100 p.p,F.

Transformer coupling is often employed in r.f. amplifiers, the secondary

winding being tuned as in Fig. 13.7. The input capacitance of the follow-

ing stage then forms part of the tuning capacitance. The magnification

at resonance (the ratio of the voltage across the tuned circuit to the

voltage applied to the grid) is then (see Problem 13.2)

A - g™l+ («>oMrirp'
(13 - 7)

which is a maximum when the coupling is adjusted so that («„M) 2 = rp.

Here Q is the magnification factor of the tuned circuit in the absence

of any coupling. In many applications the primary of the transformer

is tuned by a parallel capacitance as well, and the coupling is adjusted to

give the 'band-pass' tuning obtainable with coupled circuits (see § 9.4).

Triodes are seldom used for r.f. voltage amplifiers because of the feed-

back through the grid-anode capacitance. It was shown in § 12.8 that

this feed-back gives a finite value for the input admittance of the tube.

This admittance consists of two parts, one primarily capacitative which

can be tuned out if it is not too great (in the example of § 12.8 the input

capacitance was found to be 120 /u/xF, which is of the same order as the

tuning capacitance required above at 1-6 Mc/s.) The second term is re-

sistive, but may have either sign, being negative if the anode load is
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inductive. Since a parallel tuned circuit will be inductive at frequencies
below its resonant frequency, the amplifier will break into oscillation if

the negative conductance resulting at the input is greater than any posi-
tive conductance in the source with which it is in parallel. To avoid such
instability in the amplifier, screen-grid or pentode tubes are generally
used, since their low grid-anode capacitance makes the feed-back very

Voltage dropping

resistor for screen

\C

Screen by-pass condenser

Fig. 13.7. R.F. amplifier with tuned transformer coupling and pentode
tubes. The capacitor dis used ifcoupledtuned circuitsare needed to obtain

bandpass tuning.

small. With high gain amplifiers using several stages each stage must
be screened by enclosure in an earthed metal box to prevent feed-back
from one stage to another through stray capacitances or inductances.
Such a box is an effective screen provided that its thickness is greater
than the skin depth for r.f. currents induced on the inside of the walls,
since such currents are then highly attenuated before they reach the
outside.

If triode tubes are used, as is generally the case in power amplifiers,
the feed-back through the grid-anode capacitance must be 'neutralized'
by the provision of a second feed-back path of opposite phase. This can
be done by a number of methods, one ofwhich, the 'neutrodyne circuit',
is shown in Fig. 13.8. The anode coil is split into two halves, the h.t.'

supply being connected to the centre point. The two ends of the coil
are then at equal and opposite potentials with respect to earth as far as
the amplified signal is concerned. The feed-back to the grid through the
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grid-anode capacitance from one end of the coil is then balanced out by
that through the neutralizing capacitor Cn from the other end of the

coil. The arrangement is effectively a bridge circuit as shown in Pig.

13.9. At balance, for which the condition is L2Cn = Lx
Gga , none of the

output voltage appears across the input terminals. So long as inductance

Neutralizing
capacitor

Grid-anode
capacitance

Fig. 13.8. The neutrodyne circuit.

Output

voltage

Fig. 13.9. Equivalent circuit of the neutrodyne.

in the leads and other stray reactances are negligible, the balance and

hence the neutralization is independent of frequency.

For high efficiency, r.f. power amplifiers may be run under Class C
conditions. The grid of the tube is then biased back well beyond cut-off,

so that current flows through the tube only for a small fraction of a cycle

near the positive peak of the alternating potential applied to the grid.

The amplitude of the grid swing must be of the same order as the nega-

tive bias on the grid in order to carry the tube into the conducting
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region. The relations between grid voltage and anode current are illus-
trated in Fig. 13.10. The characteristic plotted here is a 'dynamic
characteristic', the variation of the anode current with grid bias being
shown not at constant anode voltage, as in a 'static characteristic', but
under working conditions with a resistive load in the anode circuit. The
anode current is highly distorted, consisting of short pulses, but a tuned
circuit is used as the anode load so that a high impedance is presented

Dynamic characteristic

Fig. 13.10. The relation between grid voltage and anode current in a Class C amplifier.The grid has a large negative d.c. bias, and the applied alternating voltage has a large
amplitude. Anode current only flows for a fraction of the positive half of the cycle.

to the anode current only at the fundamental frequency. This eliminates
the harmonics from the output voltage across the tuned circuit. The
theoretical efficiency of Class C operation is 100 per cent, since under
idealized conditions the anode current flows only in pulses of infinitesi-
mal duration which coincide with the point in the cycle at which the
anode voltage is zero (we assume that the anode voltage swing is equal
in amplitude to the h.t. voltage). In practice efficiencies of 60 to 80 per
cent are obtained.

Class C operation may also be used for the purpose of frequency
multiplication. The form of the anode current makes it very rich in
harmonics. If a tuned circuit tuned to one of the harmonics is used as
the anode load, the oscillatory voltage across the load will have a fre-
quency which is an exact multiple of that applied to the grid. Frequency
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multiplication of this type is used in frequency measuring equipment

where an unknown frequency is to be determined by comparison with

a standard of much lower frequency (see § 15.4).

13.5. Tuned anode and tuned grid oscillators

In the discussion of power amplifiers it was shown that the tube acts

as a converter which transforms d.c. power from the h.t. supply into

a.c. power in* the load. For this purpose the signal applied to the grid

of the tube acts merely as a trigger, little or no power being drawn from

the signal source so long as the grid does not go positive in any part

of the cycle. If a small fraction of the a.c. power in the load is used as

a source of the signal applied to the grid, the conversion of d.c. power

into a.c. power may be made automatic, and no external 'trigger' is

required. The tube then acts as a self-sustained oscillator. For this to

occur, certain conditions must be fulfilled by the size and phase of the

voltage feed-back to the grid. Reference to equation (13.2) shows that

the output voltage v is

v = AvJil-AP),

where A is the gain of the amplifier without feed-back, and ft is the

fraction of the output voltage fed back to the input. If v is to be finite

when the input voltage v
i
from an independent source is made zero,

then the denominator must be zero. In other words, the product A/3

must be positive and equal to unity. This imposes conditions on both

the phase and the magnitude ofthe feed-back, whose nature can be more

clearly understood by reference to a simple case.

The tuned anode oscillator

A circuit diagram for a 'tuned anode' oscillator is shown in Fig. 13.11.

A parallel tuned circuit forms the anode load of a triode tube, and a

voltage is fed back to the grid by means of a mutual inductance. We
shall analyse the circuit starting from first principles. If V = V—Va is

the voltage across the tuned circuit and / the current through the in-

ductance L, we have the relations

Vg = Mdljdt,

V = rl+Ldl/dt,

Ia = I+CdVjdt.

From this set of simultaneous equations, all variables but one may be
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eliminated. It is simplest to retain / as the dependent variable, and the
resulting equation is

LCd*Ildt*+(Cr+Llp-gmM)dIldt+(l+rlP)I = I +V jp. (13.8)

The right-hand side is independent of the time, and the differential

equation is that of a damped harmonic oscillation. The damping will

be zero if conditions are chosen so that the coefficient of dljdt is made
zero, i.e. „

, r ,Cr+L/P-gmM = 0. (13.9)

Fig. 13.11. The tuned-anode oscillator.

The frequency of natural oscillation of the circuit is then given by the
relation r „ „LCo,2 = (1+r/p), (13.10)

and any oscillation of this frequency which exists will continue with the
same amplitude. Equation (13.9) is the condition for the maintenance
of oscillation, and it can be shown that it corresponds to the condition
A0 = 1 (see Problem 13.3).

In practice the feed-back is not adjusted so as to make the coefficient
of dljdt in equation (13.8) exactly zero, since this would not give stable
oscillations (a small change in the conditions leading to a reduction in

gm, for example, would make the coefficient of dljdt positive, and the
oscillations would die away). The feed-back is therefore made so large
that the coefficient of dljdt is negative, and the solution of equation
(13.8) is then of the form

I = &+V,lp)+e-"lA<F^*t+Be-<P-<&), (13.11)
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where b = (Cr+L/P-gm M)/2LG, and c2 = (l+r/p)/LG. If c2 > 63
,

the oscillatory part of the current may be written

/ == e-bl(A' cos ajt+B' sin at),

where a = J(c
2—b 2

). This represents an oscillation which decays away
if b is positive, is just maintained if b is zero, and increases in ampli-
tude if b is negative. The condition for the latter is

gmM > (Cr+L/p) or M > (L+PCr\

showing that there is a minimum value ofM required to give oscilla-

tions. When b is negative, any transient oscillation in the anode circuit

(such as would be caused by switching on the h.t. voltage, or by noise

(see Chapter 16) builds up in amplitude instead of dying away. Our
equations suggest that the amplitude would increase indefinitely, but
this is not so, because the 'constants' gm , p of the tube are truly constant

only for small amplitudes of oscillation, limited to the straight portion
ofthe tube characteristic. When the amplitude is so great that the peaks
of the oscillation carry the tube on to the flat portions of the charac-

teristic at saturation and cut-off, the effective value of gm falls, and the
amplitude will reach a steady point where its effective value is such as

to make 6 = 0. In general this point is reached when the amplitude
of the voltage swing across the tuned circuit is of the same order as the
h.t. voltage V .

The coefficient b may be written in the form

6 = JL+J imE (1312)
2L+ 2PC 2LC (ld ' 12)

Here the first term gives the rate at which oscillations would decay in

the anode circuit if the tube were not connected, or not switched on; the

second term represents the extra damping caused by the anode resistance

of the tube p, which is effectively shunted across the tuned circuit when
the tube is running; and the last term shows the effect of the tube and
the feed-back in reducing the damping of the tuned circuit even when
M is not large enough to maintain oscillations. This effect is known as

'regneration'. It is important to remember that the sign ofM can be
negative if the connexions to the mutual inductance are reversed. The
damping of the tuned circuit is then increased by the action of the tube,

an effect known as 'degeneration'. The Q and selectivity of the circuit

are thereby decreased, whereas they are increased by regeneration. The
latter has the effect of creating a 'negative resistance' in the tuned
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circuit, and spontaneous oscillation occurs when the negative resistance
is large enough to outweigh the positive resistance. A positive resistance
is one in which power is dissipated, a negative resistance one in which
power is generated.

The tuned grid oscillator

A second important type of oscillator is obtained by attaching the
tuned circuit to the grid of the tube, and feeding back a voltage into this
circuit by mutual inductance coupling from a coil in the anode lead.

This is known as the 'tuned grid' oscillator and is shown in Tig. 13.12.

Fig. 13.12. The tuned-grid oscillator.

The analysis of this circuit is similar to that used for the tuned anode
oscillator. Let / be the circulating current in the grid circuit, V be the
voltage developed between grid and cathode, Va the anode voltage, and
4 the anode current. Then the equations for the grid circuit are

V = M(dIJdt)+rI+L(dIldt), I = ~C(dV/dt),

while for the anode circuit we have

4 = io+gm r+rjp, v = va+(L^+M^\.

A simple solution of these equations is possible if we assume that
the effect of the terms in the last bracket is small, so that effectively
Va is constant and equal to V . This is usually true in practice. Then
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elimination of / and Ia between the first three equations leads to the

expression jzy jVLC^L+ (rC-gmM)^ + V = 0. (13.13)

This represents an oscillatory motion, and is similar to equation (13.8).

Oscillations will be maintained or will build up ifM > rC/gm .

When the oscillator is running steadily, the coefficient of the term
dV/dt in the oscillatory equation (13.13) is zero, and the frequency of

oscillation is given by the relation a> = (£C)-J
, showing that it is deter-

mined by the natural resonance frequency of the tuned circuit. If we
return to the corresponding equation (13.8) for the tuned anode oscilla-

tor, the angular frequency is found to be w = {{l-\-rlp)jLG}i showing

that it depends slightly on the anode impedance p of the tube. Since

the latter may change with the running conditions, the frequency will

also vary, and when good frequency stability is desired, the tuned grid

oscillator is generally preferred, since here the tube constants do not

enter directly into the equation for the frequency. In practice the fre-

quency will depend to some extent on the tube, for the input capacitance

of the latter is shunted across the tuning capacitor of the grid circuit

of the tuned grid oscillator, and the input capacitance varies with the

running conditions (see § 12.8). Another cause of frequency drift is

change in the temperature of the components, with consequent changes

in their electrical constants. As a rough guide it may be said that the

frequency of an ordinary small oscillator, following the initial warming

up period after switching on, is stable to the order of a part in 1000.

If higher stability is required quartz crystal oscillators are used (see

§ 15.4). These are low power oscillators (a few watts at most), which

are then followed by r.f. power amplifiers to supply the required output.

For the highest efficiency, such amplifiers are run as 'Class C (see § 13.4).

13.6. Power oscillators

When a large power output is required, but it is not essential to have

the highest frequency stability, an oscillator run under 'Class C condi-

tions is used. This is similar to the Class C amplifier (see § 13.4), and

gives high efficiency; it may be regarded as a Class C amplifier with

regeneration to supply the grid excitation voltage. The mean potential

of the grid is well beyond the cut-off value for the tube, and the excita-

tion voltage must therefore have sufficient amplitude to carry the tube

into the conducting region at the positive peaks. A convenient circuit

giving a large grid excitation is that due to Hartley, where a tapped

inductance is used as an auto-transformer to supply the required feed-
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back. The basic circuit is shown in Fig. 13. 13. The cathode is connected

to the mid-point of the inductance, and the grid and anode through their

respective voltage supplies to the opposite ends of the inductance, where

1 1
—

G.B.

u +

/^T\

Tuned circuit

/\ i i a

H.T

"I

Fig. 13.13. Basic circuit of Hartley oscillator.

the alternating potentials are in opposite phase with respect to the

cathode, thus giving the right sign in the feed-back for oscillation.

An alternative form of the Hartley circuit is shown in Fig. 13.14.

This is known as the 'shunt-feed' type of circuit, the h.t. voltage being

connected to the anode in parallel with the tuned circuit, instead of in

Ct

Tuned

circuit

ii

E

MWVWi

c3

nmw^
Choke

+ i

H.T.

Fig. 13.14. Shunt-feed Hartley oscillator with automatic grid-bias. Appropriate values
of the circuit elements for a frequency of 1 Mc/s : L = 125 fjS, it

= 0-1 H ; It — 10 000
ohms; G = 200 fifiF ; Cj = 001 ju,F, Ca

= 0001 jtF.

series with it, as in Fig. 13.13. This requires a choke Lx in the h.t. lead

to prevent oscillatory currents flowing to the h.t., and a blocking capaci-

tor Gx to isolate the tuned circuit, whose mean potential is that of the

cathode, from the h.t. The values of Lx and Gx must be sufficiently large

at the frequency of oscillation that their impedances are respectively

large and small compared with that of the tuned circuit.

For Class C operation of an oscillator, a special type ofgrid bias circuit

851110 b b
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is required, for the following reason. Ifa large steady negative bias, such

as that provided by a battery, is applied to the grid, oscillations cannot

start because no current can flow through the tube when the amplitude

of oscillation is small, though oscillations can be maintained at a high

level sufficient to swing the grid into the conducting region. To overcome

this difficulty, an automatic form of grid bias is required which is initially

zero, and increases with the level of oscillation. This is provided by the

RC3 combination shown in Fig. 13.14. As the oscillations increase in

amplitude, the grid is swung positive for part of the cycle, and collects

electrons. This gives a grid current which, flowing through R on its

return path, makes the mean potential of the grid negative provided

that the size of the capacitor C3 is such as to make the time constant

of the RC3 combination long compared with the period of oscillation.

Then the short pulse of electron current to the grid when it swings posi-

tive charges up Ca , and the slow discharge of 3 through R creates

the mean negative potential required for the grid bias. In practice the

optimum value of R is usually around 10 000 ohms; lower values give

insufficient bias, and much higher values are dangerous. For, if the

voltage swing becomes too large, and the anode potential falls too low

while the grid potential is positive, the grid may start to emit more

secondary electrons than it receives primaries. This reverses the mean

grid current, and the bias becomes positive instead of negative; the

excessive current which results may destroy the tube.

The capacitor C3 should be chosen to make the RC3 time constant

about 10 periods of oscillation. If the time constant is made too long,

intermittent operation known as 'squegging' may be caused, for the

grid bias cannot adjust itself quickly enough to follow random changes

in the amplitude of oscillation. If the latter starts to fall, but the bias

is not reduced, current ceases to flow through the tube, and the oscilla-

tions will die away; they cannot restart until C3 has discharged through

R so that anode current can flow again. Thus oscillations may be inter-

rupted periodically at a frequency determined by the RC3 combination.

Typical values of the circuit constants for a Hartley oscillator at a

frequency of about 1 Mc/s are given above in Fig. 13.14. The resistance

of the inductance is omitted from the diagram, but its value can be

found if the Q of the coil is known.

13.7. The Kipp relay and the multivibrator

The oscillators which have been considered so far produce sinusoidal

oscillations whose frequency is controlled almost entirely by the con-
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stants of a tuned circuit. This is true even of the Class C type, where
the anode current is very far from sinusoidal, for the tuned circuit offers
an appreciable impedance only to the fundamental frequency, and the
voltage developed across it is almost sinusoidal (in this respect the
oscillator is similar to the Class C amplifier). The question arises, what
will happen if we take an untuned amplifier, and introduce feed-back
of the right sign to produce instability? Such a device is shown in
Pig. 13.15, where the circuit consists of a two-stage aperiodic amplifier,

*+H.T.

*-*• - H.T.

Fig. 13.15. The Kipp relay. Blt Bz are batteries to supply grid-bias voltage.

with feed-back from the anode of the second tube to the grid of the first
tube. The purpose of the batteries Bv B3 is to provide direct coupling
from anode to grid while preserving the correct steady voltages on these
electrodes. If the voltage amplification of each stage is A, where A is
negative to allow for the change of phase between grid and anode
voltages, then the overall amplification is A\ The feed-back factor 8 is
practically unity, so that if A* > 1, the device should be unstable.

In the analysis of this system we must take account of the electrode
capacitance of the anode and other stray capacitance between anode and
earth; this is represented by the small capacitance C which shunts the
anode load r of each tube. The anode current of the first tube is

where lower-case symbols are used, since we shall deal only with the
nuctuatmg components. Here vx is the voltage change applied to the
grid of tube 1, and v2 is its anode voltage change, which is the same as



372 APPLICATIONS OF [13.7

the grid voltage change of the second tube. Since the anode current ix

flows through r and C in parallel, we have also

— ix = C[dvjdt)+vjr.

Elimination of ix gives the following relation between vx
and v2 , together

with an exactly similar relation with v1 and v% interchanged, obtained

by applying the same analysis to the second tube:

-0m*i = 0{dvjdt)+va{r+p)lrp\

—9m^2 = C(^»i/*)+t>i(r+/))/r/)i'

Since —gm pr/(r-\-p) = A, the amplification of each tube, we may write

these equations in the form

Avx
= r(dv2ldt)-{-vs

,'\

(13.15)
Avz

= ridvjd^+v^

where t = Crpj{r-\-p) is the time constant of the capacitance in

parallel with r and p. The solution of these equations is

«i = -». = *> exp{-(^+l)*M. (13.16)

If the value of —A for each tube is greater than unity, this solution

shows that a situation with each tube conducting will not be stable, since

any disturbance of the grid potential of one tube due to noise, etc., will

increase exponentially. The grid of one tube will rise in potential while

the other goes negative at the same rate. The first tube will therefore

conduct at an increasing rate until it saturates, while the second will con-

duct at a decreasing rate until it is cut off; or vice versa. This situation

will remain until a short pulse applied to the grid of the tube which is cut

off brings it into the conducting region; then the exponential increase

of its grid voltage will carry it to saturation while the other tube will

change from saturation to cut-off. The time required for this voltage

'landslide' is very short. If —A > 1, the effective time constant of the

exponential is approximately rj{—A) = C/gm , and typical values are

C = 50 )u./liF, gm = 5x 10-s A/V, giving Cjgm = 10"8 sec. Hence the

time required for an initial disturbance (which might be of the order

of a microvolt) to increase to 100 V is

t = 10-8{2-3log10(10
2/10-6

)} = 0-2 X 10-6 sec.

This result of less than a microsecond gives a rather optimistic value

for the duration of the voltage landslide, however, for two reasons:

(a) when saturation sets in the value of gm is lower than that assumed,

and (6) when the grid of the second tube is swung negative beyond the

cut-off point, the discharge of its anode capacitance is incomplete and
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can continue only through the anode load resistance r, which is usually
much greater in value than l/gm . This makes the landslide of longer
duration for the tube which is being cut off than for the other tube.
The device which has just been considered is known as the Kipp relay.

It will respond to a very short voltage pulse, and once switched over will

remain so until a pulse of the opposite polarity is applied. The anode
current of the tube which is caused to conduct by the pulse may be

+ H.T.

Fig. 13.16. The multivibrator.

used to operate a mechanical relay. In practice the bias batteries BvB2 may be eliminated by a suitable automatic biasing arrangement.
If the direct coupling between stages of the Kipp relay provided by

the batteries Bv B2 is replaced by decoupling, as in Kg. 13.16,asystem
is produced in which a periodic change overfrom (tube 1 saturated, tube 2
cut off) to (tube 1 cut off, tube 2 saturated), and vice versa, is produced
automatically. This is known as the multivibrator. Its action can be
understood as follows. Suppose at some instant tube 1 is saturated, and
tube 2 is cut off. Then the voltage on grid 2 is negative, but the charge
on capacitor Cx which is holding it negative is gradually returning to
its equilibrium value and the voltage across the grid resistance B1 is

returning to zero. When it becomes sufficiently small to allow anode
current to start flowing in the second tube, the exponential voltage land-
slide will take place. The anode voltage of this tube will drop suddenly,
and this drop will be transferred through C2 J?2 to the grid of tube 1,'

which will therefore be cut off. The voltage across i?2 will then decay
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as C2 recharges to its equilibrium value, and the reverse landslide will

occur when it has fallen sufficiently for conduction to begin in tube 1.

The cycle is now complete, and the wave forms of grid and anode voltage

for tube 1, and grid voltage of tube 2 are shown in Fig. 13.17. The
positive kicks of grid voltage which occur at the change-over points are

cut off at a small positive voltage by the flow of electrons to the grid.

The anode of each tube is alternately at the h.t. voltage (during cut-off)

H.T.+

FlO. 13.17. Voltage changes in the multivibrator on the grid and anode of tube 1,

and the grid of tube 2.

and at a low voltage determined by r and the saturation current of the

tube. It has therefore a rectangular wave form, the steepness ofthe sides

depending on the rapidity of the voltage landslides, which are controlled

mainly by the stray anode capacitance. As already noted for the Kipp
relay, the change over from conduction to cut-off takes rather longer

than the reverse change, so that the two sides of the square wave are

not equally steep.

The period of a complete cycle is mainly determined by the charging

of Cx
through Rlt and C2 through R2

. At saturation the voltage drop

across the tube is small, so that the sudden change of anode voltage

when the tube conducts is practically equal in amplitude to the h.t.

voltage; so is the negative voltage kick applied to the grid of the next

tube. This voltage must decay to the cut-off point of the grid charac-

teristic, which is nearly equal to the h.t. voltage divided by /x, the
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amplification factor of the tube. The time of decay for the circuit of
Fig. 13.16 will therefore be nearly R

x Cx log /* for one tube, and R2 C2 logju,

for the other, the time required for a complete cycle being

(R^+RzC^ogfx.
A more accurate analysis shows that each R should be replaced by

R.
rP

(r+P)

in each case, since C really charges through R in series with (r and p in
parallel).

The multivibrator, with its rectangular wave form, is of great use in
generating square voltage pulses, and harmonics ofa standard frequency.
It is readily synchronized with an injected sinusoidal signal, applied to
the grid of one tube, if its natural period is close to that of the signal.
The effect of such a signal is to delay the return of the grid voltage to
the conducting point if it would be early, and to speed it up if its natural
period is such that it would return too late. This property of synchroniz-
ing with an applied signal is of use in frequency measurement, since
the harmonics generated by the multivibrator are then exact multiples
ofthe standard frequency, and an unknown frequency may be compared
with the nearest harmonic. The multivibrator may also be used for fre-
quency division, for it will synchronize with a signal whose period is
close to an exact fraction of its own, i.e. a frequency up to 5 or 10 times
its own.

13.8. Amplitude modulation and detection
In Chapter 12 the use of vacuum tubes for rectification was outlined;

that is, the conversion of an alternating voltage into a steady voltage.
A process similar to this is employed in the reception ofradio signals, and
is generally known as detection. The difference lies in the fact that the
radio signal is modulated in some way in order to convey information,
such as speech or music, whose characteristic frequencies lie in the audio
range, while the signal itself is at a much higher frequency, known as
the carrier frequency. One system used for this purpose is called ampli-
tude modulation, since the amplitude of the carrier signal is made to
vary with the period of the audio frequency, and by an amount which
is proportional to the strength of the audio-frequency information. For
simplicity we shall consider only a single audio frequency of constant
strength. The amplitude-modulated radio signal may then be written
in the form T7 ..,

V = A(l+mcospt)coswt. (13.17)
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Here A is the amplitude of the carrier signal in the absence of modula-
tion, and o}J2tt its frequency. The constant m is known as the depth of

modulation, and cannot be greater than unity, and p/2-rr is the audio

frequency.

The nature of an amplitude-modulated signal can be seen from Fig.

13.18(a), which shows the variation of the voltage V with time. Its

Fig. 13.18. (a) Amplitude-modulated signal, before detection.

(6) Amplitude-modulated signal, after detection.

Normally <o is much greater than p.

amplitude fluctuates slowly between a maximum value of A(l-\-m) and
a minimum of A(l—m), the period of a complete cycle of this fluctua-

tion being 2n/p. Manipulation of equation (13.17) shows that it may
be rewritten as

V = A coswt+^mA coa(co Jrp)t-JrlmA cos(cd—p)t. (13.18)

This indicates that the modulated signal may also be regarded as com-

posed of the carrier signal A cos cut, together with two other frequencies,

higher and lower by pj2ir, which are known as side-bands, and whose

amplitude is proportional to the product of the carrier strength and the

depth of modulation. The presence of these side-bands shows that any

receiver with r.f. circuits must be designed to have a pass band which

will accept the frequencies (a)±p)l2ir as well as the carrier frequency

to/27r, as otherwise the audio-frequency modulation will be cut out. The
presence of the side-bands may be demonstrated by applying the
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modulated signal to a sharply tuned frequency-meter, which will show
responses at the three frequencies {a>~p)l2n, uofiir, and (oi+p)/2n.
In general the modulation will not consist of a single audio frequency,

but of a whole range of frequencies. For speech or music these cover
the range from about 50 c/s to several kc/s, while for television a band
of several Mc/s is required. This is because the picture consists, for
example, of 400 X 400 separate dots, scanned 25 times a second, so that
400x400x25 = 4x 10* pieces of information must be transmitted per
second. The pulse corresponding to a spot must therefore last less than
a microsecond, and a receiver to amplify such pulses requires a band-
width of the order of 4x 10« c/s. By Fourier analysis any modulation
can always be resolved into a set of sinusoidal oscillations, and our
analysis can therefore proceed in terms of one such frequency, bearing in
mind that the various parts of a receiver must then have the bandwidth
required to accommodate all modulation frequencies up to the highest.
The mean value of the signal voltage V is zero over any period long

compared with that ofthe carrier frequency, and it will therefore produce
no effect in a receiver designed to accept only audio frequencies. If the
signal is passed through a rectifier stage so that the portions where V is

negative are wiped out, as in Fig. 13 . 1 8 (6), the mean value ofthe resultant
is not zero and fluctuates at the audio-frequency rate corresponding to
the modulation. This process is known as detection, since the informa-
tion which is conveyed by the modulation can now be detected by the
ear if the signal from the rectifier, after suitable amplification, is applied
to headphones or a loudspeaker. An obvious requirement of a detector
is that its output signal shall be as nearly as possible a true reproduction
of the original modulation, i.e. the output voltage should be linearly
proportional to the depth of modulation m, and the constant of propor-
tionality should be the same for all modulation frequencies.
A circuit using a diode for the detection ofamplitude modulated waves

is shown in Fig. 13.19. It will be seen that it is essentially the same as
that of Fig. 12.3, but certain limitations must be placed on the values
of R and C to obtain efficient and distortionless detection. These may
be summarized as follows:

(1) The load resistance R should be large compared with the effective
output resistance of the diode, p. The latter is approximately equal to
the reciprocal of the slope of the diode characteristic, and forms a voltage
divider with R just as in the case of the triode tube. Since p varies with
the size of the applied signal, the condition R > p not only makes the
fraction of the possible output voltage appearing across R nearly unity
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(high efficiency) but also makes this fraction nearly independent of p
and hence of the magnitude of the applied signal (low distortion).

(2) The time constant of the RC circuit should be long compared

with the period ofthe carrier voltage, to avoid voltages of this frequency

appearing in the output (i.e. ljwC <^ R).

Input from
r.f. amplifier

Diode detector stage

Fig. 13.19, Diode detection circuit.

vx
= modulated input voltage.

i>2
= output voltage.

(3) An upper limit to RC is set by the requirement that the voltage

across C shall change sufficiently rapidly to follow the modulation. This

requires (1/pC) > R, or more strictly, (1/pC) ^ Rm/(l—m2
)* (for proof

of this relation, see E. Williams, 1952; the presence of m arises because

the rate of change of the carrier amplitude depends on the depth of

modulation).

(4) C should be several times as large as the cathode-anode capaci-

tance Cca of the diode, since C and Cca form a voltage divider for the r.f.

voltage applied to the diode.

The circuit of Fig. 13.19 shows the modulated input voltage being

supplied from a tuned r.f. transformer. The condition R >p (see (1)

above) makes it necessary for the size of the input voltage to be of the

order of a volt or so, in order to work on a portion of the diode charac-

teristic where the slope is fairly high. In the reception of broadcast

signals ranging from millivolts down to microvolts, it is therefore neces-

sary to amplify the signal before detection. At the right of Fig. 13.19
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the output from the detector is shown applied to the first stage of an
a.f. amplifier. The blocking capacitorQ is inserted to prevent the steady
component of the rectified voltage across B being applied to the grid of
the first tube and so changing its bias. The size ofCx should be such that
(IjpCj) < Bx for the lowest frequency (p/2tt) present in the modulation,
and Bt should be of the same order or larger than B, since, in parallel
with B, it forms part of the load resistance for the diode detector.
The use of the diode described above, where the applied signal is large

enough to operate the diode on the straight part of its characteristic, is

known as 'linear detection', since the output voltage is linearly propor-
tional to the amplitude ofthe input voltage. If the input voltage is very
small, as would be the case if a broadcast signal were applied to the
diode directly without previous amplification, the diode is operated only
over a very tiny portion of its characteristic, and detection or rectifica-
tion results only from the curvature of the characteristic of this region.
The output current or voltage is proportional to the square of the input
voltage, and the process is known as 'square law detection' . An approxi-
mate analysis may be made by assuming the load resistance is small
compared with the mean output resistance of the diode; the latter is

very high when the applied signal is small. Then the current through
the tube when a small signal voltage v is applied may be written as

1 = Io+ ^v)
V+

l{w'^+- = 7o+«*+^2
+..., (13.19)

where I is the current flow (if any) when v = 0, and a and b are deter-
mined by the slope and curvature of the characteristic near the point
I = I . If v = vx cos iot, then

* = 1—h = av1 coa<ot+$bv%(l-{-cos2cot)+..., (13.20)

showing that there is a change %bv\ in the mean current, which is propor-
tional to the square of the applied signal. If the latter is modulated,
so that v1 = B(l+mcospt), then the low frequency current change is

%bBZ(l+2mcospt+im*+$m2cos2pt), showing that the detected signal
willhaveharmonic distortion owing to the presence ofthe term in cos 2pt.
For this reason, and because of the very low efficiency, square law de-
tection is not used in radio reception. It is used in some vacuum-tube
voltmeters, but usually with a triode tube rather than a diode. The
triode is worked on a curved portion of its anode current-grid voltage
characteristic, and the analysis given above may be applied if v is the
change in grid voltage and i the change in the anode current. The change
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in anode current may be observed on a milliammeter inserted in the

anode load. This system is known as 'anode bend' detection, since it

depends on the curvature of the anode current characteristic. The ad-

vantage of using a triode instead of a diode is that comparatively large

changes in the output current may be obtained, while a high input im-

pedance is offered to the source.

It should be noted that the triode can be used for linear detection if

the grid is biased to cut-off, and the size of the input signal is sufficient

to swing the grid on to the linear portion of the anode current-grid

voltage characteristic during the positive peaks. Themean anode current
will then change linearly with any change in the amplitude ofthe applied

signal. This can be used either for detection of amplitude modulated

signals, or in frequency changing, discussed in the next section.

13.9. Frequency changing

Since square law detection is very inefficient compared with linear

detection (see Problem 13.4), it is always desirable that a signal be

amplified sufficiently, before being applied to the detector, to work the

latter in its linear region. Often it is undesirable, and sometimes im-

possible, to provide sufficient amplification for this purpose at the carrier

frequency. A device known as frequency changing is then used, in which,

as the name suggests, the carrier frequency is altered to another more
convenient frequency, the modulation being preserved intact. In the

formulae (13.17) and (13.18) above for a modulated signal, this means
that en is changed to another value, but that the terms in m remain the

same.

This change of frequency is accomplished by adding to the original

signal an alternating voltage of another frequency (co1/27r) generated

locally, and passing the two into a rectifying stage known as the mixer.

The output from the mixer then contains voltage components which

fluctuate at, apart from the modulation frequencies, (cj
1 —o>)j2tt and

(w1+to)/27r. If the difference frequency (cox
— co)j2tt lies in the audible

range, it may be amplified and made to work headphones or a loud-

speaker. This system is known as heterodyne reception and is used in

telegraphy where the carrier signal is modulated only by being switched

on and off in accordance with some prearranged code such as the dot-

dash system of the Morse code. The dots and dashes are then heard as

audible notes (usually about 1000 c/s).

In a superheterodyne system, the sum and difference frequencies are

outside the audible range, and one of them is selected and amplified.
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The frequency selected is known as the intermediate frequency (i.f.) and
the i.f. amplifier magnifies the signal, with its original modulation, to a
level at which it can be detected by a diode operating in the linear region.

Since the mixing stage must incorporate a non-linear device, it is often
called the 'first detector', while that following the i.f. amplifier is called
the 'second detector'.

The operation of frequency changing (or 'frequency conversion')
can be readily understood as follows. Suppose an alternating voltage
WiCosw^is supplied by a 'local oscillator', and to this is added a small
signal voltage v cos cot, where v < vx and ux is close to at. Then the total
amplitude of the alternating voltage will fluctuate between (vx+v) when
the two components are in phase, and {y^— v) when they are out of
phase. The time interval between instants at which the two are in phase
is 27r/(w1

— co); the amplitude therefore fluctuates sinusoidally at a fre-

quency equal to the difference of the two original components, and the
size of the fluctuation is the same as that of the signal voltage v. This
constitutes an amplitude modulated voltage which can be detected as
described in the last section, the difference being that the 'modulation'
frequency is determined by the difference between the signal and local

oscillator frequencies. The amplitude of the local oscillator voltage vx
may be adjusted so that the detector is worked on the linear portion of
its characteristic, and the 'modulation' of the local oscillator voltage
produced by the signal appears in the output as a component at the i.f.

frequency whose amplitude is proportional to that of the original signal.

Any slow fluctuation of the latter, such as that due to an audio-frequency
amplitude modulation, is preserved, and the signal at the i.f. amplifier
differs from the original only in the frequency of the carrier voltage.
For the purpose ofmathematical analysis, the action ofthe local oscil-

lator voltage on the detector may be assumed to produce a periodic
variation ofits slope conductance dl/dV (or transconductance in the case
ofanode bend detection) . This fluctuating conductancemay be analysed
as a Fourier series of the form

9 = g +ffi cosw1t+g2 cos2u)1 t+... . (13.21)

The effect of adding a small voltage v cos cot is to change the detector
current by an amount

gv cos cot = g v cos cot-{-g
x v cos w1 1 cos cot-\- . .

.

= g vco8cot+yi v{coa(co+co1)t+cos(co—cxi1)t}+..., (13.22)

showing that there are Fourier components at both the sum and differ-

ence of the signal and local oscillator frequencies. The i.f. amplifier may
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be tuned to accept either of these; components at (uoj^oj) also exist,

but they are usually small because the coefficients gn decrease in magni-
tude as n increases. This analysis shows that either the sum or the

difference frequency may be used, although in the previous discussion

only the difference term was considered. In work at very high frequen-

cies the difference is generally used, since this is more convenient in

building an i.f. amplifier. In addition, where selectivity is required, it is

easier to get a narrow pass band from circuits at the lower frequency.

For example, a Q of 100 would give a pass band of about 10 kc/s in the

Signal frequency

From local

oscillator

Circuit tuned
to signal frequency

Circuit tuned
to intermediate
frequency (i.f)

To i.f. amplifier

Loose coupling

Fig. 13.20. Diode frequency changer circuit.

circuits of an i.f. amplifier at 1 Mc/s, whereas to obtain the same limited

band at a r.f. of say 100 Mc/s, would require a © of 104
. In a super-

heterodyne receiver using such frequencies, the local oscillator might be
at 99 or 101 Mc/s, and the r.f. circuits would have to be sufficiently

sharply tuned to reject any signal at 98 or 102 Mc/s respectively, which
would produce the same beat frequency. This requirement is known
as 'second channel suppression'. In general it means that the tuned r.f.

circuits for the signal frequency co/2tt must be sufficiently selective to

reject any unwanted signal at the 'image frequency' (2w 1 —co)j2n, which
is separated from the local oscillator frequency w^n by the same
amount, and hence would also be accepted by the i.f. amplifier.

At frequencies of the order of a few megacycles per second or less,

anode bend detection is generally used in the mixing stage, and special

tubes such as the hexode and pentagrid (or heptode) are employed. The
former is a screen-grid tube with two control grids, one for the signal

voltage and the other for the local oscillator voltage, separated by an
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extra screen grid which prevents either of the two voltages being fed
back into the circuits of the other section through the inter-electrode

capacitance. A separate local oscillator tube is required, though this may
be enclosed in the same envelope, as in the triode-hexode. In the penta-
grid tube, the first two grids form the control grid and anode of a triode
which is used as local oscillator. The electron stream emerging from the
second grid is thus modulated at the local oscillator frequency before tra-

versing the second part of the tube, again effectively a screen-grid tube.
At high frequencies diode frequency changers are used, the essential

circuit being shown in Fig. 13.20. The main difference from the simple
detection circuit of Fig. 13.19 is the addition of a loose coupling to the
local oscillator, and the use of a tuned transformer coupling to the i.f.

amplifier, instead of an RC circuit coupled to an a.f. amplifier.

13.10. Frequency modulation

The transmission of intelligence by a radio wave requires some form
of modulation, and amplitude modulation, where a carrier wave of a
fixed high frequency is modulated in amplitude at a low frequency, has
been outlined in § 13.8. An alternative system is 'frequencymodulation',
in which the signal wave has a constant amplitude, but its frequency
is varied periodically in accordance with the modulating signal. The
amount of frequency variation is proportional to the amplitude of the
modulating voltage, and the rate of variation is proportional to the
modulating frequency. The unmodulated carrier wave, for which a> is

constant, may be written as

V = A cos^(i) = A cosojf,

where the function <f>(t) =
J*
w dt. If the frequency of this carrier wave

is modulated by a single audio-frequency (p/2tt) of constant amplitude,
then the instantaneous angular frequency becomes

a)
f
= at+Aco cospt,

where Aw is the maximum deviation of u>t from w, the frequency of the
unmodulated carrier. Then for the frequency modulated wave

V = A cosy" u)t dtj = A coslcot-\—-sin^J = A coa(cot+mf ainpt).

(13.23)

The quantitymf = (Aoi/p) is called the modulation index. For example,
if the unmodulated carrier wave has a frequency (w/2it) = 108 c/s, and
the modulation is at a frequency (p/2w) = 500 c/s, and the modulation
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index is mf
= 0-04, then the modulated carrier wave will vary in fre-

quency from (108+20) c/s to (108— 20) c/s and back again 500 times a

second. On the other hand, if the modulation index is 20, the frequency

of the carrier varies from (108+104
) c/s to (108— 104) c/s and back again

500 times a second.

Since a frequency modulatedwave is not a simple sine wave, it contains

side-bands, which are more complicated than those for an amplitude

iii.iii.iii i

Fig. 13.21. Side bands in a frequency modulated wave with modulation index 0-5

and 5 respectively. OA = amplitude of unmodulated carrier.

modulated wave. By Fourier analysis it may be shown that the voltage

wave form of equation (13.23) can be written as

V = AJ (mf)cosu)t+AJ1(mf){cos(a)+p)t— cos(o>—p)t}-j-

+AJ2(mf){cos(co+2p)t
Jr cos(co—2p)i}+...

CO

= A[J (mf)cos<Dt+ % Jn(mf){cos(co+np)t-\-(— l)m cos(co— np)t}].
n—l

(13.24)

Here the numerical coefficients Jn{mf) can be found from tables of Bessel

functions, for Jn is a Bessel function of order n. Although the side-band

frequencies stretch to infinity, the more distant side-bands have small

intensity. If the modulation index m/
= 0-5, the first order side-bands

(u>±p) have amplitude 0-24, and the second order side-bands (co±2p)

have amplitude 0-03 relative to the unmodulated carrier; higher order

side-bands are negligible. If mf
= 5, the amplitudes of the side-bands

are larger, as shown in Fig. 13.21, the amplitude ofthe carrier is markedly

reduced, and most of the energy is in the side-bands (the total energy is
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independent of mf). This represents an economy in transmitter power
over amplitude modulation, where the carrier wave is fixed in amplitude
and carries half the energy even with 100 per cent depth of modulation.
As a rough rule the width of the frequency band over which the side-
bands have appreciable amplitude is approximately

mm
In a typical system for transmitting speech and music, the maximum
frequency deviation (Aco/2n) is ±75 kc/s, and the maximum audio-
modulation frequency 15 kc/s, so the bandwidth required is

2(75+15) = 180 kc/s.

Though the bandwidth required is thus considerably greater than for
transmission of an amplitude modulated wave with the same maximum
audio frequency, a frequencymodulation system has the great advantage
in that it cuts out all amplitude modulated disturbances caused by
interference and noise, and so gives much improved reception. The
carrier frequencies used for frequency modulation transmission are high
(« 100 Mc/s), partly because the fractional frequency deviation (Acojat)
is then small and easier to realize in transmission, and partly because
only the direct ray from the transmitter is then received. Any ray re-
ceived indirectly (e.g. by reflection from the ionosphere) would be more
seriously distorted by selective fading (unequal transmission of different
frequencies) than in an amplitude modulated system, because of the
greater bandwidth required.

In the reception of an f.m. transmission it is necessary to convert the
frequency modulation into an amplitude modulation, and this is accom-
plished by a 'discriminator'. Several types of discriminator are in use,
the essential ingredient being a circuit whose impedance depends on
frequency. A simple example is a tuned circuit adjusted so that the
mean signal frequency (aj/277) lies on the side of the resonance curve,
at the point of inflexion where the change in current (see for example
Fig. 9.5) varies linearly for small changes in frequency. Two such cir-

cuits, one with its natural resonance frequency tuned above the signal
frequency, and the other below, can be used with a push-pull circuit
to balance out distortion, as well as unwanted amplitude modulation.
The latter is mainly suppressed, however, by passing the frequency
modulated signal first through a 'limiter', such as a pentode run at an
abnormally low anode voltage so that it can be swung from cut-off to
saturation by a change of a few volts in the grid potential. The received

851110 0(j
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signal is amplified to such a level before being applied to the limiter that

the grid swing on the pentode is well into the cut-off region in one direc-

tion and into the saturation region in the other. Then the amplitude of

the signal voltage in the tuned circuit used as anode load is determined

entirely by the tube characteristics and is practically independent of the

amplitude of the signal applied to the grid. Two such pentodes, one

following the other, are generally used to make the removal of any
amplitude modulation more complete.

Local
oscillator

'

Aerial
R.F.

amplifier
—-

Frequency
changer
(mixer)

I.F.
amplifier

f.m.

signal
Limiter

a.m. signal
"

Loudspeal
or displa

system

rer

y *
Audio- or

video-amplifier
<

Second
detector

* Discriminator

Fig. 13.22. Block diagram of a radio receiver. The two stages on the extreme right
are required only for the reception of a frequency modulated transmission.

13.11. Radio receivers

We are now in a position to outline briefly the component parts of a
typical receiver, as exemplified in the block diagram in Fig. 13.22. The
signal from the aerial is fed into an r.f. amplifier which must be tuned to

the signal frequency. If the latter is variable then all the tuned circuits

in the amplifiermust be adjusted each time a signal ofdifferent frequency
is received. This is cumbersome and expensive and the stages of r.f.

amplification are therefore kept to a minimum, or even omitted. In the

latter case the only tuning required is that of the local oscillator resonant

circuit together with the circuit into which the aerial signal is fed. The
latter is tuned not only to achieve a voltage step-up but also to suppress
the second channel at the image frequency which would otherwise be
passed into the mixer. This suppression is of course improved by the

use of an r.f. amplifier, and so also is the sensitivity, since the amplifier

can be designed to give low noise (see Chapter 16).

The local oscillator is generally a simple tuned anode oscillator with a
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triode tube, and a power output of a few watts is sufficient to drive the
mixing stage in the linear detection region without using tight coupling
from the local oscillator. Tight coupling makes it difficult to tune the
signal circuits and local oscillator circuits independently, and may also
result in loss of signal into the local oscillator circuits.

The presence of side-bands in a modulated signalmeans that all circuits
in the receiver must have sufficient bandwidth to pass the side-bands if
the modulation is to be preserved. In the r.f. stages, simple tuned circuits
will generally suffice, but in the i.f. amplifier some form of band-pass
tuning, such as can be obtained by the use of coupled resonant circuits
(see § 9.4), may be required. It is then convenient to place one tuned
circuit in the anode lead of the amplifier tube, and couple it by a mutual
inductance or capacitance (orboth) to another resonant circuit connected
to the grid of the next tube, as in Fig. 13.7.

In a receiver for amplitude modulated signals the purpose of the i.f.

amplifier is to magnify the signal until it is large enough to work a
detector (the second detector) in the linear region. In a receiver for
frequency modulation the i.f. amplifier magnifies the signals before they
are applied to the limiter and discriminator detector. It is readily seen
that it is more convenient to perform these operations at a constant
frequency than at a variable one, so that the superheterodyne system
is a considerable advantage in a receiver designed to cover a range of
frequencies. In all receivers the final amplification is by an aperiodic
amplifier designed to pass all frequencies up to a few kilocycles per
second for sound or a few megacycles per second for vision. Thus the
only substantial difference between a receiver for a.m. and one for f.m.
is that the latter requires two extra stages, a limiter and a discriminator.

REFERENCES
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Williams, E., 1952, Thermionic Valve Circuits (Pitman).
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PROBLEMS
13.1. A 'cathode-follower' circuit is shown in Fig. 13.23. Show that the amplifica

tion is

4 = ^
VQ

9m
0*+(l/p)+(l/Z>

and that the equivalent circuit consists of a constant current generator gm v ,

shunted by a conductance gm, working into a load consisting of impedances p, Z
in parallel.

13.2. In the circuit of Fig. 13.7, the amplification may be defined as the ratio

(voltage across capacitor C)/(input voltage at grid of first tube). Show that

A ^9m

where Z3 = series impedance of the tuned circuit L2 , C, r by itself. If the circuit

is tuned to an angular frequency ai which makes the denominator of this equation

purely resistive, show that A can be written as

. _ Q>qMQ
A ~ gm {\+wlM*I(rp)+u>lLllp*}'

where Q = (tu O)_1
. In general (a> LJp)

2 <^ 1, typical values being a> = 10'

sec-1 , Lx
= 10~4 henry, p = 10 5 ohms, and the expression for A then reduces to

that given by equation (13.7).

-©
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H.T.

Fig. 13.23. The 'cathode-follower' circuit.

13.3. In the tuned anode oscillator circuit of Fig. 13.11, show that the fraction

of the voltage output which is fed back to the input is

fi
= -ja>M/(r+jcoL).

By means of equation (12.14) calculate the amplification A which the triode with

its tuned circuit would give at the oscillation frequency given by equation (13.10),

and show that Ap = gmM/(Cr+L/p).

Hence the condition A/3 > 1 gives the same condition for oscillation as equation

(13.9).

13.4. An amplitude-modulated voltage signal v = B(l-\-mcospt)cosa>t is applied

to two different receivers: (1) a diode detector with the characteristic given by
equation (13.19), working in the square law region, followed by an audio-frequency

amplifier with overall amplification A; (2) a signal frequency amplifier with

pverall amplification A, followed by the same diode working in the linear region.
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Show that the output voltages (assuming that the diode works into a resistance B
in each case) from the two systems are in the ratio bB\a, and show that ifB = 10-* V, a = 10-» A/V, b = 10-= A/V* the ratio is 10"'. This illustrates the
inefficiency of square law detection.

13.5. In a push-pull Class B amplifier the anode current wave form in each tube
consists of a half-period of a sine wave, the current being zero in the other half-
period. Assuming that the amplitude of the anode voltage swing cannot be
greater than the h.t. voltage, show that the greatest efficiency is Jtt.

13.6. The 'flip-flop' circuit is a hybrid of the Kipp relay and the multivibratorm which the battery Bx of Fig. 13.15 is retained but the battery B2 is replaced
by capacitor and resistance (e.g. C, and B% of Fig. 13.16). Show that this arrange-
ment has a stable position with tube 1 conducting and tube 2 cut off, but if a
short positive pulse is applied to grid 2 (or a short negative pulse to grid 1) the
circuit executes one cycle of oscillation (similar to the multivibrator), returning
to its stable position.

13.7. In the circuit of Fig. 13.2 the voltage v% is not exactly in phase with (-v.)
showing that the amplification A = vt/v„ is complex. Writing A = — [A \exp(j0),
show that the phase angle 6 is given by the expression

tan0 = (l+pARXcdORO-i-pcoq,
p/B1+ll+p/B)(l+Ot/0)'

i

This shows that the phase delay varies with frequency, and if it is appreciable it
will cause distortion. Thus a square wave will not appear square after amplifica-
tion because the phase of the higher frequency components is altered relative to
the lower frequency components; the ear is, however, insensitive to distortion of
this kind.
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THERMIONIC VACUUM TUBES AT
VERY HIGH FREQUENCIES

At frequencies above about 50 Mc/s the performance of thermionic

vacuum tubes begins to fall off for a number of reasons. These may be

briefly classed as follows:

(a) Effects of electrode impedance, which make the voltage appearing

at the actual electrode differ from that applied to the lead outside

the tube.

(6) Effect of the finite time taken by the electrons in travelling from

one electrode to another, causing the current flow not to be exactly

in phase with the applied voltage at the various electrodes.

(c) Increased power loss in the external circuits, due to skin effect in

conductors (and proximity effect in coils), dielectric loss in im-

perfect dielectrics such as tube bases, and radiation.

It is convenient to discuss these effects separately, and then show how
the design of tube and circuit is modified in order to improve their

performance.

14.1. Effects of electrode impedance

Atverylow frequencies the effects ofstrayinductance and capacitances

associated with the various electrodes of a thermionic vacuum tube may
be neglected. As the frequency is raised, the interelectrode and other

capacitances become important, as discussed in § 12.8, where it was

shown that the effect of the grid-anode capacitance in a triode is to

reduce the input impedance. This difficulty is eliminated in the pentode

tube, which is therefore generally used for amplification at frequencies

between about 100 kc/s and 100 Mc/s. At the high frequency end of

this range the inductance of the cathode lead becomes important, for

this inductance is common to the grid and anode circuits, and it there-

fore introduces feed-back, as in the cathode follower circuit of Problem

13.1. In particular the performance is adversely affected because the

flow of current through the grid-cathode capacitance and the cathode

lead inductance results in a low input resistance. This resistance is

shunted across the tuned circuit which is normally used for the input
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at high frequencies, and may seriously reduce the voltage magnification
which this circuit would otherwise give. The size of the input resistance
may be estimated as follows, using the circuit of Kg. 14.1.
Let v be the external voltage applied, and vgthe actual voltage existing

between grid and cathode. These differ because ofthe voltage developed
across the inductance L through the flow of anode current through it

{a)
. (»)

Fig. 14.1. Effect of cathode lead inductance at high frequencies.

*«, = (sw^zoyHi.

If the anode load is small compared with the anode impedance of the
tube, as is usually true in the pentodes used in r.f. amplifiers, the anode
current is approximately equal to gm v

g, and we have

Now the presence of the grid-cathode capacitance will cause grid current
to flow, of magnitude ig = vg{j«>Cgc). Hence the grid admittance Y
will be

Y = »> =3"CJ(l+gmja>L)

~ 3<»Ggc( 1—gmjcoL) (since gmoL is small)

= 3<»Cgc+gm o> 2LCgc. (141)
From this equation it is seen that the input capacitance of the tube

is shunted by a conductance whose value is proportional to the cathode
lead mductance, the cathode-grid capacitance, and the square of the
frequency. To estimate the magnitude of the effect, we shall take

gm = 5 mA/V, Ggc = 5WF, L = 5 x 10-* henries,

where the value of the inductance is of the right order for a straight
wire 5 cm long and 1 mm in diameter. Then at a frequency/the input
conductance is approximately 5xlO-ao/2 mhos; at 50 Mo/g> thig comj
spends to a resistance E

g of 8000 ohms, and at 500 Mc/s, ofonly 80 ohms
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This resistance is shunted across any parallel tuned circuit which may
be attached to the input, and will therefore lower its Q, with resulting

loss of magnification of the signal voltage in the input circuit. The

figures given above show that this effect will be serious at 50 Mc/s,

while the power drawn from a signal source applied between grid and

cathode at 500 Mc/s would be intolerable.

Fig. 14.2. (a) Tube with leads brought out of glass, through bakelite

base (shown detached below) to pins P.

(6) Tube with pressed glass base has much shorter leads,

as the pins are sealed into the glass.

A anode, front portion removed to show inside.

G grid. P pins.

C cathode. S sealing-off point.

Reduction of the input conductance of a tube at high frequency can

be achieved by a design in which both the grid-cathode capacitance

and the cathode lead inductance are kept as small as possible. Since

the grid-cathode separation cannot be increased, owing to transit time

limitations, the electrodes must be made with the smallest possible area,

and the leads to grid and cathode must be kept well apart. The cathode

lead must be kept as short as possible, since its inductance increases with

its length. For this reason, a pressed glass base is used as in Fig. 14.2,

since a separate base entails greater lead length, but the length of lead
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inside the tube is fixed by the necessity of providing adequate heat in-

sulation between the hot cathode and the point where the cathode lead
is sealed into the glass envelope. One method ofreducing the inductance
is to bring out several leads from the cathode; the inductance of each
lead is in parallel with that of the others, and the net inductance is

therefore reduced by a factor equal to the number of leads. A reduction
in the input conductance by a factor of about 10 below the values given
above can be achieved by modifications of this sort in the design. An
additional advantage of using a tube requiring no separate base is that
dielectric losses in the material of the base are avoided. To avoid such
losses in the material of the tube holder it must be a good dielectric, and
special insulating materials with low power factor have been developed
for this purpose.

14.2. Effect of transit time on input conductance

While an electron is leaving one electrode of a tube and approaching
another it induces a charge on each of these electrodes. As it moves, the
induced charge on the electrode which it has left diminishes, while that
on the electrode which it is approaching increases. This can be seen quite
simply by considering two plane parallel electrodes which are maintained
at voltages and Va respectively by means ofa battery. Suppose a charge
—

q is emitted from the plane of zero voltage. It will be accelerated to-

wards the other plane, and when it has moved through a potential V the
work done on the electron will be qV. This work must be supplied by
the battery, whence it follows that a charge q{V/Va) must have flowed
through the battery. The direction of flow is such that the plane at
potential Va will have acquired a charge +q(V/Va ), while the charge on
the other plane, which was +q at the moment after the electron was
emitted, is reduced to +q(l— V/Va). Thus the movement of the charge
is accompanied by changes in the induced charges on the two planes,
corresponding to the change in the number of fines of field from the
electron which terminate on either plane (see Fig. 14.3). The duration
of these changes is equal to the transit time of the charge between the
two planes, and a current pulse flows for this length of time.

Similar arguments hold if one plane is replaced by a grid, and the
passage of a charge through a grid therefore causes a momentary flow of
charge to the grid which reverses in sign as the charge passes through.
It is not necessary for the charge to hit the grid to create an induced
charge, and the current flow accompanying the passage of the charge is

shown in Pig. 14.4. The area under the curve up to any point represents



394 THERMIONIC VACUUM TUBES AT [14.2

the charge induced at that moment. The total area is zero if the grid

potential is constant, since the positive and negative sections annul
one another provided that all the charge flows through the grid and

-©

Fig. 14.3. Induced charges on electrodes.

Fig. 14.4. Current flow to grid during transit of an electron, t is instant

at which electron passes through grid. Transit time is r 1+ t2 .

none is intercepted. The cancellation is only complete if the grid poten-

tial is constant over a time greater than or equal to the transit time.

This is about 10~9 sec for electrons in a normal tube, and at frequencies

up to 10 Mc/s the cancellation is virtually complete. At higher frequen-

cies, where the transit time is an appreciable fraction of an r.f. cycle,

the effect of the passage of the electrons in inducing an r.f. current to
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flow to the grid is appreciable. Pull analysis ofthe effect is complicated,
but an estimate of its order of magnitude can be obtained by the follow-
ing method.

At a time t, let the voltage applied to the grid be V = J^sinw*. Let
the transit time from cathode to grid be t1; and that from grid to anode
be t2 . Then the current induced in the grid by the electrons approach-
ing it will be approximately

h = gmVQ sinw{t— Tl )

since the size ofthe current is determined by the value of the grid voltage
at the time (t-r

x ) when the electrons left the cathode (or, more strictly,
the space charge region). Similarly the current induced in the grid by
the electrons leaving for the anode may be written

h = —gm V sinco(t—rx
—t2),

the minus sign arising from the reversal of the current for departing
electrons. The net current is therefore

Ji+h = 2grm ^cosoj{f— (Tj+ir^JsiniwTa

= 29,m'osinJwT2{cosw«cosw(T1+|T2)+sin&)fsina)(T1+jT2)}

= 2^^^{f
COSa,

^
+^)+ Fsin (u (Tl+^2)}.

This contains both a capacitative and a resistive component. The
latter is more important since it causes a loading of the input circuit.
If both on-! and wt2 < 1 the input conductance may be written

G — 9m «>
2
(*i t2+£t|). (14.2)

A full analysis by North shows that for tubes of common size the input
conductance G is approximately equal to gm oA-f/10.

Ifwe take our standard value of 5 mA/V for gm , and £ x 10-" sec for Tl ,

the value of G is found to be about 5x 10~21/ a mhos at a frequency/.
It is therefore of the same order as the input conductance due to cathode
lead inductance in the improved vacuum tubes mentioned in § 14.1.

14.3. Modified circuits and tubes for metre and decimetre wave-
lengths

A third cause of lowered efficiency of operation of vacuum tubes at
very high frequencies is increased power loss in the external circuits.
At a frequency of 100 Mc/s the skin depth in copper (cf. § 10.4) is only
« 0-007 mm, and the current flow is therefore confined to a very small
part of the cross-section of any conductor, with consequent increase in
the effective resistance. In a closely wound coil there is a further loss
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of power and increase of resistance due to eddy currents induced by the

alternating currents in neighbouring parts of the coil (principally in the

nearby turns). This proximity effect can be reduced to a minimum, and

so also is the self-capacitance, by using straight conductors rather than

coils. It was shown. in § 11.4 that a short-circuited length of a trans-

mission line behaves as a reactance, and in § 11.5 that lengths which are

> > > ' > // ////// /T

C'\

/ / ///// /////// 7

r.f. choke

rQ757Pu.H.T.+

G

r.f. choke

.T.-TWW
Fig. 14.5. Leeher-wire oscillator. The i?(7-combination enclosed by broken lines is an

automatic bias circuit for Class C operation.

odd multiples of quarter-wavelengths behave as parallel tuned circuits

of high impedance. At metre wavelengths (frequencies <~ 30-300 Mc/s)

short lengths of parallel wire lines may be used for the tuned circuits,

a typical circuit for a triode oscillator being shown in Fig. 14.5. This is

the equivalent of the Hartley oscillator discussed in § 1 3 . 6 . The blocking

capacitor C serves only to separate the steady voltages on anode and

grid, and its impedance should be low so that it is effectively a short

circuit for the r.f. currents. Then this forms the closed end of the trans-

mission line, and the two wires at the open end, where the voltages

are greatest and of opposite phase, are connected to anode and grid

respectively. This gives feed-back of the correct sign for oscillation, as

in the Hartley circuit. The actual line length required will be rather less

than one-quarter of a wavelength, since the electrode capacitances must

be tuned to resonance by an inductive length of line. Since the anode

and grid electrodes have somewhat different capacitances to earth, the

currents flowing in the Lecher wires will not be quite equal and opposite.

This increases the loss of energy by radiation, which is small if the

currents are exactly balanced and the distance apart of the wires is

made small compared with a quarter-wavelength.

This difficulty may be avoided by using a pair of tubes working in

push-pull. The circuit shown in Fig. 14.6 is of this type, being a tuned



14.3] VERY HIGH FREQUENCIES 397

grid-tuned anode oscillator with feed-back through the grid-anode capa-
citance. The latter gives a negative input resistance at the grid (see

§ 12.8), provided that the anode circuit is tuned to be inductive at the

H.T. + *

H.T.-

Fig. 14.6. Push-pull Lecher-wire oscillator.

A anode line. Q grid line.

a n

A,G
G
H
H'

A G
Fro. 14.7. CV273 triode with grounded grid.

anode and grid, on copper disks sealed through glass envelope.
cathode.

heater connexion.
(cathode and heater) connexion.

Grid-cathode separation 0-07 mm.
Grid-anode separation 0-25 mm.
r1 = 30 - 9m = 7 mA/V. Maximum frequency, 3700 Mc/s.

frequency of oscillation. To avoid magnetic coupling between the anode
and grid lines, they are usually brought out at right angles to one another.
In both the circuits of Figs. 14.5 and 14.6 it may be necessary to use r.f.

chokes in the supply leads to prevent the flow ofunwanted r.f. currents.
The .RC-combination shown provides automatic grid bias for Class C
operation.



398 THERMIONIC VACUUM TUBES AT [14.3

At decimetre wavelengths (frequencies between 300 and 3000 Mc/s)
considerable modifications in the design of vacuum tubes are required.

To reduce transit time effects, triodes are used with small clearances be-

tween the electrodes. Lead inductance is cut to a minimum by avoiding

thin wire leads and bringing large diameter metal disks through the glass

envelope (a logical development from the practice of putting in several

leads of thin wire to the cathode to reduce inductance). Such disks give

Zi

I
J

Fig. 14.8. The grounded-grid triode connexion.

good electrical connexion to the external circuits, which are in the form
of coaxial lines to avoid loss of energy by radiation; the diameter of

the conductors is usually from 1 to 5 cm to reduce resistive losses. A
common form of tube construction uses a copper disk seal to carry the

grid, as in Fig. 14.7, and anode and cathode are also plane structures.

The disk seal reduces the anode-cathode capacitance to a very small

value, an important point since the tube is normally used in the 'grounded

grid' connexion, whose equivalent circuit is shown in Tig. 14.8. It has
the important advantage that feed-back to the grid circuit through the

grid-anode capacitance is avoided, since the current through this capa-

citance does not have to flow through the source of signal voltage applied

between grid and cathode, as is the case in the ordinary 'grounded

cathode' connexion (see § 12.8). This greatly increases the stability of

the system when used as an amplifier, and this is further increased by the

presence of negative feed-back due to the flow of anode current through
the input circuit. In the latter respect the circuit is similar to the

'cathode follower' or 'grounded anode' connexion (see Problem 13.1).

The analysis of the circuit of Fig. 14.8, neglecting the cathode-anode

capacitance Cca, is as follows. The usual equation for the anode current

takes the form .
,

, . ^ , >

,

ia(p+Zz) ^ V1(l+[l).or
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(14.3)

U,33 VERY HIGH FREQUENCIES
The voltage magnification is

A = v2fVl = iaZJvt = (1+^)Z2/(P+Z2 ),

while the input impedance is

Zi = V»« = (p+22)/(l +ft). (14.4)

a
?-!

Se
_
f°^m?

ae Sh°V that the Circuit is e*!™™1™*' *o a voltage generator

^2

of magnitude ( 1-f^, with internal impedance P working into a load Z2 .

Fig. 14.9. Disk-seal triode with quarter-wave coaxial-line circuits.

A anode; O cathode; 6 grid.
I, O input and output coaxial lines with loop coupling.

The grid-anode capacitance must be included in Z2 and will be tuned
out by the inductance of the attached coaxial line at resonance The
cathode-anode capacitance, on the other hand, acts as a bypass for r f
current and must be kept small. Since the anode current flows through
the signal source, the input impedance is finite. This is not serious as
the effects discussed in §§ 14.1 and 14.2 would limit the input impedance
in any case. Inspection of the equations given above shows that the
voltage magnification is just equal to Z^, a result which could have
been obtained directly since the anode current flows in series through
both of them.

A schematic diagram of a triode with its coaxial line circuits is shown
in Fig. 14.9. As an amplifier it is useful down to about 20-cm wave-
tength, one such stage being used before a superheterodyne mixing stage
Oscillation at a usable efficiency (a few per cent) is obtained in low power
tubes (suitable as local oscillators for a superheterodyne receiver) down
to 10-cm wavelength, but much higher efficiencies are obtained at longer
wavelengths.
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14.4. The klystron

We have seen already that the finite time which an electron takes to

pass from cathode to anode causes difficulty in the operation of conven-

tional tubes at metre and decimetre wavelengths. At centimetre wave-

lengths the problem of reducing the cathode-grid clearance so as to keep

the transit time down to a small fraction of a cycle becomes practically

insuperable. It is therefore necessary to look for some other means of

reducing the transit time. One obvious solution is to shoot the electrons

at a large velocity through a grid which then acts as an effective cathode.

For example, if electrons are accelerated by a potential of 2500 V, their

velocity is about 3 X 109 cm/sec, and they will traverse a distance of 1 mm
in 3 X 10-11 sec, which is only one-tenth of a period at a wavelength of

10 cm. Thus, if the cathode-grid system is replaced by two grids, be-

tween which the high-frequency voltage is imposed, and the electrons

are shot through these grids at a high velocity, the transit time can be

kept short.

Such an arrangement must depend on some different principle for its

working from that of a conventional tube. In the latter case the grid

voltage influences the space charge in the potential minimum just in

front of the cathode, and thus causes a change in the number of electrons

flowing to the anode. When an alternating voltage is applied between

grid and cathode a periodic 'density modulation' is set up in the elec-

tron stream flowing to the anode. If, now, the cathode, which emits

electrons with an average energy corresponding to about one-tenth eV,

is replaced by a grid through which electrons are injected at high voltage,

there will be practically no space charge between this pseudo-cathode

and second grid. It is obvious that application of a small r.f. voltage

between the two grids will not then cause any change in the density

of electrons leaving this space. It will cause a 'velocity modulation',

for some of the electrons will be accelerated by the r.f. field, while others

which go through this field half a period later, when it is reversed in

sign, will be retarded.

The principle of 'velocity modulation' rather than 'space charge

modulation' is fundamental in the working of the klystron and other

centimetre wave tubes. Velocity modulation is not of itself sufficient to

produce amplification or oscillation, since for this we require a density

modulation of the electron beam. However, if a velocity modulated

beam is allowed to 'drift' along in a field-free space, a density modula-

tion will be set up in the following way. The electrons which were ac-

celerated by the r.f. field will gradually overtake the slower electrons in
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front of them, which were retarded by the field. In this way 'bunching'
of the electrons will occur, as illustrated in Kg. 14.10. Here the distance
covered by a number of electrons, initially uniformly spaced in the beam,
is plotted against time. Lines corre-

sponding to fast electrons overtak-
ing slow electrons converge, while
at points appropriate to half a
period earlier or later in the r.f.

field, the fines diverge. The former
gives a 'bunch' since the conver-
gence of the lines means that more
electrons occupy a given volume,
while the latter gives a 'rarefac-

tion'. If now the beam traverses
a second pair of grids, between
which an r.f. field of the same
frequency is applied in such a
phase that a bunch is retarded by
the field, while a rarefaction is

accelerated, energy will be trans-
ferred from the beam to the field

because more electrons are slowed
down than are speeded up. This
constitutes a conversion of energy
from the h.t. supply used for the
initial acceleration ofthe beam into
energy in the alternating electro-

magnetic field, in a similar manner
to that in a conventional radio
tube. There, in an ordinary ampli-
fier or oscillator, the denser current flow to the anode coincides with the
moments at which the anode potential is low, so that these electrons are
slowed up by the alternating component of the electric field in front of
the anode, thus doing work against this field.

A schematic diagram of a klystron is shown in Fig. 14.11 Electrons
accelerated and formed into a beam by a suitable gun pass through
a resonator B where a velocity modulation is imposed on them by the
r.f. field. They then travel through the field-free 'drift-space' in which
bunching occurs, and enter a second resonator C called the 'catcher'
tuned to the same frequency as B. Finally, the electrons are collected

Fig. 14.10. Bunching of electrons after
velocity modulation.

851110 Dd
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on an electrode at h.t. potential, which plays no essential role in the

action of the tube, but prevents the beam from striking the glass en-

velope. If some of the r.f. signal in the catcher is fed back through a

coaxial line to the buncher, oscillations will be set up if the phase is cor-

rectly adjusted, and if more energy is extracted from the beam by the

catcher than is dissipated in the combined resistances of the catcher and

7
B

Fig. 14.11. Schematic diagram of klystron oscillator.

G electron gun. B buncher. catcher.

A anode to collect electrons. I, O input and output coupling loops.

A, B, O at h.t. positive, G at h.t. negative potential.

buncher. In this connexion it should be noted that the velocity modula-

tion of the beam by the r.f. field in the buncher requires no net power

if the transit time is short, for as many electrons are slowed down as

are speeded up. For high efficiency, it is necessary to develop the greatest

r.f. electric field in the resonator at the point where the beam traverses

it, with the smallest dissipation of power in the resistive walls. The
cavity resonator gives the best type of circuit in this respect, and its

shape is determined primarily by the requirement of a short transit time

for the electrons. If the latter travel with one-tenth of the velocity of

light, and their transit time is to be not more than one-tenth of the

period of oscillation, the gap which tliey traverse must be about one-

hundredth of a wavelength. This requires an indented cavity of the

shape shown in Fig. 14.11. It may be regarded either as a short section

of coaxial line, slightly less than a quarter-wavelength long so that its

inductance resonates with the capacitance across the gap, or as an in-

dented waveguide resonant cavity.

As with most oscillators, the full mathematical theory is rather
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complex, but it is possible to derive the starting condition for oscillations
from elementary considerations as follows. We assume that the elec-
trons leave the gun with potential V , and the path they traverse in the
resonant cavity B has a potential difference Fcosa>* across it at the
instant t

. Then if V < V , as will be the case for small amplitudes of
oscillation, we may use the differential relation 8v/v = £(87/7) to find
the fractional change in their velocity after traversing the cavity; their
final velocity may then be written as

v = Vo(l+Vcosa>t /2V ), (14.5)
where v = (2eV/m)i is the velocity with which an electron leaves the
gun. An electron which leaves A at time t reaches the second resonator
B, at a distance x away, at a time

t = t +x/v = fo+W^Xl+ Fcosco^Fo)-1

« t +(x/v )(l~V coswt /2V ), (14.6)
where we have again used the approximation V/V < 1.

Now the current at any point is equal to dqfdt, the rate at which charge
passes that point. To find the current, we shall consider a small section
oi the beam containing charge dq, and follow it along the beam. Owing
to the velocity modulation, the front and rear portions of this section
travel at different speeds, and the time dt which the section takes to
pass a given point therefore changes with the distance it has travelled.
The beam current at the time t is therefore

I=dq\dt = (dq/dt )(dt /dt) = I (l+<oxVama>t /2v V )-i

« I {1— (a>xV/2v V)sina>(t-x/v
)}, (14.7)

where we have used the relations (dg/dt ) = I , the initial beam current,

(dt /dt) = (dt/dt )-i = (1+uxV smwtofaoVo)-1

obtained by differentiation of equation (14.6).
Equation (14.7) shows that we have now a density modulated current

whose amplitude of modulation increases linearly with x, the distance
travelled, so long as we restrict ourselves to small velocity modulation
If this current now passes through a second resonator, with a potential
difference Fa cosw*, the mean power extracted from the beam will be

27T/G)

-/F2cos^= _£
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hVi^oit\
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since only terms in cos2coi contribute to the mean power. The power

extracted from the beam will be greatest when —8m.a>xjv = -\-l, i.e.

a)x[v = 2ir(nJr^), where n is an integer. In other words, if oscillations

in B and C are in phase, the beam must take (ft+f) periods to travel

from jB to C. The time of travel can be adjusted by altering the initial

accelerating voltage V .

So far we have considered the power extracted from the beam when

r.f. signals from an external source are fed into resonators B and C. It

is clear, however, that if a little of the power that is fed from the beam
into C is returned to B to act there as the source of signal, oscillations

can be sustained so long as the power extracted from the beam is greater

than that dissipated in resistive heating of resonators B and G. We may
represent this dissipation by a resistance B for each resonator. The

oscillations will be sustained if

I W2 a>x V* VI

4v V 2R~t 2R'

If V = ocV2 , where a, is small, the power dissipated in the buncher may
be neglected, and this relation may be expressed in the form

minimum starting current I = 2VQ(v l<ox)/(aR)

= Vl{aBn(n+i)}. (14.8)

This shows that the smallest beam current required for sustained oscilla-

tions is ofthe order ofthebeam voltage divided by the parallel impedance

of the resonator. The current required is diminished if a is increased, or

if the time of drift between the resonators {xjv ) is increased, since the

density of the bunches reaching the second resonator is enhanced in

either case.

With large electrode voltages and currents, the klystron is an efficient

and powerful oscillator, and can be used as a transmitter, but its principal

use is as a low power local oscillator, for which an output of a few milli-

watts is sufficient, in a superheterodyne receiver. For this purpose the

klystron must be tunable, and this is not feasible when two separate

resonators ofhigh Q (several thousand) must be adjusted simultaneously.

A single resonator or reflex klystron is therefore employed, as in Fig.

14.12, where the electron stream after passage through the resonator is

confronted by an electrode whose potential is negative with respect to

the cathode potential. The electrons are thereby halted and reflected

back through the same resonator. Bunching occurs because the elec-

.

trons which are speeded up in the first passage through the resonator

travel further towards the reflector electrode and so return later (as in
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the case of a ball thrown into the air), together with the electrons which
passed through the resonator half a period later and were retarded by
the r.f. field. Thus the bunches occur at points in the returning beam
which the faster electrons reach later rather than earlier, but as they
are retarded on their return passage through the resonator when the r.f.

field is directed away from the cathode instead of towards it (as in the
two-resonator klystron), the required
transit time for oscillation is still (rc+f)
periods. The minimum starting current is

now given by equation (14.8) with a. = 1.

In an early type of tube for 10-cm wave-
length, V = 1200 V, B = 70000 ohms,

(»+ 1) = If, giving a starting current of
about 3mA. The running current is about
8 mA, and the poweroutput ofan average
tube is « 300 mW corresponding to an
efficiency of 3 per cent. Later types run
at a beam voltage of 300 V, and a current
of 20 mA, with a rather lower power out-
put.

Reflex klystrons of this type have been
made to oscillate at wavelengths down
to about i cm, which seems to be about
the limit. The main difficulties in making
such oscillators for shorter wavelengths arise from the smaUer size of
the resonant cavity, with its correspondingly lower parallel impedance
B, which means that a higher beam current is required to start oscilla-
tions. This higher current needs to be sent through a smaller hole in
the cavity, but the current density which can be obtained in the beam
is limited by the mutual repulsion of the electrons.

14.5. The magnetron

Oscillations of high power at centimetre wavelengths are produced
by the magnetron; an outline diagram of a typical tube is shown in
Fig. 14.13. Electrons are emitted from a central cylindrical cathode,
and are accelerated towards a coaxial cylindrical anode consisting of
a solid copper block with a number of resonant cavities. These may
have the shape shown in the figure, but other shapes are also possible.
Essentially they form a set of quarter-wave resonant lines or cavities
the open end of the line being at the inner surface of the anode block'

Fig. 14.12. Reflex klystron. Elec-
trons from the gun G pass through
the gap in the resonator if, and are
returned back through the gap by
the reflectorX which is at a poten-
tial negative with respect to the

cathode.



406 THEBMIONIC VACUUM TUBES AT [14.5

Thus, when oscillations take place, a strong r.f. electric field is set up
at the inner surface, the field lines running mainly in the circumferen-

tial direction across the open end of the cavity, as shown in Kg. 14.14.

The magnetron operates with a strong axial magnetic field of some
few kilogauss (a few tenths of a weber/metre2

), which is normally pro-

fa)

Fig. 14.13. A typical magnetron: (o) from side, (6) along axis (parallel to external

magnetic field) (after Willshaw et al., 1946, J.I.E.E. 93, Part 3a, 985).

O, output side arm; C, oxide-coated cathode; J, insulated heater; F, cooling fins;

L, output coupling loop ; B, resonator system ; T, tungsten heater and cathode leads

(cathode connected to one side of heater).

vided by a permanent magnet, and a potential of 10 to 50 kV on the

anode. An electron on its way from the cathode to the anode experiences

a magnetic force perpendicular to its direction of motion and a radial

electric force. Its trajectory under the action of these forces can best

be pictured by reference to a case with simple plane geometry. Sup-

pose a uniform electric field —E (i.e. in the sense which accelerates a

negative electron in the positive ^-direction) exists between two parallel
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conductingplanesy .= Oandy = a, with auniform magnetic field Bin the
z- direction. Then the equations ofmotion for an electron ofcharge -e are

.. eB . e pX== ~~^y' V= +-E+-Bx, 2 = 0.»» mm
If the electron starts from rest at the origin, it moves in a cycloid

whose equations are

x = vt—p sin cot = p{ait-8m. u>t), y = p(l_ cos a>t),

where v = E/B, p = mB/eB*, and w = eBJm. The cycloid is the same
as the path followed by a point on the circumference of a cylinder of
radius p, rolling along the plane y = with angular velocity a>; v is then
the linear velocity of its centre in the z-direction.
In the case of cylindrical geometry, the electron orbit is approximately

an epicycloid generated by rolling a cylinder on the cylindrical cathode
and so is rather similar to the case of the parallel planes if we imagine
the latter to be given a small curvature. The approximation arises
because we are neglecting the radial decrease in the electric field which
occurs with cylindrical geometry as we go from cathode to anode In
addition we are neglecting the mutual repulsions of the various electrons
('space charge') in either case. If the difference between the radius a of
the cathode and the radius b ofthe anode is small compared with either
at a point midway between cathode and anode we may write the angular
velocity of the electron cloud as approximately

v = 2E _ MM/ 21 2V
i(a+b) B(a+b) [b-a)\B&+b)l ~ B{b*-a*)'

(14 " 9)

where V is the steady voltage applied between anode and cathode. This
expression shows that to give the electron cloud a certain angular velocity
ofrotation, we must maintain a certain linear relation between the anode
voltage and the magnetic field. The importance of this angular rotation
of the electron cloudarises from the necessity ofsynchronizing the move-
ments of the electrons with the alternation of the r.f. electric fields in
the resonators, in order to preserve the right phase relationships. This
is essential for the efficient transfer of energy from the electron cloud to
the r.f. field, the basis of any oscillator.

Before considering the mechanism of this transfer, it is necessary to
discuss the resonator system. Each resonant cavity behaves like a tuned
circuit but the system is more complicated than that of a simple oscilla-
tor because ofthe presence ofN such circuits, all coupled together. This
coupling is partly electrostatic, lines of electric field originating from one
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cavity terminating in another, but it is predominantly magnetic; the

lines of r.f. magnetic field going down through one cavity are completed

by returning up through another cavity. With a system of N circuits

all tuned to the same frequency, and strongly coupled together, the

Fig. 14.14. Electron trajectories (E) and lines of r.f. electric field (L) (arrows show

direction of force on electrons) in the 'it mode' magnetron.

8 space charge cloud, enclosed by broken lines.

natural frequencies of oscillation are split apart in the same way as with

two circuits (see § 9.4), but analysis of the system is mucli more complex.

The different resonant frequencies correspond to oscillations with vary-

ing change ofphase between successive resonators; they can be analysed

into systems of standingwaves, or of travelling waves, or a mixture of the

two. The simplest system is a standing wave where the phase difference

between successive cavities is it (the so-called 'tt mode'), and this is also

one of the most efficient modes of operation of the magnetron. At any
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instant the direction of the lines of force in successive cavities is exactly
reversed, as would arise from a simple potential distribution where
alternate segments are just plus and minus in the r.f. voltage (see Fie
14.14).

6 g *

The interaction between the electrons and the r.f. field must now be
considered. Under normal conditions of operation, but in the absence
of oscillation, the electrons would travel (approximately) in circles such
that their farthest point from the cathode is about half-way across the
cathode-anode space. At the moment when they return to the cathode,
their velocity would be zero, since the magnetic field does no work on
them, and that done by the electrostatic field as they move initially

away from the cathode is all regained on the return path. Suppose now
that an electron is just moving tangentially at the farthest point in its

trajectory from the cathode. Then the force exerted on it by the mag-
netic field is towards the cathode, while that exerted by the electrostatic
field is towards the anode. If the tangential velocity of the electron is

increased at this moment through being accelerated by the fringing field

of one of the cavities, the magnetic force on it (which is proportional to
its velocity) will be increased, while the electrostatic force is unchanged,
so that the effect is to return it towards the cathode. If, on the other
hand, the electron is retarded by the r.f. field, the magnetic force is

decreased and the electron will move in a path which brings it closer to
the anode than it would have got in the absence of the r.f. field. If now
it arrives opposite another cavity at the moment when it is again re-
tarded, it again gives up energy to the r.f. field, and moves still closer to
the anode. Note that as it does so, it moves into positions where the r.f.

field is stronger and so a greater proportion of the kinetic energy of the
electron is transferred to the r.f. field. On the other hand, an electron
which is speeded up returns towards the cathode where its interaction
with the r.f. field is smaller. Thus, if the right phase relationship can be
maintained, some of the electrons will give up energy to several cavities
in succession, and eventually reach the anode with kinetic energy much
less than that corresponding to ex V, while others will be returned to
the cathode. On the whole, the latter take much less energy from the
r.f. field than the former give to it, and the net transfer of energy will
maintain oscillation.

To get the right phase relationship, the angular velocity of the electron
cloud must coincide with the angular velocity of rotation of one of the
Fourier components of the r.f. field system. For the 77-mode, this simply
means that the electron cloud must rotate through the angle (2n/N),
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between successive cavities, in »+-| cycles (where n is an integer). Its

angular velocity must therefore be (2n/N)[(n+l)T= 2Trf/N{n+$), where

/= 1/t is the frequency of the oscillations. Equating this to (14.9) gives

where k = N(n+%). Assuming the ratio a:b is roughly constant, it will

be seen that to maintain operation at a given frequency / in a given
mode k, at a fixed field B, the anode voltage must be increased with the

square of the anode diameter. If it is desired to keep the voltage fixed

and to construct a magnetron of higher frequency (shorter wavelength)
but with equivalent operating conditions, then the resonator system and
anode diameter must be scaled in proportion to the wavelength (6 oc 1//),

and B must be increased in proportion to /.

High power output from the magnetron can be achieved only if high
anode voltages and high anode currents are used. By running the tube
in short pulses roughly of 1 jusec duration, with a repetition rate ofabout
1000/sec, the power in the pulse can be made over 1000 times as great
as can be obtained under continuous operation. These high powers are

mainly due to three factors:

(a) the electronic conditions are such that high efficiency is attained

at high level;

(6) oxide-coated cathodes can give very high currents per unit area,

100 times greater under pulsed conditions than under continuous
running;

(c) the mean power dissipated on the anode is reduced, and is easily

removed by conduction through the solid copper anode.

An important factor under (a) is focusing action by the r.f. field, which
helps to concentrate the space charge into a number of narrow spokes
(see Kg. 14.14). Each spoke then passes through the r.f. field at the
moment when it is a maximum, giving the equivalent of Class C opera-

tion in ordinary triodes. The main technical difficulties have been the
construction ofrugged cathode surfaces, which can withstand the heavy
bombardment by the returning electrons accelerated by the r.f. field,

and avoiding 'mode jumping', where the frequency changes as the tube
jumps from one value of k to another. Power is extracted by means of

a loop coupling in one of the resonators, or through a waveguide slit in

one resonator.

Typical operating conditions for a medium high power magnetron
operating at 10-cm wavelength are: magnetic field, B = 0-28 weber/
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metre2
, anode voltage 31 kV, anode current during pulse 35 A, output

power in pulse 750 kW. In this tube the cathode diameter is 6-0 mm,
and the inside diameter of the anode is 16-1 mm; the length ofthe anode
blockis 2 cm, and the overall length ofthe tube is 3-2 cm. The dimensions
ofthe tube are thus comparatively small, and the high power obtainable
in the pulse is due to the high efficiency (70 per cent), which also reduces
the dissipation on the anode block to only 30 per cent of the input power.
At 10-cm wavelength, output pulse powers of a few megawatts can be
achieved, but the power decreases rapidly as the wavelength is reduced,
owing to a number of factors. Experimental tubes have been made to
operate at wavelengths of a few millimetres, and the short wavelength
limit is about the same as or a little lower than that of the klystron.
Most cavity magnetrons are fixed frequency tubes, but some magnetrons
tunable over a range of 10-20 per cent in frequency have been con-
structed, the variation being obtained by plungers moving into the
resonators from one end.

14.6. Crystal diodes

At centimetre wavelengths the most common type of receiver uses
a frequency-changing system (§ 13.9), with a reflex klystron as the local
oscillator. The thermionic vacuum tube diode is unsatisfactory as a de-
tector or mixer, because, to make the transit time sufficiently short,
a very small clearance between cathode and anode is required. This in-

creases the inter-electrode capacitance, and since the oxide coating ofthe
cathode acts as a lossy dielectric, the capacitance is effectively shunted
by a comparatively low resistance; thus when the diode is made part
of a tuned circuit, the r.f. voltage across it is rather low. For this reason
a crystal diode is used instead, consisting of a small piece of silicon on
which a point contact is made by means of a fine tungsten 'whisker'.
Silicon is a semi-conductor, and electrons can flow across the contact
with the tungsten very much more easily in one direction (towards the
silicon) than in the other (see Chapter 19). Hence the current-voltage
characteristic is asymmetrical as shown in Fig. 14.15. The characteristic
is rather similar to that of a thermionic diode, with a somewhat higher
slope in the forward direction, but with a small current flow in the re-
verse direction. It is clear that it will act as a detector or mixer in the
same way as an ordinary diode. The transit time of the electrons and
the capacitance across the point contact are both verymuch smaller than
in a thermionic diode, and the silicon crystal diode can be used up to
much higher frequencies. Two typical mountings are shown in Fig. 14. 1 6

:
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a capsule type, for wavelengths of 10 cm and longer (an alternative

coaxial construction is preferred for wavelengths of 1-10 cm), and a

waveguide mounting for millimetre wavelengths.

10 mA

-2
Voltage

Fig. 14.15. Current-voltage characteristic of silicon-tungsten crystal diode.

(b)

Fig. 14.16. Crystal diodes (a) capsule type, (6) waveguide mounting for millimetre
wavelengths.

B brass. W tungsten whisker.

S silicon G insulator.

14.7 Travelling wave tubes

An important class of electronic tubes for centimetre wavelengths,

which we shall not discuss in detail, is that of the 'travelling wave' tube.

This is a velocity modulation device in which the beam interacts con-

tinuously with the electromagnetic wave, instead of only locally, as in

the klystron. To make this possible the wave velocity must be reduced

to coincide with the beam velocity; this is accomplished by a 'slow-wave

structure', such as a wire helix surrounding the beam, which behaves as
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an artificial transmission line with wave velocity lj<J(LC) (see § 11.3).
Travelling wave tubes can be used as oscillators or amplifiers, an im-
portant application being as amplifiers in communication repeater
stations, where the large bandwidth which can be amplified makes them
of considerable commercial importance.

GENERAL REFERENCE
Rollik, B. V., 1964, An Introduction to Electronics (O.U.P.).
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ALTERNATING CURRENT MEASUREMENTS

15.1. Measurement of voltage, current, and power
If an alternating voltage is applied to the terminals of a d.c. instrument

such as a moving-coil galvanometer, the reading observed is usually zero.

The movement of the galvanometer is too sluggish to follow the alterna-

tions of the applied voltage if these occur at more than a few cycles per

second. The instrument therefore records only the mean value of the

current over many cycles, which is zero for. a symmetrical waveform.

Thus the measurement of alternating currents and voltages requires the

use of special instruments which may be divided into three classes

according to the principle involved in their construction. In the first

class are instruments with very rapid responses so that they can follow

the alternating wave form; second, 'square law' instruments, so called

because they respond to the square of the current or voltage applied;

and third, rectifier instruments, where the alternating voltage is con-

verted to a steady voltage which can be measured on a d.c. instrument.

In practice the most widely used instruments are those with the greatest

frequency range, and Fig. 15.1 shows that these are the thermoammeter,

a square law instrument, for current; the vacuum tube voltmeter, a

rectifier instrument, for voltage ; and the cathode ray oscillograph, a short

time constant instrument for the display ofwave form and measurement
of voltage. Of more restricted use are moving iron instruments and the

dynamometer. The latter is one of the few instruments which measures

power directly, but its use is confined to supply frequencies. At radio

frequencies power is normally determined from the voltage developed

across a known resistance, or the current flow through it. Thus in general

current and voltage are the primary quantities measured. The chief

types of instrument are described below.

The cathode-ray oscillograph

The cathode ray oscillograph is an instrument whereby the wave form
ofan alternating voltage may be displayed on a screen. A diagram of the

instrument is shown in Fig. 15.2, the various parts being contained in an
evacuated glass envelope. An electron gun consisting of a cathode C,

a grid G, and anodesA 1 andA% is used to form a narrow beam ofelectrons
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Power

Impedance

Frequency (c/s)->102 10* 10"

Frequency

Wavelength

~T~
108 1010
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Moving iron

-Thermoammeter-

instruments

-Dynamometer-

-Vacuum tube voltmeter -

C.R.O.

Unshielded

bridges

•* Shielded bridges

4 <?-meter-

_. VSWR and resonance

in lines and waveguides.

- Bridges -

-Quartz-crystal and harmonics -

-Resonant lines

-

Resonant „

cavities

Fm. 15.1. Frequency ranges of various types of measuring instruments.

I —-

Q
o a A

1 A t YY XX

Fig. 15.2. The cathode-ray oscillograph (not to scale).

C cathode. YY y-deflecting plates.
® f*

d - XX ^-deflecting plates.At first anode. S screen.
A % second anode.

travelling parallel to the axis of the tube. XX and YY are two pairs of
plates oriented at right angles to one another, and various voltages may
be applied across the plates of either pair to deflect the electron beam
These deflexions in the *- and y-directions are normal to the axis of the
tube and proportional to the voltages applied to the X- and T-plates
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The beam finally strikes a screen 8, coated on the inside with a fluo-

rescent substance such as zinc sulphide so that the position of arrival

of the beam is shown by a small luminous spot. The brightness depends

on the beam current, which is controlled by the grid Gand the accelerating

voltage on anode A 2 . This voltage ranges from 2000 V or more on large

tubes (6-in. diameter face or greater) to 500 V on smaller tubes. The
magnitude of the deflexion, and hence the sensitivity (defined as the

deflexion per unit voltage applied to the X- or F-plates), is inversely

proportional to the accelerating voltage (see Problem 15.1). The sensi-

tivity is increased by reducing the separation between the two members
ofa pair ofdeflecting plates, and they are therefore splayed as in Fig. 15.2

in order that they shall not intercept the beam at large deflexions.

Electrostatic deflexion, as this system is called, causes a certain amount
of distortion, and magnetic deflexion, using fields generated by small

coils placed outside the tube, is more common for television tubes, where

very large deflexion angles are employed. Electrostatic deflexion is used

for most laboratory work, and the pattern observed on the screen is then

determined by the voltages applied to the two sets of deflecting plates.

It is usual to apply a known voltage wave form to the .X-plates (the

'time-base'), while the unknown voltage is applied to the F-plates. The
most useful type of time-base is one where the spot moves to the right

across the screen in the ^-direction at constant velocity, followed by a

rapid 'fly-back' to the left-hand side. This is called a linear time-base,

and requires a saw-tooth voltage wave form as shown in Fig. 15.3. To
obtain a stationary picture, the repetition frequency of the time-base

must be an exact submultiple of the basic frequency of the wave form
applied to the F-plates. Thus the time-base frequencymust be adjustable,

and synchronization is usually obtained by applying a little ofthe voltage

from the F-plates to the time-base circuit, so that the time-base is

'locked in'.

The basic method ofgenerating a saw-toothed wave form is also shown
in Fig. 15.3. A capacitor G is charged up through a resistance R from
an h.t. supply, and is then periodically discharged through another

resistance r by a switch 8. If r << B, the discharge occupies a very short

period compared with the charging, and so provides the fly-back, while

the increasing voltage across C during the charging period provides the

forward sweep. This will not be exactly linear since the capacitor

charges exponentially, but if the switch 8 is arranged to operate before

the voltage across C has risen to more than a small fraction of the h.t.

voltage, the departure from a constant rate of charging will be small.
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The linearity is further improved by charging the capacitor not through
a resistance, but through a constant current device such as a pentode,
where the current is almost independent of the anode voltage provided
the latter does not fall too low. The rate of charging is controlled by the

H.T. voltage

M/VWW
0>)

Fig. 15.3. («) Saw-tooth voltage wave form. AB gives linear forward sweep, BC gives
rapid fly-back. ^ s

(6) Basic circuit for generating saw-tooth voltage.

screen voltage of the pentode, which serves as a fine frequency control
coarse control being provided by choice of a number of capacitors of
different values. Other types of time-base include the single sweep for
observing transient phenomena (which must be triggered by the onset
of the transient) and circular or elliptical time-bases, obtained by apply-
ing sinusoidal voltages differing in phase by \n to the X- and T-pIates.
These are useful in the measurement of frequency (see below).
The oscillograph may be used to determine the amplitude of an

alternating voltage by measurement of the deflexion on the screen from
peak to peak. For this purpose it must be calibrated using a known d c
or low frequency a.c. voltage. The sensitivity of a 6-in. diameter tube
is usually of the order of a few tenths of a millimetre deflexion per volt
The range may be extended by the use of an amplifier of known gain,
and signals of the order of microvolts can be made to give an observable

852110 Ee
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deflexion. This technique may also be used for current wave form, by-

passing the current through a low resistance and amplifying the voltage

developed across it.

Other applications of the C.R.O. are comparison of phase and fre-

quency. The phase difference betweentwo voltages ofthe same frequency

may be found by applying one to the Z-plates and the other to the

F-plates. If the amplitudes are equal, and the phase difference is 90°,

Fio. 15.4. Determination of phase angle from the phase ellipse (see Problem 15.2).

the resultant of the two waves is a circle, but for any other phase differ-

ence, or unequal amplitudes, the pattern on the screen is an ellipse

(as in Fig. 15.4), or a straight line if the phase difference is zero or it.

If a double-beam oscillograph is available, where each beam has a linear

time-base of the same frequency, the two voltages to be compared may

be displayed one above the other on the screen, and the phase difference

is measured directly.

Double-beam tubes are also useful for frequency comparisons. The

second beam is deflected with a standard frequency, and if the time-

base is such that five or six complete wave forms are shown on the screen,

a small difference between the frequencies on the beams is easily seen.

On a single-beam tube, the best method is to use a circular time-base,

produced by applying voltages ofequal amplitude, but differing in phase

by 90° , to the two pairs of plates. The unknown frequency is applied to
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the anode, modulating the sensitivity, and if its frequency is » times
the time-base frequency, a stationary picture with n loops is obtained
(Fig. 15.5 a). Alternatively, the unknown frequency may be applied to
the grid of the tube, thus modulating the intensity. The pattern on the
screen is broken up (as in Fig. 15.56) into dots whose number gives the
frequency ratio. Grid modulation is more sensitive than anode modula-
tion, an amplitude of a few volts being sufficient for the unknown
frequency.

(°)
(6)

Fig. 15.5. Comparison of frequency with circular time-base.
Time-base frequency = J (unknown frequency).

(a) Anode modulation. (ft) Grid modulation.
If the ratio of the frequencies is not exactly an integer, the

pattern is not stationary but rotates.

The great advantage of the cathode ray oscillograph is its ability to
portray the wave form of an alternating voltage up to frequencies of
a few hundred megacycles per second. At this point limitations arise
from the difficulty ofmaking suitable time-bases and amplifiers, as well
as from inherent drawbacks in the tube itself (see Problem 15.3).

Square law instruments

Any d.c. instrument whose deflexion depends on the square of the
current or voltage can be used for a.c. measurements, and the reading
obtained by calibration with d.c. will give the root mean square value
ihus the electrostatic voltmeter can be used for alternating voltages
and currents; so can the dynamometer (§ 7.1), though it is confined to
audio frequencies. The thermoammeter has a greater frequency range-
the current passes through a resistive coil which heats a copper disk-
this is soldered to a thermojunction, the current from which is read on
a moving-coil galvanometer. The instrument can be calibrated by d c
or low frequency a.c, and is used for currents ofthe order of milliamps
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The readings are independent offrequency up to about 1 Mc/s, but above

that there is coupling between the coil and the thermocouple due to

stray capacitance. The sensitivity can be increased by mounting the

thermojunction in an evacuated glass envelope to improve the thermal

insulation; the copper disk is sometimes joined to the junction by a small

glass bead, which provides thermal contact but insulates the r.f. circuit

from the galvanometer. The heater is very thin, to avoid any change

of resistance with frequency due to skin-effect, and the deflexion is very

nearly proportional to (current)2 over a large range of frequencies. The

frequency range may be greatly extended by using a separate thermo-

junction which may be inserted in the circuit quite apart from the

instrument used to measure its d.c. output voltage. Leads to the latter

instrument must be carefully decoupled.

The dynamometer wattmeter can be used for measuring power, by

connecting it as in Fig. 7.5. The scale reading is then proportional to

the average value of V I sin.a>t sin(co£-fa) over a cycle, where V smcot

is the voltage across the load, and I sin(co£+a) is the current through it.

The scale reading gives \{V J )cos a and this is the power consumed by

the load, so that the instrument can be calibrated to read power directly,

and no determination of the phase angle or power factor is required.

The dynamometer is suitable only for audio frequencies up to about

1000 c/s. At radio frequencies power is normally measured by deter-

mining the voltage across, or the current through, a known resistance.

This method can be used at all frequencies where the calibration of the

voltmeter or ammeter is reliable, but at centimetre wavelengths it is

replaced by a direct measurement of power. For low powers (1 W down

to a microwatt or so) a 'bolometer' may be used, consisting of a thin

wire such as tungsten of 0-01 mm diameter and a few centimetres long,

enclosed in an evacuated envelope. The thin wire is welded to stout

leads, which are collinear with the wire. The bolometer can then be made

the centre conductor of a coaxial line, which is tuned to resonance (half

a wavelength long) as in Fig. 15.6. The input power is fed in from a

coaxial line, which is tapped on to the centre conductor at such a point

that the resonant section is matched to the line. The dissipation of r.f.

power in the thin wire of the bolometer causes its temperature and hence

its resistance to rise, the change in the latter being determined by

including the bolometer as one arm of a Wheatstone's bridge. If the

bridge is balanced with the r.f. power on, and the direct current through

the bridge arms is increased so as to return to the same balance point

when the r.f. is switched off, then the r.f. power can be calculated from
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the change in d.c. power dissipated in the bolometer lamp. An alterna-

tive bolometer element is the thermistor, consisting of a tiny bead of

various semi-conducting oxides whose resistance falls steeply with

increasing temperature and hence with power input. Such elements have
the advantage of small size, and their resistance can be adjusted in

manufacture to be of the order of a hundred ohms, which is convenient

for matching to a coaxial line whose characteristic impedance is of this

order.

* A/2

Movable plunger, insulated

from centre conductor
Evacuated glass envelope

Input coaxial line

Fig. 15.6. Resistance variation bolometer for use at short wavelengths. The position

of the input tapping must be adjusted for correct termination of the input line. (Wave-
guide input can also be used.)

Powers of more than a few watts are measured by dissipating the

power in water, whose high absorption coefficient at centimetre wave-

lengths is convenient for this purpose (see § 17.7). The temperature rise

is measured, usually with a continuous flow method.

Rectifier instruments

Since rectification is the process of turning an a.c. voltage into a d.c.

voltage, it is obvious that this may be used as the basis of a method of

measuring an a.c. voltage. When a thermionic vacuum tube is used as

the rectifying device the instrument is known as a vacuum tube or valve

voltmeter. The detector circuit ofFig. 12.3 may be used for this purpose,

the d.c. voltage being measured directly by a voltmeter placed across the

load resistance R. When more sensitivity is required the output voltage

may be applied to the grid of a triode, as in Fig. 13.19, but without the

blocking capacitor C^. The rectified voltage then causes a change in

the anode current of the triode which may be read on a meter in the

anode circuit.

The prime requirement of a voltmeter is a very high impedance, and
it is therefore more common to use a triode employing anode bend

rectification than a diode because of its higher input impedance. It also
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has the advantage of producing a certain amount of amplification of

the input voltage. A typical circuit is shown in Fig. 15.7, the purpose

of the second triode being to balance out the meter reading due to the

steady anode current flow in the first triode in the absence of an applied

signal. The instrument may be used in various ways. If the grid is

biased so as to work on a curved portion of the characteristic, then the

Input

Fig. 15.7. Vacuum tube voltmeter, using double triode.

Su J?! grid leaks. A microammeter.
Rit B2 anode loads.

iis cathode bias resistance with variable tapping to adjust meter
reading to zero in the absence of any input voltage to the first

triode.

change in anode current will be proportional to the mean square value

of the input voltage (see equation (13.20)) provided the amplitude of

the latter is not too high. This is called full-wave square law action.

Half-wave action is achieved if the grid is biased just to cut-off, so that

only the positive half-cycles of the input voltage cause current to flow

to the anode. If the applied voltage is small, the anode current will be

proportional to the square of the input voltage, but larger signals will

swing the grid on to the linear portion ofthe characteristic, giving linear

rectification. If the grid is biased well back beyond cut-off so that only

the positive peaks of the input signal will cause current flow, the device

can be used as a peak voltmeter.

The chief advantages of the triode voltmeter are its high input im-

pedance (especially when used as a half-wave or peak instrument), and
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its large frequency range. Once calibrated at the supply frequency, it

will give correct readings at frequencies up to 30 Mc/s or more, the limit
being set by the effects of transit time and cathode lead inductance
discussed in Chapter 14. With careful design these may be reduced so
that the error is small up to about 200 Mc/s. In addition the meter in
the anode circuit is protected by saturation of the anode current from
the effects of accidental overloads. The sensitivity is limited by the
stability of the tube characteristics, since these affect the zero balance
ofthe meter. It should be noted also that the reading may be dependent
on the wave form, since sharp positive peaks are more effective in causing
anode current flow, owing to the curvature of the characteristic.

It is often needed to measure a voltage of a particular frequency
separate from other frequencies which may simultaneously be present.
This can be done by means of a 'phase-sensitive detector', a simple
design being a modification of the circuit of Fig. 15.7 in which the signal
voltage is fed equally to the grids of both triodes, instead of just one,
while a larger alternating voltage of the desired frequency is impressed
across M3 between the two cathodes. In the absence of a signal the
cathodes are thus oscillating in voltage in anti-phase. If a signal voltage
of the same frequency is fed to both grids, this will be in phase with the
cathode oscillation on one tube, and out ofphase on the other; the mean
current through the two tubes will alter, and the ammeterA will register
a current. Since it is a direct-current instrument, it can respond only to
currents which do not fluctuate within its response time; thus the device
is sensitive only to signals which he very close in frequency to the voltage
impressed on i?3 . In addition, the sign of the current through A depends
on the relative phase of the signal and the voltage across B3, making
the device 'phase-sensitive'. Many other circuits can be used, the basic
principle being observation ofthe d.c. (zero frequency) voltage obtained
by heterodyning the signal against a local oscillation of the same fre-
quency; the device is sometimes called a 'homodyne'. When interfering
signals or noise are large compared with the desired signal, they may
overload the triodes and in such cases diodes, which have a linear
response up to larger voltages, are preferable; a suitable circuit is given
by Rollin (1964).

15.2. Measurement of impedance at low frequencies
The measurement of resistance using direct current is usually accom-

plished most precisely by means of a bridge, either Wheatstone's bridge
or one of its modifications. At audio frequencies the measurement of a
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complex impedance is also readily achieved with high precision by means
of an a.c. bridge. To determine a complex impedance fully, two quan-

tities must be measured—its real and imaginary parts. At first sight

this might seem to require two separate experiments, but in fact the

balancing of an a.c. bridge requires that two separate conditions be

Driving voltage

Fig. 15.8. Generalized Wheatstone's bridge.

satisfied simultaneously. These two conditions involve the real and
imaginary components of the unknown impedance, and thus both are

determined when, both conditions are fulfilled. The reason for this

extra complexity in the balancing of an a.c. bridge can readily be seen

from consideration of a simple network such as the generalized Wheat-
stone's bridge shown in Fig. 15.8, with complex impedances in each of

the arms. For a balance the voltage applied to the detector must be zero.

This voltage is equal to the difference of voltage between the points A
and B, which is truly zero only if the voltage at these points has not

only the same amplitude but also the same phase. In other words, the

voltage at each of these points must be represented by a vector with two
components, and for the vectors at the two points to be identical, their

components must be individually the same.

The presence of two balance conditions which must be fulfilled simul-

taneously has an important effect on the design of a.c. bridges. In order

to avoid disturbing one balance condition when adjusting the other, it

is essential that the two balance conditions shall be independent of one

another. This can be achieved by choosing a bridge where each balance

condition can be met by adjusting a variable impedance which does not

appear in the other balance condition. The final balance can be obtained

relatively quickly by first adjusting one variable until a minimum
detector reading is obtained, and then the other. On returning to the
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first a finer balance is obtained, and so on. A second highly desirable

quality is that the balance conditions shall be independent of frequency.

The reason for this is that the source of power employed for the bridge

never produces a pure sine wave, but contains some distortion which can

be represented in a Fourier analysis of the wave form by harmonics of

the fundamental frequency. The presence of quite a small harmonic

content will be important ifthe balance conditions depend on frequency,

because the sensitivity of the bridge depends on the ability to detect a

small fraction of the applied voltage, and this will be obscured by the

harmonic content unless this is balanced out simultaneously. In practice

it is often found that the harmonics do not vanish even in a bridge where

the balance conditions are independent of frequency, because the im-

pedances used may vary with frequency, usually because of stray

reactances (see Problems 9.10 and 9.11). In this case it is advantageous

to use either a tuned detector, such as a phase-sensitive detector with

phase shifts of and \n so that signals can be observed both in phase

and quadrature, or to insert a filter at the input to the detector to elimi-

nate the harmonics.

The driving voltage for the bridge is usually provided by a small audio-

frequency oscillator, a few volts being sufficient for most purposes. The
detector consists either of ear-phones or, for greater sensitivity, a small

audio-frequency amplifier followed by a detector or by a C.R.O. The
latter has the advantage that it shows the wave form reaching the

detector, and the presence ofharmonics near the balance point is readily

observed. To some extent it is possible to separate visually the funda-

mental and harmonics and to reduce the former to one-fifth or so of the

harmonic. The amplifier gain must be variable at the input stage (a

potentiometer before the grid of the first tube is sufficient) in order to

avoid saturation of the later stages when the bridge is far from balance.

The gain is increased as the balance is approached and the amplifier has

the advantage that it is not readily damaged by an overload.

When a vacuum tube generator and amplifier are both used it may
happen that one terminal of each is earthed, or has a large capacitance to

the mains supply which is common to both. This would throw either a

short circuit or a large capacitance across one arm of the bridge, and an

isolating transformer (preferably one with an electrostatic screenbetween

primary and secondary) should be used between the bridge and either

the generator or the detector-amplifier.

Variable impedances are required to balance the bridge, and for this

purpose resistances and capacitances are much preferred to inductances.
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A variable self-inductance requires an adjustable contact, and has an
appreciable resistance; at audio frequencies the Q is generally not better

than about 30, while the loss tangent (= \jQ) of a good mica capacitor

is about 10~4
. The ratio ofreactance to resistance in a standard resistance

is normally much less than this at frequencies at least up to 10 kc/s.

A good general rule is that the impedances of all arms should be of the

same order for optimum operation of the bridge.

Driving voltage

Fig. 15.9. Sehering bridge for the measurement of capacitance.

The generalized Wheatstone's bridge shown in Fig. 15.8 is the basis

of most bridge circuits, and the balance condition is similar to that for

the d.c. bridge: ^^ = z^ (1(U)

The two balance conditions are contained in this complex equation, since

the real and imaginary parts must be satisfied simultaneously. This will

be seen in the following application to the Sehering bridge, which is

commonly used for the determination of capacitance.

The circuit diagram of the Sehering bridge is shown in Fig. 15.9.

The unknown (lossy) capacitor is represented by the series combination

of C and R. Gx is a good standard capacitor, whose magnitude should

be of the same order as that of the capacitor under test. Rx is a fixed

resistance, and R2 is a variable resistance shunted by a variable capacitor

C«. The balance condition is

H*+^)^(i+H-
The real and imaginary parts of this give

and

C = C^RJRJ
R = BjiCJC,

(15.2)
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These conditions fulfil the requirements for an a.c. bridge outlined

earlier. They are independent of each other, provided that Bz and C2

only are varied, and they are independent of frequency. In addition the

capacitance of the unknown capacitor is obtained in terms of a known
standard capacitor and the ratio of two resistances, and the variable

capacitance C2 enters only into the equation for the apparent series

resistance of the unknown capacitor. With a good capacitor this will be

small, and high accuracy in the determination of B is seldom required.

A small variable air capacitor usually suffices for C2 , and its leakage

resistance under normal conditions will be so high that it does not affect

B2, with which it is in parallel.

Owing to the difficulty ofconstructing a standard variable inductance,

it is generally preferable to determine an unknown self-inductance in

terms ofstandard capacitances and resistances. In Maxwell's L/C bridge

(see Problem 15.5) a network ofthe Wheatstone bridge type is used, but

to make the two balance conditions independent ofeach other a standard

variable capacitance is required. A modification of this bridge, which is

commonly used, is due to Anderson and has the advantage that only

variable resistances are required, together with a standard fixed capaci-

tance. The circuit is shown in Fig. 15.10. The unknown self-inductance

is L, with resistance r, which forms one arm of the bridge when placed

in series with a variable resistance S. The fixed capacitor C is in series

with a variable resistance T, the combination being shunted by a

resistance P. The detector is connected from B to the junction ofG and

T, instead of to the point A. The balance condition is most readily

found by calculating the voltages across FE and FB as fractions of the

driving voltage V. The voltage across FE is a fraction l/(l-{-ja>CT) of

that across FA, while that across FA = FZ/(Z+#) = 7/(1 +Q/Z),

where Z is the total impedance between F and A. Since

i/z=i/p+i«o/(i+i»on
the voltage across FE is

VI{(l+jwCT)(l+QIZ)} = VI{(l+ja>OT)(l+QIP)+ju>CQ},

while the voltage across FB is VBI(B-\-ja>L-}-r-\-S). Equating these

voltages gives

l+&oL+r+S)IR = {l+ju>CT)(l+QlP)+ja>CQ.

The real and imaginary parts of this equation give separately

(r+8)IB = QjP

and LIB=CT(l+QjP)+CQ.
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It is generally convenient to make Q = P, in which case the balance

conditions reduce to -do,
r = M—

o

i

(15.3)
L = CB(2T+P)

)

It is obvious from this that no balance is possible unless CRP < L; if

this condition is being violated, it will be indicated by the fact that the

nearest approach to balance is obtained when T is zero. Inspection ofthe

balance conditions shows also that they are independent of frequency,

and of each other if 8 and T are made the variables.

_l
Driving ^_
voltage

Fig. 15.10. Anderson's bridge for measurement of self-inductance.

The simplest method of measuring mutual inductance is by means of

a direct comparison with a variable standard mutual inductance. The
primary windings of the inductance under test and the standard are

connected in series to a generator, and the secondary windings are con-

nected in series to a detector. If the secondary connexions are made so

that the induced voltages oppose one another, a null reading is obtained

in the detector when the variable mutual inductance is equal to that

under test. In practice it is generally impossible to get a good balance

because the voltage induced in the secondary ofeach inductance contains

a component in phase with the primary current, arising from effects such

as self and mutual capacitance in the coils. This may be represented

by writing the secondary voltage as Vs = (p+jcaM)ip . Hartshorn has

shown that this difficulty may be overcome by the inclusion ofa variable

resistance which is common to both the primary and secondary circuits,
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as shown in Fig. 15.11. The equation for a balance at the detector D
is now

rip±(Pl+ja)M1 )ipT(P2+J^M2)ip =

which separates to yr ^r

r= ±(Pi— />2)J

The second of these equations can only be satisfied if the connexions

are made so as to give the right signs; we have already assumed that the

secondaries are connected in antiphase with respect to one another.

(15.4)

Pi+jtoM.

p2 +jcoM2

Fio. 15.11. Hartshorn's mutual inductance bridge.

15.3. Measurement of impedance at radio frequencies

As the frequency is increased the difficulties associated with the use

of bridges for the determination of impedance rise rapidly. Each arm
of the bridge must be enclosed in its own shield, and each connexion

must be shielded. The generator and detector should also be shielded

and care must be taken to avoid any direct pick-up from generator to

detector which would give a false zero-setting for the bridge. The capaci-

tance between each arm and its shield must be included in the analysis

of the network. It is usual to make two arms identical, with equal resis-

tance and equal capacitance between the resistance and its shield. This

gives an equal ratio in two arms in spite ofthe shielding capacitances. It

is also common to use a 'substitution' method, the bridge being balanced

first with the unknown impedance in parallel with the variable standard

impedance (usually resistance plus capacitance) and then without it. No
general account of r.f. bridges can be given here, but it may be said that
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their construction requires expert and specialized knowledge if accurate

results are to be obtained.

A general purpose instrument which is commonly used at radio fre-

quencies is the 'Q-meter'. The basic circuit of this instrument is shown
in Fig. 15.12. A small current / from an oscillator is read on a milli-

ammeter A and then flows to a known low resistance r. A series tuned
circuit is connected in parallel with r, and the voltage V developed across

the capacitor C is read on a vacuum tube voltmeter when the capacitor

inr^/ww

A thermoammeter.

Fig. 15.12. Q-meter circuit.

L inductance under test. VV vacuum tube voltmeter.

is adjusted for resonance. The latter is indicated by a maximum reading
of the voltmeter. The Q of the circuit under test is then equal to the
ratio V/Ir, since Ir is the voltage introduced in series with the tuned
circuit. It is necessary that the resistance r shall be small compared with
the series resistance B of the tuned circuit, in order that substantially

all the current registered by the milliammeter shall flow through r. This
requirement may be stated in another way

—

r must be small compared
with R in order not to load the circuit under test. (It is easy to show that
the measured Q is that for a circuit whose total series resistance is the
sum of r and R.) In a commercial instrument an internal oscillator of
calibrated variable frequency is provided, and the current from it may
be adjusted to bring the milliammeter reading always to a fixed mark.
An internal vacuum tube voltmeter may then be calibrated directly to

read the Q of an unknown coil. The variable capacitor G is included in

the instrument, and is calibrated so that the inductance of the unknown
coil may be calculated from the known oscillator frequency and the
tuning capacitance. An unknown capacitance may also be measured by
the substitution method: a suitable coil L is inserted and the reading
of O required to tune it to resonance with and without the unknown
capacitor in parallel with C is found. An unknown resistance can be
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measured by finding the effect on the Q of a circuit when it is placed

in series with the circuit.

At frequencies above about 100 Mc/s (wavelengths of 3 metres and less)

the leads to the impedance under test are not negligible in length com-

pared with the wavelength and errors may be introduced because the

current and voltage at the measuring instrument are not the same as

those at the unknown impedance. These errors may be eliminated by

making the leads part of a transmission line of known and constant

impedance, the unknown impedance being placed at the end of this line

and acting as its termination. The impedance Z ofthe transmission line

may be calculated from its dimensions (see § 11.3) and the unknown

impedance is determined as a ratio to Z . This may be carried out either

by determining the voltage standing wave ratio (v.s.w.r.) on the line,

or by a resonance method.

The first of these methods has the advantage that the results do not

depend on the generator impedance, and the generator may therefore

be connected directly to the line. From the theory oftransmission lines

(Chapter 1 1) it follows that the voltage at any point on the line may be

regarded as due to an incident wave ofamplitudeA and a wave reflected

from the terminating impedance ofamplitudeAx . The resultant voltage

amplitude is a maximum (A -\-Aj) at an antinode where the incident and

reflected waves are in phase, and a minimum (A—

A

±) where they are

180° out of phase, these points being a quarter of a wavelength apart.

From a measurement of the voltage standing wave ratio

(A+AJKA-AJ,
and the position of the nodes or antinodes, the ratio of the terminating

impedance Z to the characteristic impedance Z may be found using

equations (11.19):

A i /(Zl+Zl—2Z1 Z co8<f>\IIZ±

vUi-A V \Zl+Zl+2Z1 Z coS 4>)
^ (ni9)

tan8 = 2Zl
f°

syz\-z%

where Z = Zx e^, and 8 is the difference in phase between the reflected

and incident waves at the point ofreflection (the termination ofthe line).

This phase constant can be found from the position of a voltage node,

this being generally more accurate than the location of an antinode

(especially if the v.s.w.r. is high) because the sensitivity of the detector

can be increased as the node is approached. If the end of the line is at

x = 0, and the voltage node at a point x = — I, then the phase of the
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incident wave at this point is —aj(-ljv) = 2ttI[\, and that of the reflected

wave is 8+w(— Ijv) — 8— 27t£/A. For a node these must differ by tt,

whence S = I— +77). To determine I accurately, it is best to replace

the unknown impedance Z by a short circuit and find the distance

between the previous node and the new one; the latter is (electrically)

exactly an integral number of half-wavelengths from the end of the line.

Leads to galvanometer

A
By-pass condenser for r.f. -

Detector unit on movable carriage -

Scale £'•'' t-H-
-^yy-

-Crystal rectifier or other type of detector

Choke providing d.c. return path

T-rr

H
x

Co-axial line (impedance Z ) Probe pick-up

Fig. 15.13. Standing wave detector on coaxial line.

The voltage standing wave ratio can be measured by moving any
loosely coupled voltage detector along the line. Since only a ratio of the

maximum and minimum readings is required, the absolute calibration

of the indicator is unnecessary, and a knowledge of the rectifying charac-

teristic (d.c. current or voltage output against r.f. voltage input) is

sufficient. With a coaxial line, a section of air-spaced line is made up
with known dimensions, and a narrow slot is cut lengthwise along the

outer conductor. Since this slot is parallel to the direction of current

flow in the line, it does not disturb conditions on the line materially. In
this slot (see Fig. 15.13) is inserted a small radial probe, which is parallel

to the lines of electric field inside the coaxial line; it picks up a small

fraction ofthe voltage on the line and feeds it to a detector. The intrusion

of the probe is made as small as possible to minimize disturbance on the

line, and for this purpose a sensitive detector is required to obtain

adequate sensitivity. The probe is mounted on a movable carriage,

carefully machined so that the intrusion of the probe does not change

as it moves along. This may be checked by observing the constancy of

the detector reading when the line is terminated by its characteristic

impedance, when the v.s.w.r. should be unity. With a parallel wire line
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a similar arrangement may be used with a probe near the wires, but the
indicator and its leads must be shielded and kept well away from the line

since the electric and magnetic fields around the line are not now rigor-

ously confined as they are in the coaxial line.

From the measurement of the v.s.w.r. and of S, the ratio of the real

and imaginary parts ofZ to Z can be found by using equations (11.19),
but these are algebraically so clumsy to handle that graphical methods
are normally employed. 'Impedance diagrams' can be obtained from
which the real and imaginary parts ofZ[Z can be read off at once.

When the impedance to be measured has only a small dissipative

component the standing wave ratio becomes very large and is difficult

to measure accurately, principally because the detector law must be
known over a wide range. It is often then more convenient to use a
resonance method. The unknown impedance is connected across the end
ofa line as in Fig. 15.14, and an oscillator and detector are loosely coupled
to it. A movable bridge, which should make such good contact as to
be essentially a short circuit, is adjusted until resonance is indicated
by maximum deflexion of the detector. If the load Z is represented by
a resistance R in parallel with a reactance jX, then resonance occurs
when this reactance is equal and opposite to the line reactance. If the
length of the line at this point is I, then the line reactance is

jX' = -jX = jZ ta,n2Trll\,

which may be positive or negative according to the value of l/X. Thus
the value ofX is determined from the resonant length. The value of R
may be found by measuring the sharpness of resonance. This is most
conveniently done by varying the length of the line until the detector

reading shows that the voltage (or current) on the line has fallen to 1/V2
ofthe maximum. At this point the susceptance formed byX-1 in parallel

with Z<^ 1 cot277-(Z±SZ)/A has risen from zero to be just equal to IjR
(cf. the theory of the parallel tuned circuit in § 9.3). If the change in

length is 81, then the value of the susceptance is

\-X~1+Zo 1 cot27r(l±8l)IX\ = ^- 1
(27r8?/A)cosec2(277Z/A) = 1/R,

whence R can be determined. If loss in the line cannot be neglected,

as has been assumed above, then it can be found by a separate measure-
ment with the fine short-circuited at both ends (or open-circuited at one
end) and a correction applied. The calculation is rather complicated,

but from equation (11.28) it can be seen that the length of line can be
represented by a complex admittance Y' which is in parallel with 1/Z.

If Y' is separated into its real and imaginary parts G' and &', then the
851110 F f
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calculation proceeds as before. As the resonant lengths of line unloaded

and terminated by Z will be different, the loss on the line must be ex-

pressed in terms of the attenuation coefficient a (equation (11.24)).

The advantage of the resonance method over the s.w.r. method is that

the detector law need only be known over a small range, the other

Loose coupling from oscillator

Movable short
circuit &

Loose coupling to calibrated detector

Fig. 15.14. Measurement of impedance using resonance method on transmission line.

measurements being those of lengths. Both types of measurements may
also be used with waveguides at centimetre wavelengths, though here

the concept of a lumped impedance loses most of its meaning. A few

examples of such measurements will be given later in this book, but for

a full discussion reference should be made to Barlow and Cullen, Micro-

wave Measurements (Constable).

15.4. Measurement of frequency and wavelength

The measurement of the frequency ofan audio oscillation can be made

in terms of known impedances by the use of a bridge whose balance is

dependent on frequency. It is obvious that the oscillation to be measured

must be constant in frequency and free from harmonics, since the latter

would be out of balance in the bridge (two uses of a frequency bridge are

the suppression of a given frequency such as a troublesome harmonic

and the analysis of harmonic content). A large number of bridges have



15.4] ALTERNATING CURRENT MEASUREMENTS 435

been devised which satisfy the desiderata that the balance conditions

should be mutually independent and only one of them should depend

on the frequency. A simple bridge using only resistances and capaci-

tances is due to Wien and is shown in Fig. 15.15. The balance conditions

are

(15.5)

Driving voltage

Fig. 15.15. Wien's bridge for frequency measurement.

which are mutually independent if the variables R and S or GY and C2

are ganged so that their ratio is kept constant. Then the second condi-

tion will remain satisfied once it has been set up and measurement of

a wide range of frequencies is obtained by a single adjustment.

At wavelengths less than 1 or 2 metres the measurement ofwavelength

directly becomes quite convenient, and high accuracy may be attained

because of the high Q of resonant transmission lines and waveguide

cavities. Parallel wire lines may be used for the longer wavelengths, but

coaxial lines are better at decimetre wavelengths, and cavity resonators

at centimetre wavelengths. A simple type of coaxial line wave-meter

is shown in Fig. 15.16. The centre conductor is variable in length, and

moves through a spring contact which forms the closed end of the line.

Power is introduced by means of a small loop which intersects some of

the magnetic lines of force at the closed end, and a second loop takes

power to a detector (usually a crystal rectifier). These loops must be

kept small to give loose coupling, and to avoid pulling the oscillator

whose wavelength is to be measured through coupled circuit effects.

The equivalent circuit of the wave-meter is shown in Fig. 15.16, from

which it can be seen that the detector reading is a maximum when the

line is resonant. With a high Q it is usually undetectably small away
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from resonance. Since the loops introduce small impedances which alter

the electrical length of the line, it is preferable to measure successive

points ofresonance, which are exactly half-wavelength apart. The wave-

meter then needs no calibration, the wavelength being found directly

Sliding contact (sprung) Power from source

' I

r—' I I I I I II I I ) I )) I I I )) i i i it
Coaxial line

wavemeter

Scale

n To detector

Source of input power

r Equivalent

U circuit

Detector -<Ti?.

Fig. 15.16. Coaxial line wave-meter and equivalent circuit.

from a scale and vernier attached to the moving part. The accuracy is

usually about 1 part in 103
, the main difficulty being in making a good

contact between the moving conductor and the stationary end.

A basic type of cavity wave-meter is shown in Fig. 15.17. A section

of circular waveguide is closed at one end, the other end being formed

by a plunger driven by a micrometer head. Power is fed into the cavity

from a waveguide through a small hole, and resonance is detected by

coupling a little power out through a second hole to a detector. The

holes should be kept as small as possible, subject to getting a finite

detector reading, in order to avoid lowering the natural Q ofthe resonator,

which may be of the order of 10 000. The wavelength in the cavity is

found from the distance (A
ff
/2) between successive resonance points. The

wavelength in free space may then be found from the diameter of the

cavity, and the mode of resonance. To avoid the difficulty of making

a good contact between the moving plunger and the walls, a particular

waveguide mode (TE01 or H01 ) is often used, where there is no current

flow across this contact (see § 1 1.7). Other modes of resonance may then

also be present, since the TE01 mode needs rather a large cavity diameter
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(the cut-off wavelength is equal to 0-82 times the diameter). These may
be avoided by using special arrangements of the coupling holes (see

Bleaney, Loubser, and Penrose, 1947). An accuracy of one or two parts

in 10* may be attained, but a correction is then needed for the dielectric

constant (1-0006) of the air in the cavity.

\— \

T> r ^ To detector

Waveguide input Waveguide output

Fig. 15.17. Resonant cavity wave-meter.

The quartz crystal oscillator

Where high accuracy offrequency control or measurement is required,

use is made of the properties of a piezo-electric crystal, quartz being the

most satisfactory for this purpose. A quartz crystal grows in the form

of a hexagonal prism with pointed ends, the cross-section of the prism

being as shown in Fig. 15.18(a). Ifan electric field is applied to the crystal

c,:

tw^

ANWN*
(a)

(6)

Pig. 15.18. (a) Quartz crystal (x, y are one of the three pairs of X, Y axes).

(6) Equivalent circuit of crystal and its electrodes.

in the X-direction, the crystal contracts or elongates in the Y-direction

according to the sign ofthe electric field. Similarly, ifa mechanical stress

is applied in the Y-direction, an electric polarization is set up in the

X-direction and charges appear on the faces of the crystal. These effects

are reversible and very nearly linearly related, and their importance lies
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in the fact that they couple together an electrical and a mechanical

system. If an alternating voltage is applied in the A' -direction, an

alternating stress appears in the Z-direction and the amplitude of the

resulting mechanical vibrations is large if the frequency of alternation

coincides with a natural mechanical vibration of the crystal. A number
of different modes of oscillation exist, but those most commonly used

are longitudinal and shear vibrations. The damping of the mechanical

vibrations is very low, and the sharpness of the resonance makes them

very suitable for use as frequency standards. The desirable properties

for this purpose are:

(a) Zero temperature coefficient of frequency of oscillation.

(b) High piezo-electric effect.

(c) A single mode ofmechanical resonance well separated in frequency

from other modes, so that there is no tendency to jump from one

mode to another.

The greatest piezo-electric effect is obtained when the electrical

and mechanical stresses are applied along the electrical or X-axis and

mechanical or Z-axis respectively, but oscillations can be excited by any
stress which has a component parallel to these axes. (Note that, owing

to the high symmetry of the crystal, there are three sets of X- and Y-

axes, related to one another by rotations of 120° and 240° about the

Z-axis, the optic axis of the crystal.) An X-cut crystal consists of a thin

slab with faces parallel to the YZ-plane, and the temperature coefficient

of the frequency of oscillation is negative, about — 22 x 10~6 per °C.

A F-cut crystal is a thin slab with its faces parallel to the XZ-jAa,ne,

and the temperature coefficient is positive with a number of discon-

tinuities due to couplings between different modes of oscillation. In

general it is more important to obtain zero temperature coefficient than

high piezo-electric activity, and intermediate cuts are used such as the

AT-cut, a thin plate whose faces contain the X-axis and a line in the

TZ-pl&ne making an angle of about 35-5° with the Z-axis. When a

voltage is applied between the large faces, a shear vibration is set up

whose frequency in megacycles per second is 0-1675/(thickness in centi-

metres). This is suitable for frequencies from roughly | to 10 Mc/s.

Lower frequencies may be obtained from modes where the frequency

is determined by one of the long dimensions of the slab, the full range

of quartz crystals being roughly from 25 kc/s to 15 Mc/s. To apply the

alternating voltage the slab is mounted between the plates of a capaci-

tor; these are generally formed by sputtering a metallic film on to
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the large faces. This reduces the loading on the mechanical vibrations,

which is further reduced by mounting the crystal in vacuo between light

supports touching the crystal at a mechanical node. For the highest

frequency stability the crystal is kept in an oven thermostatically con-

trolled to 0-1° or better, because the temperature coefficient is zero only

over a narrow range of temperature.

The mechanical system of a quartz crystal may be represented by

the equivalent electrical circuit shown in Fig. 15.18 (6). The mechanical

resonance is equivalent to a series tuned circuit and this is shunted by

the capacitance Cx of the electrodes. Typical values are:

X-cut quartz (lengthwise vibration)

Dimensions: rectangular bar,

X = 1-4 mm, Y = 30-7 mm, Z = 4-1 mm
B = 15 000 ohms Cx

= 3-54 pF

L = 137 henries Q = 5150

C = 0-0228 pF / = 89-87 kc/s

AT-cut quartz

Dimensions: disk, 25 mm diameter, thickness 1-10 mm.

R = 24-2 ohms Cx = 17-9 pF

L = 0- 1 19 henries Q = 46 500

C = 0-0945 pF / = 1500 kc/s

(From W. G. Cady, Piezoelectricity (McGraw-Hill, 1946).)

The presence ofCx causes the circuit to behave as a parallel tuned circuit

at a frequency just above that ofthe series resonance (see Problem 15.8).

The difference between these two frequencies is very small so that the

phase angle of the circuit varies very rapidly. A simple one-tube circuit

for maintaining the crystal in oscillation is shown in Fig. 15.19. Feed-

back of energy to the grid circuit takes place through the grid-anode

capacitance Cga , and to obtain the right phase the anode circuit must be

tuned to a frequency higher than the parallel resonance frequency ofthe

crystal in its mount, so that the impedance ofthe anode circuit is induc-

tive at this frequency (see § 12.8). The crystal oscillation will be damped
if the amplitude of oscillation is so high that grid current flows in the

tube, and various arrangements for controlling the feed-back are used,

such as a bridge system where one arm is a lamp or thermistor whose

resistance varies with the amplitude of oscillation. The frequency of
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oscillation can be adjusted over a very narrow range by a small variable
capacitance in parallel with Cx and this is used for fine adjustment.

Comparison of unknownfrequency with standard frequency

The high frequency stability of the quartz crystal oscillator makes it

extremely useful as a frequency standard, and the accurate measurement
of an unknown frequency is invariably made by means of a comparison

Quartz crystal

Fig. 15.19. Quartz crystal oscillator.

with such a standard. The block diagram of a frequency standard

suitable for ordinary laboratory purposes is shown in Fig. 15.20. The
fundamental frequency generated is 100 kc/s, using a quartz crystal

contained in a thermostat. Although long-term frequency stability of

the order of one part in 108 is possible, it is unnecessary to build the

complex system that this requires. Instead, the frequency ofthe standard

may be adjusted immediately before use, and checked during operation,

against one of the accurate frequencies originated at a standardizing

laboratory and radiated by station MSP, Rugby, England, and station

WWV, Washington, U.S.A. The working quartz crystal standards at the

national standards laboratories are calibrated in terms of the frequency

of an atomic transition of the caesium atom, and an international com-

mittee has decided (1964) that the unit of time should be thus defined,

making the caesium frequency

9 192 631 770 c/s.

This is a more convenient and a more precise standard than previous

ones based on the mean length of the solar day or year, because the

motion of the earth is known to be subject to fluctuations (see § 23.6).
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In order to measure frequencies other than those close to the 100 kc/s

fundamental it is necessary to generate higher and lower frequencies by
multiplication and division of the fundamental. Higher harmonics are

generated by feeding the fundamental into a Class C amplifier stage,

where the short pulse of anode current has a high harmonic content.

This excites a circuit tuned to the desired harmonic which acts as the

anode load, and this harmonic is then amplified to the desired extent.

Multipliers lMc/s

100 kc/s Standard

Dividers

10 Mc/s

>*-

100 Mc/s 500 Mc/s

Harmonic generator

Output :

Markers at 10 kc/s

intervals from
10 kc/s to 150 Mc/s

10 kc/s lkc/s 100 c/s UT
L

50 c/s -Wciockj

Fig. 15.20. Frequency measuring equipment.

It is convenient to work with harmonics rising by factors of 10 (usually

achieved by multiplying first by five, and then by two). By repetition

of this process frequencies up to a few hundred megacycles may be

generated with the same accuracy as the fundamental, and harmonics

of such frequencies have been generated up to~ 1011 c/s (wavelengths of

a few millimetres). Frequency division may be achieved by a number
ofmethods, such as use ofthe multivibrator (see § 13.7). A better system

is illustrated by the following method ofproducing 10 kc/s from 100 kc/s:

the output of an amplifier for 10 kc/s is multiplied to 90 kc/s, which is

heterodyned with the 100 kc/s to produce a 10 kc/s signal which is fed

back to the input of the 10 kc/s amplifier. This causes it to oscillate at

a frequency precisely one-tenth of the standard 100 kc/s, since only then

is the feed-back signal of the same frequency. This process may be

repeated down to 50 c/s if it is desired to run a clock which can be checked

against radio time signals in order to monitor the long-term stability of

the system.

Comparison of an unknown frequency with the standard requires the

use of an adjustable oscillator which can be heterodyned against both
the harmonics of the standard and the unknown. Suppose the latter is
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known (by resonance with a calibrated tuned circuit) to be approxi-

mately 13 Mc/s. The adjustable oscillator is first tuned to zero beat

with the 10 Mc/s standard, and the 1 Mc/s output is then also switched

into the mixer stage, which now generates every harmonic of 1 Mc/s.

The variable oscillator is now increased in frequency, and the number of

zero beat notes with the 1 Mc/s harmonics passed before zero beat with

the unknown is reached are counted. Suppose there are three; then the

unknown frequency lies between 13 and 14 Mc/s. The variable oscillator

is then returned to 13 Mc/s, and the 100 kc/s signal from the standard

added to the mixer. The variable oscillator is now again increased in

frequency, and the zero beats every 100 kc/s counted until the unknown

is reached. This shows that the unknown lies, say, between 13-1 and
13-2 Mc/s, and the process is repeated with the 10 kc/s standard to

establish that the unknown lies between, say, 13-16 and 1317 Mc/s. The

ultimate heterodyne difference frequency between the unknown and the

nearest harmonic of the 10 kc/s standard lies in the audio-frequency

range and may be measured by a frequency bridge, or by comparison

with a calibrated audio-frequency oscillator, etc., according to the

accuracy required.

15.5. Measurement of dielectric constant

The dielectric constant of a substance affords some valuable informa-

tion as to the structure of its constituent molecules (see Chapter 17),

and accurate measurement of the dielectric constant is therefore ofsome

importance. Since the dielectric constant is defined by the ratio of the

capacitance of a capacitor filled with the substance under test to that of

the empty capacitor, it is obvious that in general two measurements of

capacitance will suffice. For solids and liquids the dielectric constant

varies from about 2 to 100, and any of the bridges designed to measure

capacitancemay be used to give accurate results. For the higher dielectric

constants care must be taken to avoid stray capacitance which may
seriously affect the reading obtained with the empty capacitor, if this

has a rather small capacitance.

In the case of gases the dielectric constant differs from unity only by

about 0*001 and special methods must be used. One such method (see,

for example, Hector and Woernley, 1946) makes use ofthe high accuracy

which can be obtained in the measurement offrequency, by incorporating

a specially designed capacitor in the resonant circuit of a tuned anode

oscillator. The frequency of this oscillator is then compared with a

standard frequency from a quartz crystal oscillator, first with the
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capacitor evacuated, and then filled with gas. The change in frequency

may either be measured directly, or the frequency may be restored to its

original value by adjustment of a small standard variable capacitor in

parallel with the capacitor containing the gas. The accuracy of this

latter method is usually limited by that of the variable capacitor, and

the former method is to be preferred.

Standard oscillator Detector and amplifier

^H.T.+

Gas-tight box
for test capacitor

A.F. frequency measurement

H.T.

Loose coupling from oscillator

Feed-back

Tuned-anode oscillator

Fig. 15.21. Measurement of the dielectric constant of a gas.

A block diagram of the apparatus is shown in Fig. 15.21. To avoid

dimensional changes when the gas is introduced, the capacitor G is

surrounded, first by a perforated case, and then by a heavy steel gas-tight

container. The surfaces of the capacitor are gold-plated to maintain

high conductivity and avoid tarnishing. Ifmeasurements are made over

a range oftemperature, in order to determine the electric dipole moment
of a molecule (see § 17.3), a correction must be made for thermal expan-

sion. A correction is also required for stray capacitance which is not

altered by the introduction of the gas. If a frequency measuring equip-

ment is not available, a small tuning capacitor C" is adjusted when C is

evacuated so that a zero beat note is obtained between the tuned anode

oscillator and a standard oscillator, preferably controlled by a quartz

crystal. If this frequency/' is about 1 Mc/s, then on introducing the

gas an audio-frequency beat note is produced between the new frequency

/" and the standard/', which may be measured by a Wien's bridge or

by comparison with a tuning fork. Then since /' = 1[2tt*J(LC), and

/' = ll2n<J{LeC), we have e = (/'//•)»•

Lovering and Wiltshire (1951) have criticized the above method on
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the ground that long-term stability is not attained, and it is therefore

necessary to measure the frequency change fairly quickly after intro-

duction or removal ofthe gas. This introduces errors because ofadiabatic

temperature changes. They used a simple capacitance bridge at 0- 1 1 Mc/s,

and determined the capacitance change by means ofa variable cylindrical

capacitor whose inner conductor was advanced by a micrometer screw.

The most accurate measurements appear to be those of Essen and

Froome (1951), using a cavity resonator and working at a frequency of

24 000 Mc/s. The cavity was cylindrical, with a diameter of about 5 cm,

and resonated in the TE01 mode. The frequency of resonance was deter-

mined first with the cavity evacuated, and then filled with gas, by
plotting out the resonance curve using a klystron oscillator whose

frequency could be determined to 1 part in 108 by comparison with the

N.P.L. frequency standard. The frequency of resonance is given by
equation (11.34): , 2 f2 , ,

•L = q_ ' + '
(n.34)

v3 c2 A2 A2

where ju. and e are the magnetic permeability and dielectric constant of

the gas fining the resonator and A,,, Xg are fixed by the diameter and length

of the cavity respectively. Thus if/' is the resonant frequency of the

empty cavity, and/" that of the gas-filled cavity, (/'//
")

2 = /*«• Hence

the ratio of the two frequencies determines n = V(/"-
e )> the refractive

index of the gas. A correction must be applied for the permeability,

which differs slightly from unity for air and oxygen, since the latter is

paramagnetic. A comparison of the measurements of € of a number of

workers at different frequencies, together with the square of the optical

refractive index, is given in Table 17.4.

The cavity resonance method may also be used for measurement of

the dielectric constant of liquids and solids, provided that their loss

tangent is fairly small (see Faraday Society Conference on Dielectrics,

1946). A partly filled cavity must be used for solids or liquids of high

loss tangent, but for non-polar liquids a filled cavity was employed by
Bleaney, Loubser, and Penrose (1947). A tunable cavity resonant in the

TEax mode of the same type as described earlier (§ 15.4) was adjusted

to resonance with a klystron oscillator of fixed frequency, first with the

cavity empty, and then filled with liquid. By measuring a number of

successive resonant points, the wavelength in the guide was found in

each case, and the dielectric constant calculated from the equations

fa_ 1
,

1 € _ 1
_]_

1 HKfi\
A2 ~A2+ AC

2 ' A
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where ea is the dielectric constant of air and e that of the liquid, A the

wavelength in free space, and Aa , Xd the wavelengths in the air- and

liquid-filled cavity respectively. The loss tangent of the liquid was

found from the width of the resonance curve determined by detuning

the cavity. Thus only measurements of length, depending on a micro-

meter thread, were involved. Typical results at a temperature of 20° C
are given in Table 15.1. When two measurements are given at 1-35-cm

wavelength, they were made with cavities of different diameter.

Table 15.1

Loss tangent

Dielectric constant e (tan 8)

A = 3-2 cm A = 1-35 cm A = 3-2 cm A = 1-35 cm

Cyclo-hexane 20244 20246, 2-0251 0-00005 000019
n-Heptane . 1-9220 1-9223 000037 000076
n-Hexane . 1-9016 1-9016 000034 000076
CS a . 2-6476 2-6477 000024 000072
CC14 . 2-2386 2-2390 000031 000078

All the samples except those of ra-hexane and CC14 were specially

purified. The loss tangent is considerably affected by small traces of

polar impurities, but it is not certain that such impurities would account

for all the dielectric loss.

15.6. Measurement of the velocity of radio waves

The velocity of electromagnetic radiation has long been regarded as

one of the fundamental constants of physics, and much effort has been

devoted to its accurate determination. Apart from one measurement

of the velocity of radio waves on a transmission line by Mercier (1924),

most of the early work has used light waves. The results showed a good

deal of scatter, but in a review by Birge (1941) the mean value of

299 776^4 km/sec was adopted. From 1945 onwards a number of new
determinations have been made, of greater accuracy, which suggest that

the true value is nearly 299 793 km/sec (see Table 15.2). These methods

have made use of radio techniques to improve the accuracy, and in some

cases the wavelength of radiation used has been a few centimetres.

A brief description is given below.

In § 15.4 it was pointed out that both frequency and wavelength can

be measured at centimetre wavelengths. The product of these two

quantities gives the wave velocity, and this has been the basis of one

type of measurement at the National Physical Laboratory. It involves
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the construction of a cavity resonator whose resonant wavelength can

be calculated from the inner dimensions and whose resonant frequency

can be determined by comparison with a frequency standard. The

dimensions were measured in the Metrology Department of the N.P.L.

In the earlier work of Essen and Gordon-Smith (1948) a cavity of fixed

length was employed, consisting of a copper cylinder of diameter 7-4 cm
and length 8-5 cm. The resonant frequencies for a number of different

modes were measured with the evacuated resonator in a temperature

controlled room, the frequencies lying between about 3000 and 5000

Mc/s (wavelengths of 10 cm and 6 cm). The velocity c may be found

from the formula
/'(1+ 1/2Q) m+m (15.7)

where/' is the observed frequency of resonance, L and D the internal

length and diameter, a; is a constant for a particular mode (the root of

a Bessel function), n the number of half-wavelengths in the resonator,

and Q the quality factor. The value of Q was about 15 000 and it

appears as a small correction for the finite electrical conductivity of the

copper walls. The effect of this may be regarded as an effective increase

in the dimensions ofthe order ofthe skin depth ofthe radiation in copper.

The use of several modes ofresonance is a check on 'end-effects', and the

change in the resonant frequency caused by the intrusion of the coupling

probes A, B (see Fig. 15.22) was determined. The length of these probes

was finally reduced beyond the point at which any such change could

be observed. The measured values of the length L and diameter D were

accurate to 3 parts in 106 . Four measurements of c lay between 299 796

and 299 789 km/sec, the average value being 299 792±9 km/sec with

a rather liberal estimate of the error.

In a second determination Essen (1950) used a cavity resonator of

variable length and measured the distance required to move between

successive resonances. The scatter in these distances (which are each

half a guide wavelength) was about ±5 X 10-5 cm with a total travel of

about 12 cm. This scatter is partly due to variations in the diameter

(though no systematic variation was detected) but also includes errors

arising from temperature changes, frequency measurement, and setting

to resonance, giving a proportional error in c of 3 X 10"-6
. Measurements

were made at ~ 6000, 9000 and 1 1 000 Mc/s, and showed a systematic

decrease in the apparent value of c when the resonant conditions were

such that the diameter of the cavity played a greater part in determin-

ing the guide wavelength. Since the measured Q was lower than the
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theoretical Q, it was assumed that a surface film ofpoorly conducting tar-

nished silver (detectablebyeye ) caused the effectivediametertobegreater

thanthe measured diameter, since the r.f. current runs beneath this film.

The measurements at different frequencies made it possible to applya cor-

rection for this, and the final value of the velocity in vacuo was found

to be 299 792-5 km/sec, with a maximum error of ±3 km/sec.

Fig. 15.22. Apparatus of Essen and Gordon-Smith for measuring the velocity of

electromagnetic waves.

A,B probes. V vacuum.
R receiver. klystron oscillator.

T thermometer. H.W. heterodyne wavemeter.

C cavity resonator. F.S. frequency standard.

L

These difficulties in the cavity resonator method led Froome (1952)

at the N.P.L. to devise an interferometer experiment at 1*25 cm wave-

length which approximates closely to a free space method. This uses a

microwave analogue of the Michelson interferometer, as shown in

Fig. 15.23. Power from a stabilized klystron oscillator flowing along a

waveguide was divided into two portions at a hybrid junction B (the

analogue of a half-silvered plate). One half traversed a short length of

waveguide and was reflected from a shorting piston. The other was fed

to a horn and launched as a wave in space. Part of this radiation was

reflected back to the horn by a 6-in. square metal plateM which could be

placed at points from 6J to 21^ metres away. This reflected wave on

returning to the hybrid junction interferes with that reflected from the

shorting piston in the second arm, and the vector sum of the two ampli-

tudes is passed along the fourth arm to a detector (a superheterodyne
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receiver). The latter is used to detect when the two reflected waves are

exactly in anti-phase and so give a null at the detector. The metal plate

M is then moved through successive null points, which occur every half-

wavelength. The total distance moved was 1-62 metres, and this could

be measured with an accuracy of ±0-003 mm. At the same time the

frequency of the klystron oscillator was measured against the quartz

crystal standard with an accuracy of 1 part in 108 . Thus the wavelength

Power from stabilized

klystron oscillator-

Adjustable

shorting

plunger

Waveguide

Matching unit

and
attenuator

Quartz crystal

frequency standard

|«—6J to 21J metres-

Horn

Radiator M

Hybrid junction

Movable reflector

driven by

micrometer

Fig. 15.23. Froome's microwave Michelson interferometer.

in air and the frequency were determined simultaneously. In the former

case two important corrections must be applied to find the wavelength

in vacuo.

(a) a correction for the refractive index of the air, based on the

measurements of Essen and Proome (see § 15.5);

(6) a correction for the fact that the wave front reaching the mirror

is not a plane, but has a small curvature, and similarly for the

reflected wave; this correction was calculated from diffraction

theory, using data from different mirror distances.

The final value obtained for the velocity in vacuo was 299 792-6±0-7

km/sec. In later experiments (Froome, 1954, 1958) has used a four-horn

interferometer of symmetrical design, first at a wavelength of 1 -25 cm,
then at 4 mm. The final results are

299 792-75±0-3 km/sec

299 792-5±0-1 km/sec

(frequency 24000 Mc/s),

(frequency 72 000 Mc/s).
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These agree very closely with the best optical method as can be seen

from Table 15.2. A description of Bergstrand's optical 'geodimeter'

and of Froome 's later interferometer can be found in J. H. Sanders,

The Fundamental Atomic Constants (Oxford University Press, 1961).

Table 15.2

Velocity of electromagnetic waves

Published result

Date Author (fem/sec) Method

1941 Birge 299 776±4 Statistical survey of earlier work

1949 Aslakson 299 792-4±2-4 Radar, 300 Mc/s

1950 Essen 299 792-5±3 Cavity resonator

1952 Froome 299 792-6±0-7 Microwave interferometer

1958 Froome 299 792-75±0-3 Ditto, 24 000 Mc/s

299 792-5 ±0-1 Ditto, 72 000 Mc/s

1950 Bergstrand 299 792-9±0-25 Optical geodimeter

1957 Bergstrand 299 792-75±0-34 Ditto, average with earlier instrument

299 792-85±0-16 Ditto, average with later instrument

Selected values, based on Froome (1952) and Dumond (1959).
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PROBLEMS
15.1. A cathode-ray tube has plane parallel deflecting plates of separation a and
length 6 parallel to the axis of the tube; the distance from the centre of the plates
to the screen is L. If the electrons are initially accelerated by a voltage V , show
that their deflexion on the screen due to a voltage V1 on the deflector plates is

« = HIAVJaV,),

assuming that L^>b, that the field is uniform between the plates, and that edge
effects can be neglected.

If a — 0-5 cm, 6 = 4 cm, L = 30 cm, and V = 1300 V, show that the deflexion

sensitivity is 0-92 mm/V.

15.2. Referring to Fig. 15.4, show that the phase angle
<f>

is given by the relation
sin<£ = OP/OQ.

15.3. If the frequency limit of the cathode-ray tube of Problem 15.1 were set by
the finite transit time of the electrons through the deflector plates, show that the
deflexion would fall to zero at about 540 Mc/s.

15.4. If in the bolometer of Fig. 15.6 all the heat is lost by conduction to the
leads, which remain at room temperature, show that the fractional change in
resistance (AR/R) when a d.c. power W is dissipated in the thin wire is given by

(AR/R) = ocWLj(\2KA),

where a is the temperature coefficient of resistivity, L the length, K the thermal
conductivity, and A the cross-section of the wire.

15.5. Maxwell's bridge for comparing an inductance and a condenser has the
circuit of Fig. 15.8, with the following impedances:

Z1 an inductance L in series with a resistance Rlt

Za a resistance R2 ,

Z3 a resistance R3,

Z4 a capacitance C in parallel with a resistance R4 .

Show that the balance conditions are

RJR3 = RJRt, £ = R2 R3 C.

To make the two balance conditions independent, Rt and G must be varied.

15.6. At higher audio frequencies resistances may possess a small inductive com-
ponent; in Anderson's bridge this may be allowed for by writing the components
as P = P+jP', Q = Q+jQ', R = R+jR', T = T+jT' (we neglect any induc-
tive component in S as this will be added to L at all frequencies). If P andQ are
identical impedances, show that the balance conditions are

r+S = R-<oC{2RT'+2R'T+RQ'+R'Q),

L = C(2RT+QR-2R'T'-Q'R')+ R'/w.

These equations show that it is important to make R' as small as possible. If
R' = 0, the error in the determination of L is zero, while that in the resistance

r of the inductance is coCR(2T'+Q').
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15.7. In the equivalent circuit (Fig. 15.16) of the coaxial line wavemeter, the

source is taken to be a generator of voltage Vx with internal resistance R1 , and
the detector has a resistance R2 . If the series impedance of the tuned circuit by
itself is Z, show that the ratio of the voltage V2 across the detector to the input

voltage is
V2 o?MxMi
Fj. -R^Z+colMf/^+o^-MlARj)*

This equation shows that V2 is a maximum when Z is a minimum, i.e. when the

wave-meter is on tune and Z is just the resistance r. It shows also that the coupled
impedances w^Ml/Rj^ and u>

2Ml/R2 lower the effective Q ; by writingZ = r+ 2j8aiL

near resonance, show that the 'loaded Q' = V£/{VC(r+a)2M?/.R1+co2.M!/.R
!! )},

and that it may be measured by finding the fractional change in the frequency
required to reduce V2 to 1/V2 of its maximum value (neglect changes in the coupled
impedance when varying to).

15.8. In the equivalent circuit (Fig. 15.186) of a quartz crystal, the components
for a particular crystal are L = 3.3 henrys, C = 0-042 npF, R = 4500 ohms,
Gx = 5-8 fifiF. Show that it behaves as a parallel resonant circuit at a frequency
approximately 8 cycles above the series resonance frequency (the natural mechani-
cal resonance frequency).
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FLUCTUATIONS AND NOISE

16.1. Brownian motion and fluctuations

The irregular motion of small particles suspended in a fluid was first

observed by Brown in 1828. This 'Brownian motion' never ceases and

is a result of the random motion of the molecules both of the particles

themselves and of the fluid. If the motion is observed over a long time,

it is found that the average component of the velocity in any direction

is zero, since positive and negative values occur with equal probability.

The mean square value of the velocity is not zero, and from classical

statistical mechanics it may be shown that the average value of each of

the terms %mx2
,
%my2

, fynz2 of the translational kinetic energy is \kT,

where k is Boltzmann's constant (approximately 1-38 X 10 -16 ergs/deg)

and T is the absolute temperature. This is a special case of the theorem

of equipartition of energy: if the energy of a system can be written as the

sum of a number of terms each containing only the square of a variable,

then the average energy of each of these terms is \kT. This theorem

applies just as much to macroscopic objects as to microscopic ones or

molecules, but the magnitude of the fluctuations in the dynamical

variable become smaller as the inertia of the object increases, since the

average energy is independent of size. Given sufficient magnification, the

motion can always be observed, and it sets a limit to the sensitivity of

any measuring instrument, since the fluctuations give a random signal

which masks any applied signal of smaller magnitude.

If this theorem is applied to a suspension galvanometer, the following

result is obtained. The suspension has one degree of freedom, a rotation

measured by the angle 8. The total energy may be written as the sum
of two terms, the potential energy of the suspension due to work done

against the restoring torque, and the kinetic energy, so that

W = |c02+|302
, (16.1)

where c is the restoring torque per unit angle oftwist and 3 is the moment
ofinertia ofthe system. To each ofthese terms we must assign an average

energy \kT, so that fluctuations in the angle 6 and the angular velocity 6

will occur whose mean square values are given by

\cW = £202 = \IT. (16.2)
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A system which is mathematically similar is the electrical tuned cir-

cuit, consisting of an inductance, capacitance, and resistance connected

together. The total electrical energy of such a system, where / is the

instantaneous current and q the instantaneous charge on the capacitor,

is W = lq*jC+lLP. (16.3)

If the theorem of equipartition of energy applies also to electrical sys-

tems, as we would expect in view of its general nature, then the mean
square values of the fluctuating charge and current will be given by

i?/C = \LF = \kT. (16.4)

These relations give only the mean square values of the total fluctua-

tions, and tell us nothing about the frequency distribution of the
fluctuations. If we imagine that we perform a Fourier analysis of

the fluctuations, and postulate that they are due to some random force

acting on the system, then for the electrical tuned circuit we write

L(d2qldt*)+B(dql<U)+qlC = Vf exp{jtat), (16.5)

where l^is the amplitude of the component of the random e.m.f. causing

the fluctuations at the frequency/ = w/27r. We now make the following

assumptions about Vf : its mean square value Vj is independent of fre-

quency, but voltages of different frequency are entirely uncorrelated, so

that the average value of the product VfVr is zero. The justification for

these assumptions will not be discussed here, but it is obvious that they

are plausible in view of the random nature of the fluctuations. On
solving equation (16.5) to find the mean square amplitude qf of the

fluctuating charge at the frequency /, we have

d(qft = *&h . (16.6)

The frequencies are continuously distributed, and the differentials are

used since this expression gives the mean square amplitude of the

fluctuations in the frequency range between/ andf+df. The total mean
square fluctuation must be given by equation (16.4), and hence, inte-

grating over all frequencies, we must have
CO

licT—i^lC— 1
(d(7^\—

1 ^£ED f ^
2 lcl _ ,q /G _—

J
d(qf) _—_

J
__^___.

o

This integral may be evaluated as follows. On making the substitution

<o = x{LC)~*, it becomes
CO CO
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where the second form is obtained by replacing x by l[x. Hence the

integral may be written as

00 oo

—oo

Hence \KP = &/C =±^,
or d(T^) = 4kTRdf, (16.7)

, ,,-j, 4kTRdf /iao .

and « = (£«,-i/o»+w - (16 - 8)

The value of \LP may be shown to equal \hT, as required by equation

(16.4), from these results (see Problem 16.1). The equations lead to

the interesting result that, whereas the total mean square values of the

fluctuations depend only on L and C, the expression for the distribution

of the voltage fluctuations with frequency involves only R. The result

given by equation (16.7) may be expressed by saying that the mean
square voltage d(Vf) of the fluctuations in the frequency range df is

4JcTRdf, and is thus proportional to the bandwidth df. The existence

of such fluctuations was first verified by Johnson, and they are known
as resistance or 'Johnson' noise. They will be considered in more
detail in § 16.3.

16.2. Fluctuations in galvanometers

We return now to the case of the galvanometer, and consider first a

moving-coil suspension galvanometer when the coil is on open circuit.

Then the equation of motion is

3{d*0ldt2)+b(ddldt)+c9 = Ff exp{jua), (16.9)

where 3 is the moment of inertia, b the mechanical damping constant,

and c the restoring torque per unit angle of twist. We assume that the

fluctuations are caused by a random torque, whose Fourier component

at the frequency/ = co/2tt has the amplitude Ff. Our further postulates

about the nature of F are similar to those made about V in the last

section. Then the analysis is exactly similar to the previous case of the

electrical tuned circuit, so that by comparison we obtain at once

d(F}) = 4kTbdf (16.10)
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By integration it may be shown that these expressions satisfy equation

(16.2).

In general the galvanometer will be used for observing a current and
will therefore be connected to a circuit whose total resistance (including

the galvanometer coil) is R. Then we have two equations

3(tPeidfl)+b(de/dt)+ee = NI+Ffexp(jajt) i

RI = -N(ddldt)+Vfexp(jwt+j8) ]'
(
16 - 12 )

whereN = nAB, and I is the instantaneous current through the circuit.

Two sources of fluctuations have been included; a random torque due to

Brownian motion ofthe suspended coil, and a random voltage associated

with the electrical circuit. In equations (16.12) the Fourier components
of these two sources of fluctuations at the frequency/= cx)\2tt have been
used, with a phase difference 8 between them. Since the two sources are

independent, we do not expect any correlation in phase, and for different

frequencies the phase difference S will have random values. Elimination

of the current I between the two equations gives

3(d*dldt*)+(b+N2IX)Wldt)+cO = (NIR)V,exp{jad+fi)+Ffexp(ja*),

and the square of the amplitude of the fluctuations at the frequency/
is found to be

p, _ (NIR)W*f+F}+2(N
I

'R)7tF, cos 8
f

(3a>2-c)2+(b+N2IR)2a>* '

On summing over a range of frequencies, 8 takes all values between
and 2tt and the mean value of cos 8 is therefore zero. Hence the mean
square angular amplitude in the frequency range / to f+df is

(f) (3*>*-c)*+(b+N*IR)W
(16 ' 13)

On substituting the expressions for d(V}) and d(Fj) given by equations

(16.7) and (16.10), we find

2 _ 4kT(b+N*IR)df
d(df) ~ (3a>*-c)*+(b+N*IR)W

(16>14)

This equation is similar to that obtained for the galvanometer on open
circuit except that the total damping constant (b+N^/R) appears instead

of just the mechanical damping b. Integration of equation (16.14) over

all frequencies will obviously give the same result, %cW = \kT, as for

the galvanometer on open circuit, since the result is independent of the

magnitude of the damping. Thus, although there are now two inde-

pendent sources of random fluctuations, and these add in the squares
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as shown by the numerator of equation (16.13), each is associated with a

damping term so that the total mean energy \<ffi stored in the suspension

remains unaltered, provided that each source is at the same temperature.

This argument could be extended by separating the mechanical damping

b into two parts, one due to imperfect elasticity of the suspension and

the other to damping by the viscosity of the air. Then it follows that the

total mean square angular fluctuations have the same value whether

the galvanometer is evacuated or not; the admission of air provides an

extra source of fluctuations owing to the molecular bombardment whose

tendency to increase the mean square deflexion is just counterbalanced

by the viscous air damping which accompanies it. The frequency distri-

bution of the fluctuations is of course changed because of the increase

in the damping, but it is important to realize that the Brownian motion

is inherent in the suspended coil and is not caused by the bombardment

by the gas molecules. If it were, and the suspension had an imperfect

elasticity, then the molecular bombardment would result in the sus-

pension being heated, through the dissipation of energy in it, and the

gas would be cooled, even though both were originally at the same tem-

perature. This is contrary to the second law of thermodynamics.

The processes which we regard as 'damping' in the galvanometer

represent a degradation of mechanical energy into heat energy; in

viscous damping, into kinetic energy of the gas molecules; in electro-

magnetic damping, ultimately into the vibrational energy of the lattice

of the resistance in the external circuit (the coil moving in the magnetic

field acts as a transducer, converting mechanical motion into electrical

voltage). At the level of the molecular fluctuations, the damping pro-

cesses are just the mechanisms by which thermal equilibrium is estab-

lished; without them, an individual component of the system (galvano-

meter suspension, gas molecules, lattice of the resistor) would have no

means of knowing what the temperatures are of the other components.

In the electrical case, resistance arises from the conversion of electrical

energy into heat energy, and at the fluctuation level is the mechanism

by which the electrical fluctuations reach thermal equilibrium with the

lattice fluctuations. The nature of the carriers of the electric current is

no more important in this process than that of the molecules of the gas

causing viscous damping.

It is convenient to define the minimum observable current for a

galvanometer as that current which would produce a deflexion equal

to the root mean square value of the total Brownian angular motion.

For a steady current / the deflexion 6 = I{nAB)jc = INjc, and hence
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the minimum observable current Im would be

Im = (cJcT)i/N. (16.15)

In general the electromagnetic damping term (N2/R) is much larger

than the mechanical damping term b, and the critical damping resistance

Rc
is given by equation (7.5),

Bc
= pr»/(3c)*,

while the period t = 2tt(3/c)*. Using these two relations the minimum

observable current and voltage are conveniently expressed in the form

Im = (nkTIRc T)K Vm = {vkTBJr)*, (16.16)

since Vm = Rc Im if the galvanometer is critically damped. Taking room

temperature as 290° K, so that IcT = 4 X 10"21 joules, for a galvanometer

of period 2 sec and critical damping resistance 100 ohms, we find that

the minimum observable current and voltage are approximately

8 X 10-12 A and 8 X 10"10 V.

The correctness of the expressions derived above has been verified

experimentally by Jones and McCombie (1952). The deflexions of an

ordinary galvanometer of about 2 sec period (sensitivity 1 mm deflexion

at 1 metre distance for 10~8 A) were magnified by an optical lever. The

beam of light reflected from the galvanometer mirror fell on a split

photocell, so that rotation of the mirror transferred light from one cell

to the other. The difference in the currents from the two photocells was

observed on a second galvanometer; a deflexion of 15 mm on this instru-

ment corresponded to a voltage of about 10"9 V (or a current of 10-11 A)

applied to the first galvanometer. To make use of this amplification,

all external sources ofdisturbance such as vibration had to be eliminated.

Typical traces obtained were similar to those shown in Fig. 16.1. With

the first galvanometer on open circuit the damping is small, and the

frequency distribution of the angular deflexions is large only in the

region around the normal frequency of the suspension. Consequently

the fluctuations resemble bursts of oscillation at the natural frequency,

the number of oscillations in each being in inverse ratio to the damping

(and roughly equal to the 'Q ' of the suspension) . When the galvanometer

is just critically damped, (6+iV2/.R)2 = 43c and the denominator of

equation (16.14) can be written as (3w2+c) 2
, showing that the frequency

distribution of the fluctuations now has its maximum value at zero

frequency. The appearance of the fluctuations is now that of a random

disturbance without any sinusoidal character (Fig. 16.1 (6)). The voltage

sensitivity ofthe system was found by applying a voltage ofabout 10-8 V,
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obtained by attenuating a known voltage « 1 V through a resistance

chain, and a thorough statistical analysis of the results showed that the

magnitude of the fluctuations agreed with the theoretical value within

1 per cent.

Fig. 16.1. Fluctuations of a galvanometer (after Jones and MeCombie, 1952).

(a) On open circuit. (6) Nearly critically damped.

16.3. The relation between resistance noise and thermal radia-

tion

In an evacuated enclosure containing thermal radiation at an absolute

temperature T the energy density in the frequency range / to f+df is

given by Planck's law

,777 _ 8TThf 3 df /1B17\dU ~ c3{ex.V(hflkT)-I}'
(16 - 17)

where h is Planck's constant and k is Boltzmann's constant. For all

radio frequencies hf < kT at room temperature, since 290k corresponds

to a quantum of energy for a wavelength of approximately^ cm. We
may therefore expand the exponential, obtaining

dU = 8irf
2 kTdflc3, (16.18)

which is simply the Rayleigh-Jeans law of classical theory. Since the

polarization of the radiation is random, on the average only one-third

of this energy corresponds to radiation whose electric vector is parallel

to a given direction (say the ?/-axis), and only such radiation will induce

a voltage in a short dipole aerial inserted in the enclosure parallel to

the y-a,xis. From § 10.3 the mean square electric field component is then

given by El = cZ (\U), where Z = (ju /e )* is the intrinsic impedance

of free space. Hence the mean square voltage induced in an aerial of

length s will be

d(V*) = s*d(ED = &TrfWkTZ dfl{3c*). (16.19)
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Even if the aerial consists ofa perfectly conducting wire, the resulting

current which flows will be finite, since energy will be re-radiated by
this oscillatory current, and this energy must just be equal to that

picked up by the aerial. The radiation must therefore behave as a

generator of open-circuit voltage Vr with an internal impedance Rr, as

in the equivalent circuit of Fig. 16.2 (a). This drives a current Ir when
short-circuited, and the power dissipated is V2lRr

= If Rr ; this power
is lost by re-radiation, and from § 10.9 it follows that Rr is just the

radiation resistance given by equation (10.71) as

Rr = 27r2 /V7(3c2
). (16.20)

If the aerial is not a perfectly conducting wire, and has a real ohmic
resistance R, the equivalent circuit will be as shown in Fig. 16.2 (6), and

(c)

Fia. 16.2. Equivalent circuit of an aerial. Vr , voltage induced by thermal radiation;

BT, radiation resistance of aerial,

(a) Aerial short-circuited at centre.

(6) Aerial with resistance R at centre,

(c) As (6) but showing noise voltage due to R.

the energy dissipated in the load R will be V2 R/(Rr+R) 2
. This will heat

the resistance R, while less energy is re-radiated to the enclosure. If R
is initially at the same temperature T as the radiation in the enclosure,

the apparent result will be that R is heated and the enclosure cooled,

which is contrary to the second law of thermodynamics. In order that

the net exchange ofenergy betweenR and the enclosure be zero, wemust
postulate that there is a fluctuation voltage associated with R, as in

Fig. 16.2 (c), of mean square voltage V2 and internal resistance R. This

will send a power V2Rrj{Rr-\-R)
2 back into the aerial which must just

equal that drawn from the enclosure and dissipated in R. Thus
V2 R = V2Rr, and in the frequency range from / to f+df

d(V2
)IR = d(vl)IK =^^J^X z^pi* = *kTdf-

(16.21)
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This result is identical with that obtained earlier (equation (16.7)) by
considering a simple tuned circuit. The voltage fluctuations have a

constant distribution with frequency so long as the energy quantum

hf <^ kT; this limitation corresponds to our use ofthe classical expression

(Rayleigh-Jeans law) for the energy density in the enclosure. The
fluctuations associated with a resistance R can be represented by insert-

ing a voltage generator V, whose mean square open-circuit voltage is

given by equation (16.21), for which R acts as the internal impedance

as in Fig. 16.2 (c). The equivalent current generator will have a mean
square current ^ = ^y^g (16 22)

and it will be shunted by the resistance R.

Let us suppose that we are able to connect to our aerial a load of

resistance R which itself produces no noise (e.g. a resistance kept at a

temperature very close to 0° K). Then the maximum power which can

be drawn from the enclosure and dissipated in R, obtained by making
R equal to R

r!
is d(Vf)l(4:Rr) = kT df; this is the 'available noise power'.

If R is in fact a radio receiver, this power drawn from the thermal

radiation incident on the aerial forms a source of 'noise', and can be

heard as a hiss from a loudspeaker, or viewed on a cathode-ray oscillo-

graph. It will obscure any signal which it is desired to receive unless

the signal power in the aerial is larger than that picked up from the

radiation background. This difficulty cannot be overcome by increasing

the overall amplification of the receiver, since both noise and signal will

be amplified together. Thus the radiation noise sets a limit to the useful

sensitivity of a receiver. If a theoretically perfect receiver is defined as

one which itself introduces no noise, then the amplified noise output will

be AkTdf, where A is the overall amplification. The amplified signal

output will be AP, where P is the signal power incident on the aerial.

Then the minimum detectable input signal may be defined as that which

gives a signal output equal to the noise output, from which

minimum detectable signal power P = kT df (16.23)

for a perfect receiver. It is clear that the only variable at our disposal

here is the bandwidth df, and the reduction in noise obtained on narrow-

ing the bandwidth can be seen in Kg. 16.3. This shows the noise output

from a receiver covering a band from to 2 Mc/s, before and after the

insertion of a low-pass filter cutting out frequencies above 0-1 Mc/s.

The change in character ofthe noise when the high frequency components

are absent can be seen as well as the reduction in amplitude. In general,

however, the bandwidth cannot be reduced beyond a certain limit
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without impairing the quality of the reception, since the higher modula-

tion frequencies will be cut out. If only audio-frequency modulation is

involved, the bandwidth will be about 104 c/s and the minimum detect-

able signal power will be 4xl0-17 W. In a television receiver it is

necessary to have a bandwidth of« 4 Mc/s to include all the information

necessary to form the picture, and the minimum signal power to equal

noise in a perfect receiver is 1-6 x 10-14 W.

(a)

(b)

(Photograph by L. J. Arundel.)

Fig. 16.3. Noise output from an aperiodic amplifier,

(a) Covering the band from to 2 Mc/s.

(6) After insertion of a low-pass filter reducing the band to to 0- 1 Mc/s.

In practice, all receivers generate a certain amount of internal noise,

with the result that the noise output is greater than for a perfect receiver.

The signal input i\ required to give a signal output equal to the noise

output is therefore greater than P . The quantity Pt—P is a measure

of the internal noise generated in the receiver, and by writing

Pi-Po = kTe df

it may be expressed in terms of the 'excess noise temperature' Te of the

receiver. In an ideal receiver Te = 0, but in practice little is gained by

making it smaller than about 7/10, where T is the temperature of the

thermal radiation being received in the application for which the receiver
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is designed. In laboratory applications the source to which the receiver

is connected is generally at room temperature, and it is then convenient

to take a value ofT = 290° K to defineP , making it equal to 4 X 10-21 df
(watts). The ratio ofPx to this value of P is then defined as the 'noise

figure' of the receiver, and denoted by F. Since F is a ratio of two
powers, it is often expressed in decibels.

16.4. Shot noise

For most purposes it is sufficient to consider the electron current in

a tube as consisting of a uniform flow of charge to the anode. Since the

current consists in fact of the arrival of a finite number of electrons

per second, this cannot be true. The flow of electrons is a random
process, andwe may expect that there will be a fluctuation in the number
arriving in a given time interval, if we measure over a number of such

intervals. If the arrival of the electrons consists of a succession of

completely random events, then the mean square deviation from the

average number N per second is proportional to N. These fluctuations

give rise to noise in the anode circuit of the tube, known as shot noise

from the obvious analogy with the random patter of shot on a target.

In general we are interested not in the total deviation from the mean,

but in the frequency distribution of the fluctuations. To find this it is

necessary to carry out a Fourier analysis of the pulse of current due to

the arrival of a single electron of charge e. We will assume that this

pulse, occurring at time t = 0, has some irregular shape but is entirely

confined within the time interval —t/2 to +t/2. Since the total charge

arriving is e, we have +Tj2

e = j Idt.

-T/2

We do not specify anything about the duration of the pulse t except

that it is very short (~ the transit time, see § 14.2). The Fourier series

representing the frequency distribution of the current due to the arrival

of e is written

2irnt
, v i • 27Twi

sin
T

»=i »=i

Here a , an , and bn are coefficients to be determined, and T is an undefined

large interval of time. In effect we regard all the frequencies we are

interested in as multiples of the fundamental frequency 1/T. To obtain

a continuous frequency distribution we should make T infinite, and

replace the summations in the series by integrations. As the student is
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likely to be more familiar with a Fourier series than a Fourier integral

we shall use the former, and by making T large we can obtain a good
approximation to a continuous frequency distribution.

From the ordinary formulae of Fourier analysis

+272 +272

a
°
=
i J*

7 dt; Un = w [
Icos

(
2mit

i
T

)
dt'

-272 -272
+272

K = ^ ( Isin(2nntlT)dt.

-272

To evaluate the coefficients we restrict ourselves to frequencies small

compared with 1/t. Then, since the current is finite only in the range
—t/2 to +t/2, and zero outside this range, we can write cos(27m£/T) = 1

and sin(27rttf/T) = over the range of integration for which the current

is finite. Hence bn is zero, while
+372

2o = «» = % j Idt = 2e\T.

-T/2
00

Thus we have / = |,+ ^ % ooB{2imtlT)

n=l

and the mean square value of the wth component is

II = i(2e/T) 2 = 2e2/T2
.

IfJV electrons arrive in time T, then each will contribute an equal amount
to the value of J2

. (The electrons arrive at random times, and their

contributions to the Fourier series will all differ slightly in phase. Thus
we must add intensities, and not amplitudes.) Then

7J = 2eW/T2 = 2e/ /T,

where I = Ne/T is the mean value of the current. Now the number of
Fourier components whose frequencies he within a range between/ and
f+df is Tdf, since the components are equally spaced in frequency by
amounts (1/T). Adding together the mean square values of these com-
ponents gives

d(P) = 2el df (16.24)

for the mean square current fluctuation in the frequency range/tof+df.

Influence of space charge

In this derivation of the formula for shot noise the arrival of an
electron is considered as a random event, completely independent of the
arrival of any other electron. We expect that the emission of electrons
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from the cathode has this property of complete randomness, but this is

not necessarily true of their arrival at another electrode. In practice it

is found that the value of the shot noise is materially lower than that

given by the above equation unless the current to the anode is limited

only by the rate of emission from the cathode. In general the anode

current is only a fraction of the emission current because of the forma-

tion of 'space charge' outside the cathode which causes a large number

of electrons emitted from the cathode to be turned back to the cathode.

Since this is due to the mutual interaction of the electrons, we may

expect that the flow of electrons to the anode is not now a succession

of completely random events. The value of the fluctuations is greatest

for random events, and falls as soon as they become not completely

random. Physically, the action of the space charge may be envisaged as

follows. Suppose that at some instant the number of electrons emitted

from the cathode rises momentarily above the average. This will cause

a temporary increase in the space charge, and a number of electrons

greater than average will leave the space charge region for the anode.

This number is smaller than the surge from the cathode because the space

charge acts as a reservoir; the effect of the increased space charge is to

turn some of the excess electrons back to the cathode. Similarly, at

instants when the cathode emission falls momentarily below the average,

the space charge also drops and less electrons are turned back. To allow

for this 'space charge smoothing', as it is called, a factor is inserted in

the equation for the shot noise. Thus

d(P) = 2pel df. (16.25)

j3 is called the space charge smoothing factor, and may be as low as 0-03,

showing that the smoothing effect is very considerable.

Noise in multi-electrode tubes

The presence of grids in a tube does not affect the validity of the

equations given above for shot noise so long as they do not intercept any

of the current on its way to the anode. Thus equation (16.25) is still

valid for a negative-grid triode, but this is not so for a screen-grid tube

or a pentode, for then the positive screen grid intercepts a considerable

portion of the anode current. Since the chance of an electron hitting

the wire of the screen grid is purely random, the screen current will have

the full shot noise appropriate to its magnitude. It is obvious that similar

fluctuations, though of opposite sign, must be imposed on the current

that goes through the screen grid to the anode. Assuming that less than
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half of the total current goes to the screen, we may write approximately
for the anode current

d(P) = 2pela df+2el8 df. (16.26)

Since
ft may be less than 0-1, while the screen current Is is 0-2 or 0-3 of

Ia ,
the second term is often more important than the first. Hence screen-

grid tubes and pentodes are generally more noisy than triodes. The
additional noise is called 'partition noise'. In some high frequency
pentodes an attempt is made to reduce partition noise by incorporating
an extra grid, carefully wound and placed so that its wires are exactly
in front of the screen-grid wires. This extra grid is kept at a potential
negative with respect to the cathode, so that electrons on their way to
the anode must go through the holes in this grid and it collects no current.
Since these holes are exactly in front of those in the screen grid, the
electrons shoot through the screen grid also, and the screen current is

materially reduced, with a corresponding reduction in partition noise.
It is often convenient to define the amount of noise by referring it to

an equivalent resistance Rn (at 290° K) in the grid circuit. The fluctuat-
ing voltage at the grid due to Rn has the mean square value

d(V*) = 4kTRn df

since the grid consumes no power and the equivalent noise resistance is

therefore on open circuit. This causes a fluctuating anode current whose
mean square value is« = M?*) = 9l^TRn df,

wnere 9m is the mutual conductance of the tube. If T* is due to the shot
noise, the equivalent noise resistance may be calculated by means of
this formula, T being taken as room temperature. The advantage of this
method of specifying the noise is that the value of Rn , unlike that of
d(I2

), is independent of the bandwidth, and it facilitates comparison
of the shot noise with the resistance noise in the circuits attached to
the grid. If partition noise is included by replacing equation (16.26) by
(16.25) with an effective value £' instead of £,

Rn = p'eI l(2glkT). -
(i 6.27)

An estimate of the relative importance of shot noise and resistance
noise can be obtained from the formula for the equivalent noise resistance.
For a typical triode, gm = 5 mA/V, £ = 0-03, I = 10 mA, e = 1-6 X 10-19

coulombs; this gives Rn = 240 ohms. The value for a pentode would be
somewhat higher, owing to partition noise. These figures apply at
medium radio frequencies (i.e. ofthe order ofMc/s); at higher frequencies

851110
jj h
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(100 Mc/s and up) Rn rises owing to noise voltages induced in the grid

which have period of oscillation comparable with the electron transit

time (cf. § 14.2). At audio frequencies the shot noise (particularly from

tubes with oxide-coated cathodes) becomes abnormally large. This is

known as the nicker effect, and is thought to be associated with changes

in the state of the cathode surface which cause abnormal fluctuations

in the anode current.

16.5. Design of receivers for optimum performance (minimum
noise figure)

The correct design of a receiver is of great importance. If it is being

used in an application where the signal strength is fixed, such as in r.f.

astronomy or spectroscopy, then the limiting sensitivity attainable will

depend entirely on the design of the receiver. In radio communications

an improvement of a factor n in signal/noise ratio can be achieved by
increasing the transmitter power by a factor n, but a very much more

economical method is to improve the receiver performance by the same
factor instead. The following remarks illustrate only the basic principles,

and do not go into any detail of receiver design.

In general all the stages of a receiver will contribute some noise, but

if the amplification of each stage is high only the first stage or two is

important. If stage k gives noise powerNk , and the stage gain is m, then

the signal/noise ratio after n stages is

Smnl(N1mn+N2mn-1+...+Nn) = SI(N1+Ni m,-
1 +N.i m-*+...).

(16.28)

With a stage gain of ten to a hundred even the second stage will con-

tribute little to the noise output. If not, the design of the second stage

should follow the same principles as that of the first stage, and only the

latter need be considered.

In the circuit of Fig. 16.4 (a) S represents a signal source of voltage S
with output resistance Bv R± is assumed to be noisy, at temperature T,

and its equivalent noise voltage is represented by Vnl , in series with S.

The source S may be a signal induced in an aerial, in which case R1 is

the radiation resistance of the aerial and T is the ambient temperature

which we take to be 290° K. The source is connected to the grid of the

tube, and R2 is the grid-bias resistance, or the first tuned circuit, in

which case R2 is its parallel impedance. In general R2 will also generate

resistance noise, which is represented by the insertion of a voltage source

Vn2 in series with i?2 . In the first instance we shall assume that the tube
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contributes no shot noise (Rn = 0), and that noise from subsequent

stages is negligible. Then the signal/noise ratio will be the same at the

grid of the first tube as at any later point in the receiver, and we need

only compute the ratio of the mean square signal voltage on the grid to

the mean square noise voltage. For simplicity B1 and R2 are taken to

have the same temperature, which in practice will not be far from true.

Fig. 16.4. (a) Equivalent input circuit of a receiver, showing noise voltages.

(6) Actual input circuit, showing aerial tapped on to inductance of input

tuned circuit.

Since V\1jR1 = F£2/i?2 = ^kT df, and R2 acts as the load for the noise

generator Vnl , and Rx as the load for Vn2 , the mean square noise voltage

on the grid is

ikTdfiR^ ** i » ^+*<S&>} -<"**:£&{ ^(R1+R2r ' M^1+-R2)
2
j

(16.29)

Since R1 and R2 are random noise sources, the mean square voltages

have been added; note that the result is the same as that for a resistance

equal to Sx and R2 in parallel, as we should expect.

The mean square signal voltage on the grid is

StRll^+Rtf.
Hence the signal to noise ratio at the grid is

S* ** 1 P £_ n 6 30)
4kTdfR1+R2 R1 IcTdfRi+Rz l '

where P = /S
2/(4i?1) is the available signal power. If equation (16.30) is

put equal to unity, we obtain the signal power Px required to give an
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output power equal to the noise output power of the receiver. The noise

figure F is defined as the ratio of this signal power to the value IcTdf

for a perfect receiver, and hence the noise figure is

F = PxlkTdf={R1+Ri)jBv (16.31)

If the aerial is matched to the first circuit, Rx
= R2 , and F = 2. But

if R2 > Rv F is reduced and tends to its limiting value of unity as the

ratio of R2 to Rt
is increased indefinitely. Hence to obtain optimum

sensitivity it pays to mismatch the aerial to the receiver, since the

reduction in noise at the grid when R2 is shunted by the lower resistance

Rx is greater than the loss of signal at the grid due to the mismatch.

We see also that, in the absence of tube noise, it is possible to approach

very closely to the theoretical limit of sensitivity. In a practical case R
x

(for a half-wave dipole aerial) would be 80 ohms, while R
2 could be of

the order of 100 000 ohms, giving F = 1-001.

This optimum can no longer be attained if tube noise is appreciable.

In this case it is not sufficient to compute the signal/noise ratio at the

first grid, since there is a later source of noise. Since this source of noise

can be represented as a mean square current fluctuation in the tube,

the analysis need only be carried one step further by transforming any
fluctuating voltage at the grid into a fluctuating anode current. The
effect of the anode load on the anode current need not be included since

it affects all fluctuations in this current equally, whatever their source.

We have:

mean square signal current = gll
S2RH(R1 -{-R2)

2
,

mean square noise current = 2^'eIdfJrg%l 4:kTdfR1
R2j(R1 -\-R%)

on substituting the equivalent noise resistance of the tube. The signal

to noise ratio at this stage is now

P R1 R\ f p Rx R2 1 -1

kTdfiR.+R^l n
't R1+R2\

'

where the available signal power has been introduced as before. Putting

the signal to noise ratio equal to unity, we find the noise figure F is

(after some reduction)

If Rx is fixed and R2 is the only variable, then the smallest value for F
is obtained by making R2 very large, when F = 1 -\-RJRj_. For a typical
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pentode, Rn is of the order of 800 ohms, and if Rx is 80 ohms, we have

a noise factor of 1 1, which is very poor in comparison with that obtained

in the absence oftube noise. Clearly the trouble is due to the small value

of Rx compared with Rn , and this suggests that we should use a trans-

former between the aerial and the grid in order to step up the value

of Rx as seen from the grid. This will, however, reduce the ratio of R2

to Rx , so that there will be some optimum transformer ratio. In practice,

the grid circuit will probably be a parallel tuned circuit, with the aerial

tapped into the inductance as in Fig. 16.4 (6). If this tapping point is

variable, then at the grid the equivalent circuit is as assumed, with a

generator of the same available power but with a variable internal

impedance depending on the position of the tapping. This means that

our variable is Rx , while i?2 is fixed as the parallel impedance ofthe tuned

circuit without the aerial being attached. Differentiating the expression

for F with respect to Rx we find that the optimum value occurs when

%-h+i; (16 - 33)

If R2 is much larger than Rn , this reduces to Rx
= *J{Rn -R2)- With the

values assumed previously (Rn = 800 ohms, R2
= 100000 ohms), this

gives Rx
= 9000 ohms, and the optimum value ofF is now 1-19. Though

slightly worse than in the case of no tube noise, it will be seen that this

value ofF is very much better than that obtained previously by tapping

the aerial right across the tuned circuit (-Ra). If the tapping had been

adjusted to obtain the maximum signal voltage on the grid by matching

the aerial to the tuned circuit (Rx
= R2), the value of F would have

been 2-03. Hence we have gained a factor of nearly 2 by over-coupling

the aerial, just as in the case of no tube noise. The chief difference

when tube noise is present is that the over-coupling must not be carried

so far that the net impedance of aerial+tuned circuit becomes lower

than the equivalent noise resistance. Note that, in the equivalent circuit,

Rn is effectively in series with (R1 in parallel with i?2). Since no grid

current flows, Rn may be inserted in the lead immediately attached to

the grid as shown in Pig. 16.4 (a), without affecting any of the other

voltages imposed on the grid.

The noise figures derived in this section apply to receivers at ordinary

radio frequencies using vacuum tubes; transistors (discussed in § 19.8)

also show shot noise due to the random motion of the charge carriers,

and the noise problems involved are basically similar. At higher

frequencies the noise properties of vacuum tubes deteriorate, though
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travelling wave tubes can give noise figures as low as 6 dB at centimetre

wavelengths. Wavelengths of this order are used in radar and satellite

communication in order to obtain highly directional antennae; these

point at the open sky and the background thermal radiation corresponds

to a temperature of a few degrees absolute. This makes it worth while
to use receivers of very low noise; this is achieved in special devices

where shot noise has been eliminated, and resistive elements are absent

or at a very low temperature. The parametric amplifier makes use of

a non-linear reactance, and the solid state maser of a paramagnetic
material in which a negative resistance is produced at liquid helium
temperatures. In each case sufficient amplification must be produced
to make noise from the later (conventional) stages unimportant.

16.6. Measurement of receiver noise

Although it is in principle possible to calculate the conditions for

optimum noise figure, it is always necessary in practice to have some
method of measuring the noise figure in order to be sure of the per-

formance of a receiver. A vacuum tube may deteriorate in use, so that

it produces excessive noise, or it may lose its gain, so that noise from
the second stage becomes important. At high frequencies the perfor-

mance of a tube may not be sufficiently well established, particularly

in the experimental or development stage, for the necessary data to be
known with sufficient accuracy.

The most straightforward method of measurement of noise figure

is to replace the aerial by a calibrated signal generator, and find the

amount of signal power which must be applied to the receiver in order

to produce an output equal to the noise output. By definition of the

noise figure, this signal power, divided by JcTdf, gives the noise figure

F directly. This method needs careful design of the signal generator.

The most obvious necessity is that the signal generator output must
simulate the antenna; that is, it must behave as a generator whose output

impedance is the same as that of the antenna, so that when the latter is

disconnected and replaced by the signal generator, conditions at the

input of the receiver are unaltered. Adjustment ofthe generator output

impedance may be achieved by some simple transformer circuit.

The most difficult technical requirement in a signal generator is that

it must produce accurately known outputs of the order of 10-14 W or

less. Since powers of this order of magnitude can only be detected by
a radio receiver, it is not practicable to measure the output directly.

Instead, the power is measured at a high level (e.g. 1Q-3 to 10~6 W) and
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then attenuated down by known amounts using a resistance or capaci-

tance network. A schematic diagram of a typical signal generator is

shown in Fig. 16.5.

Power is generated by a small oscillator producing about 1 W. The

oscillator is tunable, and a given frequency may be selected by adjust-

ment of a calibrated dial. The accuracy of the frequency calibration is

Variable frequency
oscillator

Level indicator
Variable

attenuator
1

- Output

Fro. 16.5. Block diagram of signal generator.

usually of the order of 1 or 2 per cent, which is sufficient for most pur-

poses. A small fraction of the power is fed to a resistance, which forms

the input to the attenuator. The voltage across this resistance is read

on a built-in vacuum tube voltmeter; usually the amount of power is

adjusted by an external control until the voltmeter reads some standard

value, such as 1 V. The various steps on the attenuator are calibrated

by the maker and labelled with the voltage output across the output

terminals either on open circuit or across a load equal to the output

impedance at these terminals, which is fixed at some value independent

of the attenuator setting. The output impedance is always marked on

the signal generator.

Since the oscillator generates about 1 W of power, and this must be

attenuated in a known way by a factor of 1014 or so, all components

carrying radio-frequency currents at high level must be very carefully

shielded. This is especially true at short wavelengths, where a few centi-

metres of exposed wire would be an efficient radiator. At wavelengths

below a few metres, the typical layout of a signal generator is as follows.

The oscillator is in its own screened box, and a fraction of its output is

fed to a bolometer (cf. § 15.1), also screened, whose reading shows when
the power level is adjusted to its standard value. The attenuator is a

circular tube forming a waveguide which is beyond cut-off for the fre-

quency used. The field components ofany wave launched in such a tube

are attenuated exponentially as exp(

—

hx), where h is given by the

generalized form of equation (11.33),

where \. is the cut-off wavelength for the particular mode launched in



472 FLUCTUATIONS AND NOISE [16.6

the tube, and may be calculated from the diameter. At frequencies con-

siderably below cut-off the second term in equation (16.34) may be neg-

lected and the attenuation is then independent of frequency. In general

several modes will be launched at the input to the tube, which should

be designed to keep the number of modes to a minimum; the higher

modes, with smaller values of Ac , are attenuated much more rapidly and

Fig. 16.6. Signal generator output with piston attenuator.

A input from oscillator.

B bolometer in screened housing.

T accurately machined tube of known diameter.

L loop to pick up wave in tube.

C coaxial line, driven along tube by micrometer movement.
D output.

At centimetre wavelengths it is sometimes preferable to launch the wave in the tube
from the end of a waveguide, instead of from a bolometer lamp acting as the centre

conductor of a coaxial line.

only the lowest mode need be considered except very close to the input.

A design where the bolometer lamp launches a TMXX mode is shown in

Fig. 16.6; this has a magnetic field component, normal to the plane of

the diagram, which is picked up by a loop connected to a coaxial line

which slides along the tube. Such a 'piston attenuator' gives complete

screening, and the output can be adjusted over a very wide range. Since

the attenuator law is not known accurately over the initial range where

higher modes are present, the best procedure is to measure the power

output (of the order of 10~6 W) by a bolometer when the attenuation is

adjusted to the smallest value possible consistent with its following the

correct exponential law. A known smaller output is then obtained by
the use of equation (16.34).

The maintenanceanduse ofstandard signal generators for themeasure-

ment of noise figure are rather cumbersome, as the instruments require
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constant checking. In addition the bandwidth of the receiver must be

known in order to deduce the noise figure. For these reasons it is

generally simpler to use a source of noise of known power rather than

a signal generator. This type of source is already roughly at the level

required, so obviating the necessity of careful screening and attenuation

of signal by large known amounts required in a signal generator. So long

as the bandwidth of the noise source is larger than that of the receiver,

the bandwidth of the latter drops out of the calculation, since the input

noise power is known per unit bandwidth. Thus measurement of the

receiver bandwidth is unnecessary.

A simple type of noise source is the resistance noise from a known

resistance whose temperature may be varied. The available noise power

is kT df, and for this to give a signal output equal to the ordinary noise

output of a receiver of noise figure F we must have kTdf = F fc(290) df,

or F = T/290. Thus ifF is high, a high temperature filament is required,

so high that only tungsten can be used. The principal difficulties of this

method are measurement of the temperature, and the change in resis-

tance with temperature of the tungsten, which affects the matching to

the receiver.

The commonest type ofnoise source is a diode operated under tempera-

ture-limited conditions; that is, at saturation anode current. This is

achieved by maintaining a constant anode potential of 100 to 200 V,

the anode current being controlled by the temperature of the filament.

For this purpose a pure tungsten filament must be used, as an oxide-

coated cathode would quickly deteriorate when under-run in tempera-

ture, as well as giving flicker effect and considerable drift in the anode

current. Ifthe anode load is a resistance B whose value is small compared

with the anode impedance of the diode, the available noise power is

2eIBdf, where / is the anode current. Equating this to FJcTdf, we
have F = 80IB, where / is in amperes and B in ohms. If B is made
equal to 80 ohms to simulate a half-wave dipole aerial, then for a noise

figure of 10, a diode current of 1-6 mA is required. This is easy to produce

under temperature-limited conditions.

To determine when the signal output from the receiver is equal to the

noise output, they should be fed into a square law device such as a

thermo-junction milliammeter. The noise output from the receiver

alone is measured first, and then the signal or noise source input is

adjusted until the mean square current read by the thermo-junction is

doubled, when
(signal +noise output) = 2(noise output).
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The thermo-junction method is more satisfactory than display of the

output on an oscilloscope, since the eye can detect signals well down
into the noise, and is not a good judge of the signal/noise ratio.
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PROBLEMS
16.1. Show, by differentiation ofequation ( 16 .5 ) to obtain the differential equation
for the current / = dq/dt, and following through an analysis similar to that of

§16.1, that %LP= pr.
16.2. A signal generator whose output impedance is 500 ohms is calibrated in

terms of the power it will deliver into a matched load (i.e. the available signal

power). It is connected to a receiver whose bandwidth is 10 kc/s, and whose first

stage consists of a triode whose shot noise is negligible, with a 1000-ohm resistance

connected between cathode and grid. What will the signal generator reading be
when it is adjusted so that the signal output from the receiver is equal to the

noise output 1
(Answer: 6 x 10-" W.)

16.3. Referring to Problem 10.10, assume that the target is low over the sea and
intercepts the power incident on an area A x . This power is scattered with the

same angular distribution as that of the radiation from a short horizontal dipole

parallel to the transmitter dipole. Some of this scattered power falls on an aerial

of effective area A 2 located at the transmitter, and is detected by a receiver of

noise figure F and bandwidth df. Show that the signal/noise ratio, for the signal

returned from the target, is unity for a target distance

_\i(Hh\i

FkTdf

(This formula shows how difficult it is to increase the range by increasing the

transmitter power W, and how much better it is to reduce the wavelength.)

16.4. By following the treatment of § 16.3 using Planck's law instead of the

Rayleigh-Jeans law, show that the quantum-mechanical formula for resistance

noise is

d(V*) _ 4hfdf

B exp(fe//fcT)-l'

Verify from this formula that the transition from classical region to quantum-
mechanical region occurs when the number of quanta per unit bandwidth in the

noise power is of the order of unity.

(3^WAjAM(Hh\i
U- \ FkTdf 1 \ X )
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THEORY OF THE DIELECTRIC CONSTANT

17.1. Molecular structure and the dielectric constant

From the standpoint of electromagnetic theory, a dielectric may be
regarded as a continuous medium which becomes polarized under the

action of an electric field. The ratio of the polarization to the electric

field producing it is proportional to the electric susceptibility, and is

substantially independent of the field strength. The volume suscepti-

bility x is related to the dielectric constant e by the formula

The dielectric constant varies not only from substance to substance, but

also with the physical state of any one substance. Hitherto it has been
taken as a constant, experimentally determined, and no inquiry was
made as to the origin of the polarization which gives rise to the suscep-

tibility.

The concept of a continuous medium is alien to modern atomic theory,

by which any substance is regarded as an assembly ofatoms or molecules.

Each atom consists of a heavy, positively-charged nucleus with nega-

tively-charged electrons surrounding it. The atom is electrically neutral,

having equal amounts of positive and negative charge. The same is true

of a molecule, formed by several atoms joined together, with either a
sharing or a transfer of electrons. The distribution of electronic charge

in an atom is symmetrical about the nucleus, and, as discussed in § 2.3,

no atom possesses a permanent electric dipole moment. This is not true

of molecules, which may be divided into two classes—polar molecules,

which possess a permanent electric dipole moment, and non-polar mole-

cules, which do not. Homonuclear diatomic molecules such as H2 , N2 ,

2 have a symmetrical charge distribution and are non-polar, but asym-
metrical molecules such as KC1 and HC1 are polar, since there is a net

transfer ofelectronic charge from one atom to the other. A simple picture

of the KC1 molecule is that of two ions K+ and CI- , and on this basis we
should expect the dipole moment to be just equal to the product of the

electronic charge and the internuclear distance. Measured dipole

moments are generally smaller than but of the same order of magnitude
as suggested by this crude model, and are expressed in terms of the
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Debye unit, defined as

1 Debye = 10~18 e.s.u. = 3-336 X 10-30 coulomb-metre.

A number of electric dipole moments and internuclear distances for

diatomic molecules are given in Table. 17.1. The alkali halides come

near to having the moments expected on the picture of two ions, but are

somewhat smaller because the field of each ion polarizes the other ion

(see Fig. 17.1), producing induced moments pt
- in the opposite sense to

the main moment. The ionic approximation is much worse for the

Table 17.1

Internuclear distances and electric dipole moments

of some diatomic molecules

Electronic Observed

Internuclear charge dipole

distance r xr moment
Molecule U) (Debye units) (Debye units)

CsF 2-34S 11-2 7-88

CsCl 2-906 140 10-46

Csl 3-315 15-9 12-1

KF 2-55 12-2 7-33

KC1 2-667 12-8 10-4S

KBr 2-821 13-5 10-41

KI 3048 14-6 11-05

HC1 1-27 61 1-03

HBr 1-42 6-8 0-78

HI 1-62 7-8 0-38

hydrogen halides, HO, HBr, HI, where the dipole moments actually

decrease while the internuclear distances increase in this progression.

This, together with the fact that the moments are much smaller than

the product of the electronic charge and the internuclear distance,

shows that our picture of these molecules as two ions is an over-simpli-

fication. In fact most of the electronic charge resides between the two

nuclei. This tendency increases as we go from HC1 to HI, and we speak

of a progressive change from ionic binding towards covalent binding,

where the valence electrons are shared between the two atoms.

The question of whether a more complicated molecule will have a

permanent dipole moment or not depends on its symmetry; the problem

may be illustratedby reference to three triatomic molecules . Water,H2 ,

has a large moment, 1-84 Debyes, and this shows that it cannot be

linear; for then it must either be symmetrical, like carbon dioxide,

O—C—O, which has no dipole moment, or asymmetrical, like nitrous

oxide, N—N—O, which has the small dipole moment 017 Debyes. The
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latter possibility is unlikely for valence reasons. H2 must be therefore

a bent, triangular molecule, with, the negatively-charged oxygen at the

apex and the positively-charged hydrogens at the foot of the triangle.

Thus the absence of a dipole moment, or its magnitude, if it is present,

is an important guide to the structure ofa molecule. It is also intimately

connected with the dielectric constant ofa substance, the theory ofwhich
will now be outlined. Since each dipole interacts with the neighbouring

—^P, -+Pi

Fig. 17.1. The induced dipoles p4
on each ion are in the opposite

direction to the main dipole p formed by the charges on the two
ions, so that the total dipole moment is less than p.

dipoles through the local electric field which it possesses, the theory for

dense substances, where the dipoles are close together, is more compli-

cated than that for rarefied substances. We shall therefore consider first

the dielectric constants of gases.

17.2. Dielectric constant of non-polar gases

In a molecule which possesses no permanent electric dipole moment,
the electron distribution is symmetrical about the centre. When a

uniform electric field is applied, no translational force acts on the

molecule as a whole, since it is electrically neutral, and the centre of

mass remains fixed (or moving with uniform velocity). The electrons

and nuclei are, however, subjected to forces of opposite sign, and they

will therefore be displaced a little in opposite directions until the internal

forces balance those due to the external field. The molecule thereby

acquires an induced moment when the field is applied. The forces

exerted on the charged constituents of the molecule are parallel to the

field and proportional to it, and the induced moment is also parallel to

the field, and proportional to it at static field strengths used in the

laboratory. (Non-linear effects have been observed at the abnormal field
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strengths encountered when the light from a high-powered laser is

brought to a focus.) Since the electrons are so much lighter than the

nucleus, their displacement is correspondingly greater, as the position

of the centre of mass is unaltered. In general we shall refer only to the

electron displacement relative to the nucleus, since this determines the

induced moment.

The statements in the last paragraph may be summed up in the

mathematical equation ~ t? /,-n^
Pi = <xE, (17.1)

where pf is the induced moment, E the field acting on the molecule, and

a is a constant known as the molecular (or atomic, if we are dealing with

atoms rather than molecules) polarizability. The value of a. is typical

of each different type of atom or molecule. The field E is known as the

local field, since it is the actual field acting on each molecule. This is

not necessarily the same as the external field E , applied for instance

by maintaining a voltage difference between two capacitor plates and

calculated therefrom, since each molecule is subjected also to the electric

fields of neighbouring molecules which, like it, have acquired dipole

moments under the influence of the field. The local field E is equal to

the vector sum of E and the fields due to neighbouring molecules;

approximately (see below), E can be replaced by the sum of E and an

average field due to the neighbours which is parallel to E . Thus we
shall find an average local field E which is also parallel to E .

The general relation between the electric displacement D, the external

field E , the polarization P, and the dielectric constant e is

D = e E +P = « E . (17.2)

Here P is the induced electric moment P
t
per unit volume, and it is

related to the average local field E by the equation

P = rc a:E, (17.3)

where n is the number of molecules per unit volume (assumed to be

all of the same type). From equation (17.2) we have also

P = (e-l)e„E . (17.4)

In order to relate the macroscopic dielectric constant e to the molecular

polarizability a, we require to know the relation between E and E . The

following approximate solution of this problem is due to Lorentz.

The substance is imagined to be divided into two parts, and the

contribution of each is considered separately. One part consists of a

sphere whose size is so large that when considering the local field acting
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on a molecule at the centre of the sphere, the effect of the molecules in
the region outside the sphere may be evaluated by regarding the region
outside as a continuum. This is obviously a satisfactory approximation
if the radius of the sphere is large compared with the intermolecular
distance, so that the sphere contains many molecules. Then the local
field is E = Eo+Ei+Eg, where Ex is the field due to the molecules
outside the sphere, and E2 that due to the molecules inside. The field

Ex is the same as that due to the polarization charge Pn over the surface
of the sphere, where Pn is the outward component of the polarization
normal to the surface. From the result of Problem 2.1, we have

Ex = P/36 . (17.5)

Here P is the ordinary polarization of the medium (we do not have to
allow for any distortion of the field, as in Problem 2.1, because we have
not excavated a real cavity in the dielectric).

The value of E2 is more difficult to calculate, since it depends on how
the molecules are arranged within the sphere. Lorentz showed that for
a cubical array of molecules (as in a simple type of crystal) E2

= 0, and
this is also true of gases and non-associated liquids where the molecules
are moving at random, independently ofone another. We have therefore
E = Eo+Ej, whence from equation (17.3) P = n ocE = H. a:{E +P/3e }.

Elimination of P using equation (17.4) yields the equation, first derived
by Clausius and Mossotti, and generally known by their names,

e— 1 na a

c-+2
=
3t <

17 -6>

If each molecule could be regarded as a perfectly conducting sphere of
radius a, the moment acquired by such a sphere (see § 2.4) in a field E
is 47re a3E. This suggests that the value of a will be close to 47re a3

,

where a is the molecular radius, end the right-hand side of equation
(17.6) is then seen to be equal to the actual volume occupied by all the
molecules in unit volume. If the values of the molecular volume calcu-
lated in this way are compared with those derived from kinetic theory
(e.g. from measurements of viscosity), it is found that they are of the
same order, being generally rather smaller, as is illustrated by the
examples given in Problem 17.1.

If both sides of equation (17.6) are multiplied by Mjp, where M is

the molecular weight and p the density, it becomes

e—lM Na.
-T9— = «-• 17 -7 )e+2 p 3e
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where N — Mnjp is Avogadro's number. The quantity J\
ra/3e is some-

times called the molar polarizability.

The values of the dielectric constants of a number of common gases

at normal temperature and atmospheric pressure are given in Table 17.2.

It will be seen that the difference between e and unity is of the order of

10-3
, and for non-polar gases it increases with the complexity and hence

with the size of the molecule. The values of e— 1 for gases whose

molecules have permanent dipole moments are markedly higher, but

at ordinary pressures it is obvious that it is sufficient to write e+2 as

3 in the denominator of equation (17.7) above. This is tantamount to

ignoring the difference between E and E = (e+2)E /3, and the value

of €— 1 with this approximation could have been obtained immediately

from equations (17.3) and (17.4). At high pressures this approximation

ceases to hold, and the validity of the Clausius-Mossotti relation (17.6)

has been verified by various experimenters using pressures up to 1000 atm.

The constancy of the value o{Naj3e as calculated using equation (17.7)

is shown in Table 17.3, while the values calculated using the approxima-

tion e+2 = 3 deviate appreciably at higher pressures.

17.3. Static dielectric constant of polar gases

The theory developed in the last section holds not only for non-polar

gases, but for all gases, since the application ofan electric field will always

cause a distortion of the molecule and thus give an induced dipole

moment. In the case of polar gases, however, there is an additional

effect arising from the presence of the permanent dipole moments. In

the absence ofan applied field these point inrandom directions, and there

is no net polarization of the gas. When a field is applied, there is a small

excess in the number ofdipoles pointing with the field over those pointing

against the field, and so there is a contribution to the net polarization.

The excess number is determined by the Boltzmann distribution, since

a dipole pointing with the field has a slightly lower energy than one

pointing against the field, and so is slightly more favoured in the distri-

bution. This problem has already been treated by classical methods for

the corresponding magnetic case in § 8.3, and the results obtained there

may be applied immediately to the electrical case if we write p and E
for the electric dipole moment and field instead of the magnetic quan-

tities m and B. The contribution to the polarization is therefore

(cf. equation (8.13))
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Table 17.2

Dielectric constants of some common gases

at atmospheric pressure and 0° C

Dipole moment
Gas (£-l)10a Debye units

He 0071
Ha 0-270

o8 0-531

N, 0-588

COa 0-988

CH4 0-948

C2H4 1-38

CO 0-692 010
NaO 108 0-17

NHa 8-34 1-45

S02 9-93 1-59

Table 17.3

Dielectric constant of C02 and the

Clausius-Mossotti relation

Dielectric e-lilf

Experi- Pressure constant €+2 p
menters (atm.) (at 100° C) (cm3

)

K. and K. 10 1-00753 7-49

30 10240 7-53

50 10431 7-57

70 10645 7-60
100 11041 7-69

151 11912 7-73

M. and M. 103-2 11086 7-71

194-5 1-2695 7-75

295-4 1-3895 7-70

3650 1-4375 7-68
476-6 1-4900 7-67

588-3 1-5274 7-66
700-2 1-5570 7-66
812-3 1-5812 7-65
970-6 1-6097 7-62

The value of ^-— — at N.T.P. is 7-33 cm* for 1 g-mole.e+2 p

The data indicate a slight rise in the molar polarizability with pressure, followed by a
small decrease at the highest pressures.

References :

K. and K., F. G. Keyes and J. G. Kirkwood, 1930, Phys. Rev. 36, 754.
M. and M., A. Michels and C. Michels, 1932, Phil. Trans. A, 231, 409.

851110 II
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where k is Boltzmann's constant and T the absolute temperature. Here

E is again the local field, and the relation between the local field and

the external field E is more complicated than for induced dipolea

because the permanent dipoles are not all oriented parallel to the field

(this problem will be considered further in § 17.6). For gases at such low

densities that the difference between E and E can be neglected, the

static dielectric constant es is given by the relation

e,-e
i
= P,/6oE = g|i 5 (17.9)

where e^ is that part ofthe dielectric constant due to the induced dipoles

alone; in the low density limit e^— 1 = ra a/e . It will be noticed that

we have used the formula appropriate to the case of pE/kT < 1, a

condition which is well fulfilled at ordinary field strengths. At room

temperature kT is 4x 10~21 joules, so that even with a dipole moment

of 4 Debyes a field of 3 X 107 V/metre would be required to make

pE/kT = 0-1. A slight decrease in the dielectric constant has been

observed in some liquids at very high field strengths, but one cannot

approach saturation as in the case of magnetic dipoles by going to very

low temperatures (see § 20.5), since all polar gases tend to have high

liquefaction and freezing-points owing to the large intermolecular forces

between their permanent dipoles. In the solid state these are so large

that the electric dipoles cannot rotate when an electric field is applied,

whereas magnetic dipoles in suitable paramagnetic salts are relatively

free to orient themselves in a magnetic field.

The derivation of the contribution to the polarization from the per-

manent dipoles which we have given is a purely classical one, and the

reader may wonder to what extent it is confirmed by wave mechanics.

The answer to this is that exactly the same result is obtained, but in

a surprisingly different way. This may be illustrated by reference to a

diatomic molecule. The rotational states of such a molecule are dis-

tinguished by having quantized values of the angular momentum equal

to J(A/27r), where J is zero or a positive integer, and h is Planck's constant.

The calculation shows that in small fields the states for which J =£

contribute nothing to the polarization in respect ofthe permanent dipole

moment of the molecule. This is reasonable because when the molecule

is turning end over end, the average projection of the dipole moment on

any direction in space is zero. In the state ,7=0, however, the molecule

is not rotating, and the whole of the contribution comes from this state.

At high temperatures a large number of rotational states are occupied,
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and the fraction ofmolecules which are in the state J = is proportional

tol/T. This gives the same temperature variation as the classical theory,

and detailed calculation shows that the numerical constant is also the

same (see Pauling and Wilson, 1935).

The molecular polarizability constant a is not of great theoretical

interest except in the case of a very simple atom such as helium, where

a wave-mechanical calculation of its magnitude is possible. The size of

the permanent dipole moment is, however, a valuable clue to the struc-

ture of a molecule, as pointed out in § 17.1, and gives some quantitative

information about the nature of the chemical binding. It is obvious

from equation (17.9) that the size ofthe dipole moment may be obtained

from measurements of the dielectric constant of the gas, experimental

methods for which were discussed in § 15.5. In order to separate out

the contributions from the induced polarization and the permanent

dipoles, measurements may be made over a wide temperature range. If

the molar polarizability is then plotted against 1/T, a straight line is

obtained from the slope of which the dipole moment can be calculated

using equation (17.9). The intercept at 1/T = gives also the value

of a, the molecular polarizability.

17.4. Dispersion in gases

The theory of electromagnetic waves (Chapter 10) shows that the

refractive index of a substance should be equal to the square root of its

dielectric constant, if the magnetic permeability can be taken as unity,

as is usually the case. A comparison of the dielectric constants measured

at low frequencies with the refractive indices measured in the optical

region (i.e. at frequencies ofthe order of 1014
) gives very poor agreement

with this relation except in the case of simple non-polar gases. Values

ofthe dielectric constant of a few such gases measured over a wide range

of frequencies are given in Table 17.4 together with the square of the

optical refractive index. The latter is extrapolated to 'infinite wave-

lengths' to correct for dispersion in the optical region. The agreement

is seen to be excellent in the cases quoted.

In the optical region, variation ofthe refractive index with wavelength

has been known for a very long time, and is called dispersion. In general

the refractive index increases as the wavelength decreases, and this is

known as 'normal dispersion'. The reverse case, where the refractive

index decreases with decreasing wavelength, occurs only in the vicinity

ofan absorption line, and is difficult to observe because ofthe absorption.

This is known as 'anomalous dispersion', but both types have a simple
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explanation in terms of classical theory, based on the assumption that

an atom contains electrons vibrating at certain natural frequencies

characteristic of the type of atom, and that the application of an alter-

nating electric field sets such electrons into forced vibration.

Table 17.4

(«- 1)106 at N.T.P.

Gas 0-1 Mcjs I Mcjs 9000 Mcjs 24 000 Mcjs Optical

Air 570 5670 575-4 5760 575-7

±0-7 ±10 ±1-4 ±0-2 ±0-2
Nitrogen 578 579-6 586-9 588-3 581-3

±0-7 ±1-0 ±2-9 ±0-2
Oxygen . 528 523-3 5300 5310 532-7

±1 ±1 ±1-9 ±0-4
Argon 545 545-1 •

—

555-7 554-7

±1 ±0-5 ±0-4
Carbon dioxide 987 987-5 985-5 988 •

—

±1 ±2 ±3 ±2
Hydrogen 270

±1
272 ;

—

— 272

A B c D E

References
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C Birnbaum, Kryder, and Lyons, 1951, J. Appl. Phys. 22, 95.

D. Essen and Froome, 1951, Proc. Phys. Soc. B, 64, 862.

E. (na— 1)10 6 (various authors), extrapolated to infinite wavelength.

Let us take the simplest possible case of a gas of dielectric constant e

subjected to an oscillating electric field E = E' exp(jcot). We shall

assume that the wavelength of the incident radiation is very large

compared with atomic dimensions (which is true up to the region of hard

X-rays), so that the field acting on an electron in a given atom is inde-

pendent of its position with respect to the nucleus, which is assumed to

be stationary. Each electron in the molecule is displaced a distance s

by the field, and the restoring force is written as -** s, where o>pj2tt

is the natural frequency of oscillation of the electron and to its mass.

In addition there will be damping due to collisions, radiation of energy,

etc., which may be represented by a term —my(ds/dt). Hence we have

(d*s
,

ds
,

lW *•)
== — eE'ejtot

. (17.10)

The solution of this is

eE
s = —

m{(u>l— io
2)+jyoo}

-e-*r'{Acos[K-£y2)i*]+Bsin[(w£-|y2)i«]}.
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The terms in A and B average to zero over many atoms since A and B
depend on the initial conditions and are as often positive as negative.

The instantaneous electric dipole moment due to the displacement of

the electron is p = — es, and, if there are n molecules per unit volume,

the polarization P is

n eW 1_

m (a>£— a)
2)+jyo

'

For gases at higher density a correction for the difference between the

local field and the external field may be applied in the same way as in

§ 17.2, leading to the formula

£-l - n2- 1 - no e
* 1

(1112)
6+2 n2+2 3me (a)

2—a>2)+jya>' K '

This formula shows that both e and n must be regarded as complex.

Writing e = e'—je" = (n—jk)2
, where n is the real part ofthe refractive

index and k is the absorption coefficient, we may separate the real and
imaginary parts of equation (17.12). The formula is clumsy to handle,

however, and we shall assume that we are dealing only with gases at

such low pressures that we can neglect the Lorentz correction. Since

the value of k is small, and negligible except near an absorption line, we
may also make the approximation, if the line is narrow, of writing

(w2 —a>2
) = ((op +a))(a)p—co) fS 2co(a)p— co).

Then we obtain the formulae

6 ' = n«-*» « n* = 1 +J^_( fVzf^
))^2m<oeo\(a>p-co)

2+Aa>2
j

™ „2 / a... \ r \ • >

e" = 2nk p=S 2fc
2ma>e \(iop—co)

2+Aai2
j

where the symbol Ao> has been used for y/2, and we have assumed
n « 1, k <^n.

The variation of n and k in the neighbourhood of a weak absorption

line is shown in Fig. 17.2. The absorption coefficient reaches a maximum
at the resonant frequency where w = <op , and falls to half its maximum
value at a>p—w = ±Aco. In optical usage, the quantity 2Av = Aw/tt

is called the 'half-width' of the line, meaning the frequency difference

between the points at which the absorption has dropped to half the

maximum value. Microwave spectroscopists, however, prefer to call

Av the half-width.

In general, each atom or molecule possesses a number of characteristic

resonant frequencies, and the expressions given above for the refractive
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index and absorption coefficient should be replaced by others with

summations over the various values of a>p . If the number of electrons

per molecule which have a resonant frequency cop is denoted by fp , we
may write equation (17.12) in the form

nz

£+2 n2+2 3me„2 u
{a>l-w*)+jyu>

(17.14)

The value offp is known as the 'oscillator strength' of an absorption

line, and on classical theory we should expect it to be unity. In practice

0-25 -

(n-1)
in the same units as k

-0:25 -

-4 -2 +2
(cOj,— ca)[Aa>

+ 4

Fig. 17.2. Variation of n and k near a narrow absorption line (from equation (17.13)).

n—- 1 and k are in units of « e2/4TOa>e Atu.

it generally has values less than unity, and the quantum mechanical

explanation shows that this corresponds to the fact that each electron

possesses a number of possible frequencies of oscillation, and its total

oscillator strength is divided between them. We have then 2 (fp ) = 1

p
for each electron.

At frequencies far from resonance the absorption coefficient is negli-

gible. At very low frequencies, where a> <^J any value of cop , we have

e— 1 n%— 1 n e2 s^ fp n oc

3ee+2 n*+2 3TOe *—i &>:

(17.15)

by comparison with (17.6). This shows that the molecular polarizability

a is intimately connected with the oscillator strengths and absorption

lines. In fact, as the frequency is raised and we pass through an absorp-
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tion line at wp12tt, the refractive index goes through the anomakras

variation shown in Fig. 17.2 and approaches a smaller limiting value

on the high frequency side than it had on the low frequency side. When
there are a number of absorption lines, the behaviour is as shown in

Fig. 17.3, and finally, when o> is greater than all values ofa>p , n approaches

Molecular spectra Atomic spectra

Kotation bonds Vibration bands
Electronic transitions

I
A

\r"V\v V
»

Near
Micro-waves Far Infra-red Infra-red Visible Ultra-violet X-rays'

i
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l io-1 io-» 10-3 io-* i6-» io-« io-T io-»

A (cm).

Fig. 17.3. Schematic diagram showing variation of refractive index with frequency.

unity, but the value of (n— 1) is slightly negative. This is the well-known

anomaly in the refractive index in the X-ray region, and the value of n
is then generally calculated by assuming that the electrons are free, so

that equation (17.10) reduces to

m^-| = -eEV«*. (17.16)
Cut

This is equivalent to the assumption that to ^> (av , y.

If a molecule has a permanent electric dipole moment, its static

dielectric constant contains an additional term involving the dipole

moment (see equation (17.9)). From the discussion of dispersion in this

section, we should expect that this term would also be related to some
absorption lines. This is the case, for such molecules have a 'pure

rotational' spectrum in the far infra-red, due to transitions between

the different rotational levels of the molecule. Such transitions can be

observed only if the molecule has a permanent dipole moment, since

then an alternating electric field exerts a couple on the molecule which

changes the state ofrotation. In the optical region we are far on the high

frequency side ofsuch absorption lines, so that they give no contribution
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to the optical refractive index. If the molecule has no other ahsorption

lines in the infra-red, the square of the optical refractive index would (by

equation (17.15)) be equal to that part of the low frequency dielectric

constant which arises from the molecular polarizability. In general,

however, molecules show absorption lines due to molecular vibrations,

since the distorted molecule may have a dipole moment. Under the

action of the vibration this gives the molecule an oscillating dipole

moment, which can emit or absorb radiation.

17.5. Static dielectric constants of liquids and solids

The static dielectric constants of liquids and solids are related to

absorption lines (or bands) at higher frequencies in a similar way to

that outlined in the preceding section for gases. In simple atomic

substances, such as the condensed phases of the rare gases of the atmo-
sphere, there are no absorption bands in the infra-red, and the low-

frequency dielectric constant does not differ greatly from that deduced
from the Clausius-Mossotti formula, using the molecular polarizability

measured for the gas phase. For example, at its boiling-point liquid

helium has a dielectric constant of 1-048, and a density of 0-125 g/cm3
.

This gives a molar polarizability of (Na/3e ) = 0-12, while that deduced
from the optical refractive index of the gas at 0° C (after allowing for

dispersion by extrapolating to infinite wavelength), or from the static

dielectric constant of the gas, is 0-123.

On a broad classification, a second class of substances contains those

which consist of agglomerations of molecules held together by the van
der Waals forces between the molecules; such forces are relatively small

(though larger than those between atoms), and these substances have
fairly low melting- and boiling-points. Most organic substances belong

to this class. The static dielectric constant corresponds to a molar
polarizability considerably higher than that calculated from the optical

refractive index, the difference being associated with internal vibrations

within the molecules. These give rise to absorption bands in the infra-red,

provided that the vibration sets up an oscillating electric dipole moment.
From equation (17.15) it follows that their effect is largest when the

oscillator strength fp is high and the resonant frequency cop is low.

These vibrations are characteristic of the molecule, and occur at fre-

quencies which are not greatly different in the solid or liquid from those

in the gas. The characteristic rotational frequencies are absent in the

condensed phase, however, because of the intermolecular forces. In the

solid such rotations are completely inhibited in most cases, but in liquids
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where the molecules carry permanent electric dipole moments a disper-

sion band is observed at radio-frequencies (see § 17.7).

The third class of substances contains the ionic solids, consisting of

lattices ofpositively and negatively charged ions ; these give rise to strong

binding forces, and the substances have rather high melting-points. In

ionic crystals an electric field exerts a force on each ion, causing a

displacement ofthe whole positive ion lattice withrespect to the negative

ion lattice. This gives a rather large polarization, and a high dielectric

constant. In the light of equation (17.15) this can be interpreted in

terms of the rather low (far infra-red) vibrational frequencies associated

with displacements of the positive ion lattice relative to the negative

ion lattice. Some of these have been measured spectroscopically, but

the calculation of the dielectric constant is complicated because (a)

of local field corrections and (6) the charge clouds of the ions partly

overlap one another, producing short-range forces which are not ade-

quately represented by the Lorentz local field, which is essentially a

dipolar or long-range force. Szigeti (1949) has derived the formula

= (—
3 j Mr a>re

where n2
is the square of the optical refractive index (extrapolated to

infinite wavelength, q is the effective charge on each ion, (a
t
the charac-

teristic frequency for transverse elastic waves, and M,. the reduced mass,

which for a solid containing two types of ion of mass Mlt M2 is given by

k=k+k (17 - 18)

The effective charge q = s(ze), where z is the valency of the ion, e the

electronic charge, and s a factor close to unity which is introduced to

allow for the charge overlap mentioned above. Some typical values of s

are given in Table 17.5. In cubic crystals the dielectric constant is

isotropic, but this is not necessarily true of non-cubic crystals. In the

ionic case anisotropy arises when the vibrational frequency co
t
depends

on the direction of vibration, and, correspondingly, the displacement-

of an ion (involving the same restoring forces) depends on the direction

of the applied field.

In general the dielectric constant of a solid is not greatly dependent

on temperature, but there are some notable exceptions. In barium
titanate, BaTi03 , for example, the dielectric constant varies at high

temperatures as (T—

T

e)-\ and rises as high as 104 just above 120° K.
Below this temperature spontaneous polarization is observed, which
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can be reversed by an electric field of sufficient strength, with hysteresis

effects. This is a co-operative transition, showing many resemblances

to ferromagnetism, and substances showing such effects (other examples

Table 17.5

Dielectric constants of some ionic solids

Substance Lattice type e »» m s

T1C1 ....
SrO
TiOa (parallel to axis)

TiOa (perpendicular to axis)

Cubic (CsCl)

Cubic (NaCl)

Tetragonal

31-9

13-2

173

89

5-10

3-31

8-42

6-82

5-6

314
12-1

8-7

1-08

0-6

0-79, 0-65

0-88, 0-65

Two values of s are given for TiO
a
because of an ambiguity in the interpretation of the

infra-red absorption bands (after Szigeti, 1949).

are Rochelle salt, Tc = 24° C; and potassium dihydrogen tartrate,

Tc
= —150° C) are known as 'ferro-electrics'. However, a ferro-electric

(unlike a ferromagnetic) does not contain permanent dipoles which

become spontaneously oriented below the transition temperature. The
properties below this transition temperature are due to a spontaneous

lattice distortion in which ions of one type undergo a small displacement

relative to the rest of the lattice. This is accompanied by a change in

crystal symmetry; in BaTiOs the symmetry is cubic above the transition

temperature of 120° C, changing to tetragonal symmetry below this

temperature. There are further structural changes to orthorhombic

symmetry below 0° C, and to rhombohedral symmetry below —90° C,

these changes being accompanied by changes in the direction of the

spontaneous polarization. Cochran (1960) has shown that the apparent

Curie-Weiss law (cf. equation 8.14) above the transition temperature

results from a temperature dependence of one vibrational mode, such

that in an equation of the form (17.17) wf varies as (T—Tc ). The latter

has been verified experimentally by Cowley (1962) for strontium

titanate. This frequency falls to zero at T = Tc, where the lattice

becomes unstable in respect of this one mode and a spontaneous dis-

tortion takes place.

The possibility of anti-ferro-electrics, where no net polarization exists

below the transition temperature because equal numbers of ions are

shifted in opposite directions, was pointed out by Kittel (1951), the

first such substance to be identified being lead zirconate, PbZrOs

(Tc = 230° C).
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17.6. Static dielectric constants of polar liquids

In polar liquids the local field is very large, and its representation by

the Lorentz field leads to the result that such liquids should become

ferro-electrics. If we consider only that part of the polarization Pd
arising from the permanent dipole moments, we have from equations

(17.5), (17.8)

*j = P<* = >P! = ftoP
2

fl7 19)
E E-(Pd/3e ) 3kT{l-(n v*l9kTe )} M(T-TC

)'

where Tc = n p2
l9e . For water Tc would be about 1000° K, so that

water should be spontaneously electrified at ordinary temperatures, as

in the corresponding ferromagnetic case (Chapter 21). In fact the known
examples of ferro-electrics arise from spontaneous ionic displacements

rather than spontaneous orientation ofdipoles (see § 17.5). The nonsensi-

cal result of equation (17.19) is due to the fact that the Lorentz method

for the local field assumes that each dipole has a moment equal to the

average moment and parallel to the applied field. This is true for induced

dipoles, but electric fields of ordinary magnitudes cause only a slight

departure from random orientation of the permanent dipoles. The

induced dipoles must be treated separately from the permanent dipoles,

and Onsager (1936) has suggested an alternative method of treating the

local field in which each dipole is regarded as being at the centre of a

spherical cavity whose size is equal to the average volume occupied by

each molecule. In the absence of any permanent dipoles it gives the

same result as the Lorentz method, as can be verified by puttingp = 0,

Cg = e
t
in equations (17.22)-(17.24) below; the equivalent local field E

is then Ecj(\—a.g) = (e
i
+2)E lS, which is the same as in § 17.2.

Each permanent dipole p polarizes the dielectric outside the spherical

cavity containing it, and this produces a reaction field (see Problem 2.2)

which will react back on the dipole. The reaction field Er is parallel to p,

and produces an extra moment «Ef through polarization of the molecule

making the net moment p'. Since the reaction field is proportional to

p', the net moment, we have

p' = p+<*Er = p+o0p',

where g is the factor relating Er to p'. Hence

p'=——

.

(17.20)
l— <*g

A similar effect occurs with the induced moment pf , changing it to

l—aa
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These are then the effective moments, which interact with the field in

the cavity E
c . From equations (17.3) and (17.8) we have then (since

Pi = «E«)

This gives us the result, using some formulae from electrostatics. If es is

the actual dielectric constant of the medium,

Ec =—^-E (from equation (2.43)) (17.23)

and
2( —1\ 1

g = ™ / , , (from Problem 2.2)
2es+l 4Tre aa

since the average volume occupied by one molecule is 47ra3/3 = ljn .

The polarizability a, from equation (17.6), is given by

5i-2j- < 17 -25>

where e
f

is that part of the dielectric constant associated with the

induced dipoles only. On substituting these relations into equation

(17.22), using P = (eg— l)e E from equation (17.4), and carrying out

a tedious algebraic reduction, we find

(V-et){2et+et) _ n pz

For water, using e
t
= 4-9 (see § 17.7) andp = 1-94 Debyes, the formula

gives es w 100, which, although higher than the actual value of 80, corre-

sponds much better to reality than the Lorentz prediction. The dis-

crepancy is partly due to the fact that we can only expect it to hold

for spherical molecules (since we assumed a spherical cavity), while

H2 is triangular, and partly because only dipolar (long range) forces

have been included, short-range forces which act only between neigh-

bouring molecules being neglected. In a gas the molecules are so far

apart that only the long-range forces need be considered, and Onsager's

formula, equation (17.26), should be used at high densities; at low

densities it reduces to equation (17.9).

In very dilute solutions of polar molecules in non-polar solvents, the

dipoles are sufficiently far apart that their mutual interactions can be
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neglected. Thus we would expect to be able to apply equation (17.9), if

we replace p by the effective value of the dipole moment after allowing

for interaction effects with the solvent. For spherical molecules this

can be done by an extension of Onsager 's theory, and this gives a method
of finding the molecular dipole moment. The dielectric constant of the

solution can be determined by one of the standard methods (see § 15.5);

the solvents normally employed are carefully purified benzene and carbon

tetrachloride. Measurements over a range of concentrations are used,

followed by extrapolation to infinite dilution. The dipole moments
measured in this way agree fairly well with those found using the gaseous

method (§ 17.3), but discrepancies would be expected due to short-range

forces and non-spherical molecules. The gaseous method is more satis-

factory when it can be used, but the solvent method is employed for

substances whose vapour pressure is very low. For a number of simple

molecules (such as those in Table 17.1) accurate values of the dipole

moments have been obtained from microwave spectroscopy (see Townes
and Schawlow, 1955) or electric resonance in molecular beams (see

Ramsey, 1956), by measurements of the splitting of the rotational lines

in an electric field.

17.7. Radio-frequency dispersion in polar liquids

In the discussion of polar gases it was pointed out that the static

dielectric constant is higher than the square of the optical refractive

index, the difference being mainly due to dispersion in the infra-red,

associated with the pure rotational spectrum of the molecules. In the

liquid state this difference is even more marked; the well-known case

being liquid water, whose static dielectric constant is 80, while the

refractive index in the optical region is 1-33. Since the large dielectric

constant is due to orientation of the molecular dipoles when a field is

applied, it will clearly be much lower if orientation is inhibited for some
reason. If a high frequency field is applied, the dipoles must be able to

re-orient themselves sufficiently quickly to follow the reversal of the

field, in order to make their full contribution to the polarization. If this

re-orientation takes a finite time t, the dipoles will not be able to follow

a field whose angular frequency is such that o>t :> 1 . In the region where
wr?b 1, the dielectric constant will fall, and absorption of energy will

take place from the alternating field into the dielectric.

To form an estimate of t, we must consider the mechanism inhibiting

re-orientation. In a liquid this is simply the bombardment of the mole-

cule by other molecules; that is, the Brownian motion. If a spherical
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particle of radius a is suspended in a liquid of viscosity 17, then the mean
square value of the rotational angle 6 in a time t is

where r = 4^rr]azjkT is a characteristic time for the Brownian motion.

If we apply this to the molecules of a liquid such as water, taking

a = 2-3 X 10-8 cm, the value found from the viscosity of the vapour, and
r, = 0-010 c.g.s. units = 0-001 m.k.s. units at 20° C, we find t = 3-7 X 10-11

sec. Since this time is longer than any ofthe characteristic periodic times

ofrotation of the free water molecule, it follows that the molecule cannot

rotate at any of its natural frequencies in the liquid state. Instead, the

dispersion associated with the permanent dipoles will take place at fre-

quencies such that u) W 1/t, that is at a wavelength ofthe order of 1 cm.

In order to introduce r into our treatment of the dielectric constant,

we consider the effect of maintaining a steady field on a polar liquid,

and then suddenly removing it. Under the influence of the Brownian
motion, the preferred orientations ofthe dipoles will gradually disappear.

It is reasonable to suppose that the rate of decay of the polarization is

proportional to the instantaneous value ofthe polarization, and we write

dPjdt = -P/t,

giving P = P exp(-*/T),

where t is a characteristic 'relaxation time' which we would expect to

be of the same order as that found above for the Brownian motion. Here
P is, of course, only that part of the polarization associated with the

permanent dipoles. Ifthe field is not switched off, but changed suddenly

to a value for which the equilibrium polarization is P , then the rate of

change of P is given by the equation

dP/dt = (P -P)/r, or P+r^ = P
,

When an alternating field E'exp(jco£) is applied, we may write our

equation for the polarization in the form (cf. equation (17.8))

giving P _ *£5£g*!fi. (17.28)
Ski \-\-jcor

Here E' is the amplitude of the local alternating field, and P is that

part of the polarization due only to the permanent dipoles. Allowing
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for these effects, we find for the dielectric constant the expression

e—*i

e*— €i !+.?""-
(17.29)

where e4 is that part ofthe dielectric constant due to induced polarization,

and eg is the static dielectric constant. This result holds for the Onsager

treatment for the local field, but it can be shown that the formula is

similar if the Lorentz correction is used, except that we must use a

1+coM

0-1 1 10
cot (logarithmic scale)

Fig. 17.4. Variation of e' and e" for a polar liquid,

modified relaxation time r = T(eg+2)/(ei+2). This difference is signifi-

cant only in a comparison of the relaxation time determined from the

dispersion of the dielectric constant with that from the Brownian
motion.

Equation (17.28) above shows that P, and hence e, is complex, and
we may either write e = e'—je", ore= (n—jlcf, where n is the refrac-

tive index and k the absorption coefficient. Then

na -*»:

2nk

1+<o2t2

(es
— e^coT

Hi. (17.30)

(17.31)
1+coV

The variation of these quantities with frequency is easily seen from

Fig. 17.4. e' falls from ea at low frequencies to ef at high frequencies, the

transition taking place near o> — \\r. e" has a maximum in this region

at to = 1/t, and falls to zero at both low and high frequencies.

The theory of the dispersion of the dielectric constant of polar liquids
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was first given by Debye (1929), and that given above is a simplified

version of his treatment. It was first verified for glycerine and a number
of alcohols, for which t is much greater than for water owing to their

higher viscosity and larger molecular radius. For example, at 22° C the

values of e' and e" for glycerine at a wavelength of 9-5 metres are 42 and
8-6 respectively, showing that we are already well into the region of

anomalous dispersion at this wavelength. Vacuum tube oscillators and
detectors were available for such wavelengths, but the dispersion in

water could not be measured accurately until centimetre wave technique

was established, owing to the small value of t. We shall here describe

the measurements of Collie, Hasted, and Ritson (1948).

An accurate method of determining the dielectric constant of low loss

liquids, using resonant cavities, was described in § 15.5. This method
cannot be used with water, since the absorption is so great if the cavity

is filled with water that no resonance can be observed. This difficulty

can be surmounted by using a cavity partly filled with water, the degree

of filling being adjusted to give a measurable change in the resonant

frequency and Q of the cavity.

An alternative method, used by the same workers, is to determine the

propagation constant in a waveguide filled with water. This constant

depends on both the real and imaginary parts of the dielectric constant,

and on the linear dimensions ofthe guide. By using two guides ofdifferent

sizes, the values of e' and e" can be found separately, since their relative

contributions to the propagation constant depend on the size of the

guide. From equation (16.34) the field in the guide varies as

ex-p(-hx) = exp{— (a+jj3)a;},

where (A = wavelength in free space)

a£ = 2tt2 -
6

Hence

(17.32)

AS

Thus two separate measurements of a, with different values of Ac , suffice

to determine e and e". The value of a can be found by moving a detector

through the liquid, and the measurement of phase (i.e. /3), which is very

difficult when large attenuation is present, is avoided. Essentially the

method adopted was to use two piston attenuators (similar to that

described in § 16.6) in series, one being filled with water and the other
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not. The two attenuators are adjusted, one moving in and the other out,

so as to keep the power reaching a receiver constant; thus no calibration

of the receiver is required. The attenuation in the water is calculated

from the known law of the air-filled attenuator.

The results obtained may be fitted accurately to the theory using a
value of t = 1-01 x 10-" sec, as shown in Fig. 17.5, where both the calcu-

lated curves and the experimental points are given. The great intensity

of the absorption is illustrated by the fact that at a wavelength of

100

Fig. 17.5. Complex dielectric constant of water at 20° C.

A Collie, C. H., Hasted, J. B., and Ritson, D. M., 1948, Proc. Phys. Soc. 60, 145.
O Lane, J. A., and Saxton, J. A., 1952, Proc. Boy. Soc. A, 213, 400.

<ot = 1-907. t = 1-01 x 10-" sec.

1-24 cm, the power in an incident wave would be diminished by a factor
of e-2(2W&) = c_36 or about 10-155 in passing through a thickness of
1-24 cm. Thus water is quite 'black' at such wavelengths. It should
be noted that in fitting these results, the best value of e

t , that part of
the dielectric constant due to induced polarization, is found to be 4-9.

This is appreciably higher than the square of the optical refractive index
(re = 1-33), showing that there must be other strong absorption bands
in liquid water in the infra-red; these are associated with internal vibra-

tions of the H2 molecule. Rather similar results have been obtained
by Lane and Saxton (1952) for methyl and ethyl alcohols.

It has been found that the values of e' and e" in the region ofdispersion

vary quite rapidly with temperature, corresponding to a variation in the
851110 Kk
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relaxation time t. Saxton (1952) has shown that A varies from about

27 X 10-12 see at — 10° C (in supercooled water) to only 4-7 x 10~12 sec at

-f 50° C. This variation is very closely parallel to that of the viscosity,

and indeed the value of r is surprisingly close to that which would be

obtained using the simple formula t = 4n-qa?lkT.

In the solid state rotation of the permanent dipoles is generally so

restricted that they make practically no contribution to the dielectric

constant. Thus the dielectric constant of ice at 3-cm wavelength is

about 3. At temperatures just below the melting-point, however, ice

exhibits some dispersion at low frequencies (ofthe order of 1
6 c/s) andthe

dielectric constant falls from about 80 at zero frequency to the value

quoted above at high frequencies. These changes are connected with

residual rotation of the dipole moments similar to that in liquid water,

but with a very much longer relaxation time, corresponding to very

high effective viscosity.

17.8. Scattering

When electromagnetic radiation is incident on any substance, the

intensity and angular distribution of the emergent radiation are deter-

mined by two distinct phenomena which are both present in varying

degree. These two phenomena are collision damping and scattering,

and both result in a loss of energy from the primary wave, which thus

suffers absorption in its passage through the medium. When an electron

is set into vibration by the electromagnetic field of the radiation, it gains

energy which may be lost if the molecule containing it makes an inelastic

collision with another molecule. The energy lost serves to increase the

kinetic energy ofthe molecules, and so appears as heat. Scattering arises

from the fact that when an electron is set into vibration, it radiates

energy in all directions. The amplitude of the radiation from each

electron can be computed using the formula for an oscillating dipole

(§ 10.9). In general the loss of energy by scattering is small compared

with that lost by collisions.

The angular distribution of the scattered radiation depends on the

relative phases of the oscillating electrons, and their distribution in

space. The phase of the incident wave is constant over any wave front,

and so also is the displacement of the electron relative to the nucleus

due to the action of the incident wave. The vibrating atoms therefore

form an array of oscillating dipoles, which are all in phase across a wave

front of the incident wave. The total amplitude of the radiation from

these dipoles in any given direction is found by summing the amplitudes
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from the individual dipoles, and in forming this sum we must allow for

the phase delay in the waves coming from the various dipoles. The new
wave front may be found by using Huyghens' principle. It is obvious
that it will be parallel to the old wave front so that there is no bending
of the wave. We must, however, allow for the phase difference between
the 'real' secondary wavelets radiated from the oscillating dipoles and
the Virtual' wavelets from intermediate points (that is, those 'virtual'

wavelets used to generate the new wave front in vacuo). The result of
this is to modify the phase at the wave front, so that the phase velocity

is different from that in free space, i.e. the medium has a refractive

index different from unity.

In order to compute the scattering at an angle to the incident wave,
it is necessary to have some information about the distribution of oscil-

lating dipoles over the wave front. If this distribution is uniform, as in

a crystal, then the scattered waves may reinforce strongly in certain
directions, forming a diffraction pattern. This is possible only at wave-
lengths ofthe same order as the distance between the dipoles ; that is, for

a crystal, where the spacing is of the order of 10~8 cm, at X-ray wave-
lengths. For much longer (optical) wavelengths there is no direction of
strong reinforcement except the forward direction, and the scattering

(diffraction) is practically zero. Scattering will occur, however, when
the crystal contains imperfections where the atoms are not uniformly
spaced. In a gas the molecules are randomly spaced, and there will be
a random phase difference between the individual scattered waves in all

directions except that parallel to the incident wave. The total scattered
amplitude in any arbitrary direction will contain a sum of the form

2 a cos(w<—

8

€)
= 2 a cos cot cos 8* + Y a sin cot sin 8,,

i i i

where a is the amplitude due to an individual dipole. In taking the sum
the terms cos8f and sinS^ will be nearly as often positive as negative,
and the sum will be very much smaller than aN, where N is the total
number of dipoles. In fact we shall get just the statistical deviation from
zero, which is aViV. This corresponds to adding the intensities rather than
the amplitudes, for the total intensity is

{2acos(a>f-8
i)}

2 = 2 a2 cos2o>f cos^ + £ aashvWsin2S«+

+ 2 J o2 cos cot sin cot cos 8
4 sin Sj-f-

+ 2 2 {«
2 cos'W cos St cos Sy+a2 sin2a>* sin 8, sin 8,+

i. A
t¥>0

+2a2 cos cot sin cot cos S
t
sin 8^}.
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For a very large number of dipoles, the sums over the various phases

may be replaced by integrals, since there will be a uniform distribution

of the phases over the range to 2ir. The only non-zero terms will be the

averages over cos2Si and sin^ which are each \. The total intensity is

thus $a?N cos2o>«+ |a2iV suAof = N(%a?),

where \a2 is the mean square value of the scattered intensity from each

dipole.

The fraction of the incident intensity lost by scattering may be found

as follows. From equation (10.72) the energy scattered by an oscillating

dipole of amplitude p is (per unit time)

Now the mean incident power per unit area is N — \E\\Z^ where E
is the amplitude of the electric field and ZQ is the intrinsic impedance

of free space. Hence, writing p = a.E , we have

WIN = o = (f^fW- (
17 -33 )

Since W has the dimensions of power, and N of power/unit area, a is an

area, known as the 'scattering cross-section'.

For X-rays, w > <ap , y, and from equation (17.11) we have then

a = e
2/raa>2 . Hence the scattering cross-section is independent of

frequency, and has the classical value derived by Thomson

aa =
Z
»f a

_ 6-65 X 10-25 cm2
. (17.34)

67rm2c2

For visible wavelengths and substances such as the molecules of the air

we have to < a>p , and hence a. — e2/mw2
if we assume only one resonant

frequency per molecule, giving

a = a (a>K)4. (17.35)

This is the well-known formula, originally derived by Rayleigh in a

different way, which shows that the scattering should vary with the

inverse fourth power of the wavelength. Hence shorter wavelengths are

scattered to a much greater extent than longer wavelengths. The blue

colour of the sky is due to scattered sunlight; the transmitted light is

complementary in colour, and the rising and setting sun therefore appear

red. Macroscopic particles such as raindrops, whose dimensions are large
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compared with the wavelength, scatter all wavelengths equally, and
hence clouds appear white.

If the frequency of the incident radiation coincides with one of the

natural frequencies of a molecule, the induced dipole moment is very

large and the scattered radiation is abnormally intense. This is known
as 'resonant scattering', and may readily be observed, for example, if

a bulb containing sodium vapour is illuminated with the sodium D-lines.

In all such scattering phenomena, the induced dipoles do not radiate

parallel to the direction of oscillation of the electric charge. Hence ifthe

incident radiation is plane polarized, there will be no scattered radiation

in the direction of the electric vector. This fact is used to determine the

plane of polarization of X-rays and y-rays. If the incident radiation is

unpolarized, the scattered radiation will be partly polarized, as can be

observed by looking at the blue of the sky through polarizing sun glasses.
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PROBLEMS
17.1. The static dielectric constants of COa and NH3 are measured at 0° C and
100° C at a pressure of 1 atm and the values of 103(e— 1) are found to be:

CO a NH,
0° C 0-988 8-34

100° C 0-723 4-87

Calculate the permanent electric dipole moment for each gas, and also the radius

ofthe molecule, assuming the polarizability to be the same as that ofa conducting
sphere.

(Answer: p = and 1-45 Debyes; radius =1-4 and 1-8 A; from viscosity data
the radii are 2-3 and 2-2 A respectively.)
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17.2. The dielectric constant of liquid helium at its boiling-point is 1-048, and its

density is 0-125 g/cm3
. Calculate the refractive index of the gas at N.T.P., and

estimate the radius of the helium atom, assuming it to behave liko a conducting
sphere. Compare the radius with (a) that given by the Bohr theory for an atom
with a nuclear charge of two units in its ground state, (6) with that calculated

from the diamagnetic susceptibility (see Problem 8.1).

(Answer: n = 1-000034; radius = 0-59 A; Bohr theory radius = 0-26 A.)

17.3. In the upper regions of the atmosphere (the ionosphere) the, gas molecules
are ionized, mostly through the effects of ultraviolet radiation from the sun.

Show that in a region where the number of free electrons per m3 is n , the refrac-

tive index for waves of frequency/ (c/s) is

where u>vl%Tt is the plasma frequency.

At this frequency, the refractive index falls to zero, and the ionosphere is totally

reflecting even at normal incidence. The frequency at which this occurs is called

the critical frequency and at midday is about 4 Mc/s for the JB-layer at latitude

40° N. Estimate the maximum value of w„ in the .E-layer from this figure.

(Answer: n = 2x 10u/m3
. Neglect the Lorentz field.)

17.4. Show that in an ionized region such as that in the previous question the

product of the group velocity and the phase velocity is equal to the square of

the velocity in free space.

17.5. A particle of charge — e and mass m performs a simple harmonic motion
s — s cos cot under the action of a restoring force. Show that through the radia-

tion of energy (given by equation (10.72)) the total energy of the particle falls as

W = W exj}(— yt), where

y = (Z e2co2/&irmc*) = (ZnZ^PIZmc*).

Here Z = intrinsic impedance of free space, and / = a)/2ir. On the quantum
theory, the chance that an atom spends a time t in an excited state has the prob-

ability of the order exp(— yt); hence show that the mean lifetime r = (1/y) of a
sodium atom in an excited state before emitting one of the sodium Z>-lines

(A = 5900 A) is roughly 1-6 x 10~8 sec.

1 7.6. By the uncertainty principle, the width AE of the upper energy level of the

previous question is given by the relation rAE = (h/2Tr), where h is Planck's

constant. Use the relation AE = h(Af) to show that this gives a line width of

A/ = (y/27r). This is called the natural or radiation breadth of the line, and the

same result is obtained on classical theory by a Fourier analysis of the spectrum

of an oscillator whose energy is decaying exponentially as W = \V exp(

—

yt).

Estimate the line widths due to the Doppler effect and to collisions in a gas at

1000° K and 10-3 atm pressure, and show that (a) at/ = 1010 c/s (A = 3-0 cm)
collision broadening is dominant, (6) at/ = 10ls c/s (A = 3000 A) Doppler effect

is dominant, (c) at / = 1018 c/s (A = 3-0 A) natural line breadth is dominant.

17.7. For a vibrating molecule, the polarizability a varies as a = a (l+ 6:e2),

where x = acospt is the change in the normal dimensions of the molecule due to

the vibration. Show that if incident light of frequency aijZn falls on the molecule,

the scattered radiation will contain light of frequencies (w±2p)/2tt. (This is the

classical explanation of the Raman effect.)
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17.8. Show that for a narrow absorption line the maximum and minimum of the

refractive index in the region of anomalous dispersion occur at the frequencies

where the absorption coefficient has fallen to half its maximum value.

17.9. The conductivity ofsea-water at 20° C is about 2 (ohm-metre)-1 . Show that

the absorption at 1-cm wavelength due to this conductivity is small compared
with the Debye absorption, but the two are roughly equal at a wavelength of

about 10 cm. (Use the data given for pure water in Fig. 17.5; in fact the Debye
relaxation time is somewhat altered by the salts dissolved.)

17.10. Discuss the propagation in and reflection from the surface of the sea of

radio waves in the light of the data given in the previous question.
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ELECTRONS IN METALS

18.1. Kinetics of free electrons in metals

In Chapter 4 an outline of Drude's theory of metallic conduction was
given, and it was shown that this classical model gives a plausible

explanation of the mechanism of conductivity and is also successful in

accounting for the ratio of the thermal to the electrical conductivity.

The classical theory predicts a large specific heat of 3R/2 per mole for

the conduction electrons, however, which is not observed experimentally;

this difficulty was overcome only when it was realized that quantum
statistics must be used rather than classical statistics when dealing with

electrons in metals. This requires the use of the Fermi-Dirac distribu-

tion function equation (4.17) instead ofthe Maxwell-Boltzmann function

constant X exp(— WjkT), to which equation (4.17) approximates when

(W-WF)lkT > 1.

It is also necessary to take account of the wave-like properties of the

electrons, and in § 4.2 an elementary account of this was given using the

de Broglie relation and the analogy with waves in a box. In a real solid

the wave-like nature is important for yet another reason: the wavelength

is comparable with the inter-atomic distance, giving rise to diffraction

effects. Before considering these, we shall discuss the simpler problem

of the wave equation for free electrons.

The wave equation for a free electron of total energy W in an un-

bounded region where the potential is V is

|-VV+(JF-F>A = 0. (18.1)

For simplicity we consider first the one-dimensional case, for which the

wave equation is » 2 «,*;MMW-V» = 0, (18.2)

and for convenience we further assume V = everywhere. Then the

solutions of this equation are of the form

$ = Aexp(jkx x). (18.3)
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The momentum of the particle px is given by
4-00 +oo

Px = -J*
J
f*^-*e = -jMjkx )

J*

W,dx = hkx (18.4)

— 00 —00
+ 00

since the normalization of the wave function requires f tp*ipdz = 1.

— 00

In order to satisfy equation (18.2) we must have (h2j2m)kx = W, or

W = {h2l2m)k% = px\2m (18.5)

so that W corresponds to that part of the kinetic energy of the electron

associated with its momentum px in the x-direction.

The three-dimensional equation (18.1) also has a simple solution in

Cartesian coordinates, corresponding to the product of three functions

of the type (18.3). This solution is

t/» = 4exp(jfcx a;)exp(jfcw y)exp(jfca z)

= Aexpj(kxx+kyy+kz z) = ^expj(k.r) (18.6)

since (x, y, z) are the components of the vector r, and we can similarly

regard (kx , ky , kz) as the components of a vector k, known as the wave
vector. In order to satisfy equation (18.1) we have

W = (Wl2m)(kx+kl+k*2 ) = (p*+p*+p*)l2m = p2/2m, (18.7)

where p is the momentum vector, with components (px , py , pz). These

components of p are just H times those of k; that is, we have the

de Broglie relation k = p^ (18 8)

which was used in § 4.2. The wavelength associated with the electron

is 2irjk = hip.

In applying the free electron model to a metal, we assume that the

electrons move in a region of constant potential, with a sharp rise in

the potential at the boundaries of the metal. Since the electrons do not

have enough energy to surmount this barrier, they are confined within

the metal (we neglect phenomena such as thermionic emission, which

are insignificant, affecting only a minute proportion of the electrons).

Our model thus assumes a rectangular potential well, such as is shown
in Fig. 18.1 (a) for one dimension. Taking the floor of the well to be at

V — 0, the solutions of the wave equation are of the form (18.6) inside

the well. Outside the well, where the potential V ^> W, so that (W—

V

Q)

is negative, the solutions are real exponentials, showing that the chance

of finding an electron outside, which is proportional to

,.,-«p[(M*£S)"b|.
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falls off very rapidly with distance. A proper solution of the problem

requires that the wave functions and their derivatives be continuous at

the boundary, but if we make the approximation of taking V to be

infinite this reduces to making tfi vanish at the boundary. Then the

problem is similar to that of electromagnetic waves in a perfectly con-

ducting box; if the latter is rectangular with dimensions (a, b, c), the

(a) (»)

Fig. 18.1. (a) Rectangular potential well assumed in free electron model of a metal.

(6) Actual potential variation, showing sharp fall near each positively-charged ion.

allowed solutions (cf. Problem 11.12) are a set of standing waves where

ip is a product of terms such as

sin, , , x sin. ,.\Sin . , .

and the wavelength is given by equation (11.42)

For electrons at the top of the Fermi distribution the wavelengths

involved are of order 10-7 cm or less, which are very small compared

with the dimensions of a metal of ordinary size. The spacing of the

allowed wavelengths is therefore very close, and the number in a given

wavelength range can be computed using the approximations adopted

in the theory of heat radiation, as in § 4.2.

18.2. The energy band approximation

At this stage we are still making the arbitrary assumption that in

a metal some of the electrons are detached from their parent atoms

and are merely bound to the metal as a whole by a potential well inside

which they move quite freely. However, many solids are very good

electrical insulators in which we must assume there are no such free

electrons. There is also the intermediate class of solids, the semi-

conductors, which are much poorer conductors than metals and which

generally possess a negative rather than a positive coefficient of resis-

tivity. To understand why these different types of solids exist we must
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consider the interaction between the electrons and nuclei when they

are closely packed in a solid, where the interatomic distance is of the

same order as the atomic radius. The potential energy of an electron

then varies rather as shown in Fig. 18.1 (b), falling steeply when the

electron approaches a positively-charged nucleus. Obviously the motion

of the electrons in such a potential is a very complicated problem and

cannot be solved exactly. Approximate methods must be used, whose

nature is illustrated by approaching the problem from two different

standpoints.

< zmzm
^

.^ZZZZZTZZZL

\S

7ZL

Free atom
SSSSS'S^SS'^SS

Solid

Fig. 18.2. Sharp energy levels in a free atom and the correspond-

ing bands in a solid (the top band is shown only partly full). The
arrows indicate allowed transitions giving X-ray emission bands
when an electron has been ionized out of the lowest energy band.

In an isolated atom the electrons are tightly bound and have discrete,

sharp energy levels. When two identical atoms are brought together,

the energy levels of each atom, which are initially the same, are split

into two, one higher and one lower than the corresponding levels of the

separated atoms. The splitting only becomes appreciable when the wave

functions of the electrons on different atoms begin to overlap consider-

ably; at a given distance it is therefore greatest for the outermost

electrons and least for the inner electrons. If more atoms are brought

together, more levels are formed, and for a solid ofN atoms (where N
is a very large number) the levels are so close together that they form

an almost continuous band. The width of this band depends on the

degree of overlap of electrons on adjacent atoms, and is again largest for

the outermost atomic electrons. Fig. 18.2 is a rough diagram showing

how the atomic levels develop into bands as the atoms are brought closer

together.
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The problem may be approached from the opposite viewpoint by con-

sidering how the motion of the electrons, previously assumed to be
moving freely in the flat-bottomed potential well of Fig. 18.1 (a), is

modified when we allow for the drop of the potential near each atomic

nucleus shown in Fig. 18.1 (6). In a crystal the atoms form a regular array,

and the potential has therefore a periodic variation in three dimensions.

-& (a-b)

Fig. 18.3. Periodic rectangular potential well assumed in the one-dimensional model of
Kronig and Penney (1931).

The effect of this periodicity in the potential can be understood by con-

sidering a simple one-dimensional case. The electric fields of other

electrons will be neglected, and the potential assumed to have the form
of a rectangular wave as in Fig. 18.3, where

7 = when < x < (a—b); V = V when --b < x < 0.

It may be shown that the solutions of the wave equation (18.2) in this

case are of the form , , > , ., .

where u(x) is a periodic function of x such that u{x-\-a) = u(x), i.e. u
repeats itself with the same periodicity as the potential. We take two
different functions

% == [Aexp(jqx)-\-Bexp(—jqx)]exp(—jk^x) where V =
and uz — [Cexp(ra)+-Dexp(—r#)]exp(—jkxx) where V = V .

Here q and r must satisfy the relations

q=(2mWjfi2)i and r = {2m(V-W)jh 2
f,

and in addition the solutions for the two regions must join smoothly at

the boundaries so that we must have ux
= u2 and (dujdx) = (Bujdx)

both at x = and x = (a—b). This gives four equations from which the

constants A, B, C, D can be eliminated, yielding a complicated relation
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between k and W. Considerable simplification is obtained by allowing

6-^-0 and V ->• oo in such a way that the product (bV ) remains finite.

Then, if c is the limiting value of (2mV abjfi,2 ), one obtains

einqa
cosK a

qa
4- cos qa. (18.9)

The r.h.s. of this equation is plotted as a function of (qa) in Fig. 18.4 for

a value of c = 2n: allowed values of kx are obtained only when the func-

tion lies between 1 and — 1, and hence only certain ranges of values of q

Fio. 18.4. Plot of the function given by equation (18.9) when c = 2n as a function of

(qa). The ranges which give real values of k are shaded.

are allowed. Since q = (2mWj:h2
)
i

, this means that the energy W is

restricted to He within certain ranges, which form the allowed energy

bands. The allowed bands are narrowest for small values of q (low values

of the energy W), and become broader as W increases, the unallowed

bands getting narrower, just as in Fig. 18.2.

This treatment of a simple model, due to Kronig and Penney (1931),

illustrates how allowed and forbidden energy bands arise in a solid. Their

occurrence is associated with the periodic structure ofthe crystal lattice,

and two analogies may help in understanding this point: (a) X-rays

whose wavelength satisfies the condition for interference between suc-

cessive Bragg planes in a crystal are strongly diffracted, while others are

transmitted. The electron wavelengths in a solid are of the same order
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as X-ray wavelengths, and the strong diffraction corresponds to the

forbidden wavelengths (values of kx which are not allowed); (6) a con-

tinuous transmission line transmits all wavelengths freely, whereas the

periodic structure of a filter restricts free transmission to certain bands
of wavelength. In fact the Kronig-Penney model corresponds to a
continuous transmission line in which identical lumped impedances have
been inserted at regular intervals, a distance a apart. Wavelengths
which are long compared with a are freely transmitted, but as the

wavelength A is reduced dispersion sets in as in a filter, and when a = A/2

the reflections from each lumped impedance are in phase and we enter

a stop band.

Particle aspects

The foregoing treatment of electrons in a solid considers them as

waves occupying the whole volume of the solid; these waves are the

stationary states, solutions ofthe time-independent wave equation. We
need to know how the electrons behave under the influence of a force

(electric or magnetic); this is essentially a particle description, which
must be related to the wave aspect of the electron. As shown in books
on elementary quantum mechanics, a free electron must be considered

as a wave packet, where the group velocity corresponds to the particle

velocity. The a;-component ofthe group velocity is given by the relation

8 (W\ 18W
^-stW-jac (lfU0)

which is analogous to the formula dcojdp used for the group velocity

in § 1 1.6; the energy W corresponds to hcu and kx to the phase constant £.

A rigorous analysis shows that equation (18.10) is valid for an electron

moving in the periodic potential of a crystal lattice, and also that

dPxIdt = Fx, where px = Mx and Fx is the component of an external

force. Differentiation of equation (18.10) then gives

dt dt\hdkj H8k% dt ~Wdk\ At ~ m* x
'

l '

where _L = ~~. (18.12)m* ffl 8k%

This last equation defines the quantity ra*, which in equation (18.11)

clearly has the dimensions of mass, and is known as the 'effective mass'.

It follows also from (18.11) that px — m*vx .

The value of W for a free particle is given by equation (18.5), and it

Can easily be verified that equations (18.10)-(18.12) satisfy (18.5) with
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to* = to, so that the effective mass is equal to the true mass for a free

particle. For an electron in a periodic potential the effective mass may
depart markedly from the true mass. The advantage of the concept of

effective mass is that the dynamic behaviour of an electron in a periodic

potential can be treated as ifit were a particle ofmass m*. The difference

between to* and the true mass to represents the effect on the motion of

the electron which results from the electric potential of the ions forming

the crystal lattice; when a force is applied to the electron, its change in

momentum is different from that of a free electron, and p = fik is often

referred to as the 'crystal momentum'. The fact that px = m*vx and

not mvx does not represent a breakdown of Newton's laws of motion,

since the residual momentum is taken up by the lattice. Experiments

to determine the ratio of current to momentum, similar to those of

Kettering and Scott described in § 3.1, have been carried out by Scott

(1951) and Brown and Barnett (1951). They find that even in the case

ofsubstances where the current is carried by 'positive holes' (see below),

the ratio of current to net momentum has the same sign and is numeri-

cally the same as for free electrons.

The relation between the energy W and Jcx, as derived from the Kronig-

Penney model or otherwise, has the form shown in Fig. 18.5. It does not

differ greatly from that for a free electron except near the edges of the

allowed band. At the points where cos Tcx a = ± 1, of which the first is

at kx — ±7r/a, there is a discontinuity in the relation between W and kx ;

differentiation of equation (18.9) shows that dqjdkx is proportional to

sinkx a, and hence is zero at such points. Since W oc q
2

, it follows that

8W\8kx is then also zero, and from equation (18.10) this means that the

electron velocity is zero at the edge of an allowed zone. This is the point

at which the wavelength is such that the electron waves are strongly

diffracted (in one dimension this means reflected) and form a set of

standing waves, no travelling waves being allowed.

It can be seen that the shape of the curve of W against kx in Fig. 18.5

means that the effective mass to* becomes negative near the top of an

allowed band, because 82Wjdk% becomes negative. Application of a force

+FX will increase hx , but as kx approaches +nja the slope 8Wjdkx dimin-

ishes, so that by equation (18.10) the velocity vx decreases, as we should

expect if the mass were negative. Just below W , the top of the band, we

have approximately, since 8W/dkx = 0&tkx = tt/cs, and to* is negative,

w ~ w
°

<f**ajr+^a*J 8kx
0+

2to*
0+ 2m*
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An important property of a full band (an allowed band where all the

states are occupied) is that it can carry no electric current, since for every

electron with a positive value of kx there is another with the value —kx .

Suppose we have a band which is full except for one state at the top
of a band which has a negative value of kx . If an electron occupied this

state, it would have negative charge and negative mass; its momentum

*,(-ve) *.(+ve)

Fig. 18.5. Plot of Wx against hx showing band structure due to periodic potential of
lattice. Wx against kx in the absence of the periodic structure.

Px = &K would be negative, but its velocity vx = pjm* would be
positive so that it would carry a negative current. However, the presence

of such an electron would fill the band, and the net momentum and
current would be zero. Hence the momentum and current due to all

the other electrons must be equivalent to that of one particle with
positive momentum and giving a positive current, and the same value
of \m*\. Such a particle is called a 'positive hole', since its behaviour
corresponds to that ofa particle with positive charge (and positive mass)

;

it is analogous to the hole in the filled bands ofelectrons in Dirac 's theory
of the positron. The advantage of the concept of positive holes is that

the momentum and current of a nearly-filled band with n empty states

can be attributed to the presence of an equivalent number n of entities

which behave like ordinary particles with positive charge and effective

mass m*; the energy then becomes W = W~(dpx)
ij2m lf

.
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Three dimensions

Treatment ofa three-dimensional lattice corresponding to a real solid,

even with simplified models of the potential variation, is very complex
and will not be discussed here. The wave function of an electron asso-

ciated with a wave vector k is of the form

<ft = u(r)expj(k.r), (18.13)

where «(r+an) = u(r).

Here an is a translation vector representing the repetitive property of

the lattice; in particular, that the potential energy is periodic, obeying
the rule that V at the point (r+am) is the same as at r. From the analogy
with X-rays it is clear that the values of k at which strong diffraction

occurs will depend on the direction of k; that is, the value of k at which
there is a discontinuity in the energy (the boundary of a zone) is a
function of direction. If we draw a vector k in 'k-space' whose length

corresponds to this value, and repeat this process for all possible direc-

tions, the ends of the vectors will map out a three-dimensional figure,

known as a 'Brillouin zone'. Its construction involves only geometry,

and its symmetry is related to the symmetry of the crystal lattice.

Values of k whose vectors end on points inside the zone correspond

to allowed energies; those which terminate at the zone boundary corre-

spond to discontinuities in the energy. Higher zones corresponding to

higher allowed energy bands exist, but it is possible to bring all wave
vectors into the first zone (in the one-dimensional case this procedure

corresponds to taking values of kx a in equation (18.9) only between —n
and +")• Values of k in the first zone then correspond to more than

one allowed energy, but in general we are concerned only with the one

band which is partly filled with electrons. At the absolute zero of

temperature electrons fill this up to a certain energy, the Fermi energy,

and it is therefore of interest to draw plots of constant W, or 'energy

surfaces ' in k-space. Calculation of the energy surfaces is very complex

:

the results obtained by one method are shown in Fig. 18.6 for a simple

cubic lattice. Energy surfaces well within the zone are spherical in shape,

but this is by no means true near the zone boundary; in general at the

boundary 9W/6k = and the energy surfaces must end normal to the

boundary. The boundary in k-space between the filled and empty states

at 0° K follows the energy surface corresponding to the Fermi energy,

and is known as the 'Fermi surface'. Only electrons near the Fermi

surface (see § 18.3) can take part in conduction processes, and many
details oftheir behaviour are determined by the exact shape ofthe Fermi

851110 L

1
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surface. An important property is the effective mass, which in general

is a function of direction. Near the top or bottom of a band the energy-

may be expanded in a power series in k, the lowest terms being quadratic;

they can be reduced by a suitable choice of axes to the form

W
\m%m* m* m*f

(18.14)

Here the upper sign must be taken for electrons near the bottom of a
band, and W is then the energy at the bottom; while the lower sign

*. = -

-*•£.

IT

+a

* a

Fio. 18.6. Section through the constant energy surfaces for a simple

cubic lattice obtained by one method of calculation (the 'tight-binding'

approximation). The energy surfaces end normally to the zone boundary
except where two end at the same point.

should be used for holes near the top ofa band, andW is then the energy

at the top. Thus for holes the energy appears to be measured downwards
from the top of the band, a point which we shall return to in considering

semiconductors (Chapter 19).

Correlation energy

An important effect which has been neglected in our treatment is the

electrostatic repulsion of the conduction electrons. This tends to keep

the electrons apart, and the chance offinding two electrons close together

is less than it would be on our assumption that their motion is completely

independent of each other; in other words, there is a correlation between
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their motions. There is a further effect due to the fact that the overall

wave function for the assembly of electrons must be antisymmetric,

which is similar in nature to the 'exchange interaction' discussed in

Chapter 2 1 . These two effects contribute to the 'correlation energy ' and

are important in calculating the cohesive energy ofa metal. The electro-

static repulsion is a long-range interaction which gives rise to 'plasma

oscillations' (see § 4.9), for which the characteristic frequency in a metal

is of order 1015 c/s. At low frequencies the dynamical properties of the

electrons are not greatly altered, a fortunate circumstance which makes

a simple treatment neglecting the correlation energy more accurate than

might have been expected.

18.3. Conductors and insulators on the band theory

In older theories the fact that some solids are electrical conductors

while others are insulators was explained by assuming that in the

insulators all the electrons belonging to each atom were firmly bound

to that atom, while in conductors some of the outer electrons were

detached from their parent atoms and able to move freely throughout

the whole volume of the solid. On the band theory there is no such

distinction between 'bound' and 'free' electrons; the electronic wave
functions spread out through the whole volume of the solid, though the

states of lower energy (corresponding to the inner electrons of a single

atom) have the electronic density (^>* of the wave function) greatest

near each nucleus. Howthen does the band theory explain the occurrence

of both conductors and insulators ?

At the absolute zero of temperature the electrons in a soHd will have

the lowest possible energy consistent with the Pauli exclusion principle,

and they will fill the energy bands from the bottom upwards. The lowest

energy bands will be fully occupied, but the highest occupied level may
occur in the middle of an allowed band. The state of lowest energy is

one in which as many electrons have positive values ofk as have negative

values, so that the net current is zero. To establish a current flow some

electrons must be transferred fromnegative values ofk to positive values,

but because of the exclusion principle this is possible only if they make
transitions to unoccupied states ofhigher energy, the energy being gained

by acceleration through the application ofan electric field. In weak fields

this can occur only ifadjacent levels are unoccupied; i.e. ifthe top ofthe

Fermi distribution comes in the middle ofa band. If, on the other hand,

the highest occupied band is completely full, an electron must gain

sufficient energy from a movement in the applied electric field to raise
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it into the next higher band. This requires enormous electric fields,

and for ordinary field strengths the substance is an insulator.

On this picture it is readily seen that the alkali metals such as lithium,

sodium, potassium, etc., will be good conductors, for their atoms possess

only one valence electron in an s-state, whereas the energy band in the

solid corresponding to this atomic state requires two electrons per atom

to fill it. The alkaline earth elements, magnesium, calcium, etc., have

two such electrons, which we would expect to fill the band, making these

substances insulators. They are in fact quite good conductors, and the

+W

Fig. 18.7. Energy bands for nickel.

To the right is shown the bandwidth of 4s and Zd states as a function of interatomic

distance o (a is the value for solid nickel). To the left is shown g(W), the shaded area

indicating the filled parts of the bands.

reason for this is that the energy bands corresponding to the s- and p-

states in the atom are so broad in the solid that they overlap appre-

ciably. The state of lowest energy is then one where the electrons par-

tially fill boththe s- and^-bands, and conduction is possible . In transition

elements the situation is more complex because of the energy bands

corresponding to ^-electron states. In copper the 3d band is completely

filled and there is one electron per atom in the 4s band, making it a good

conductor. In iron, cobalt, and nickel the 3d band is not completely

filled; it is a rather narrow band, since (^-electron wave functions do not

spread as far out as s-electron wave functions, and interactions between

d-electrons on adjacent atoms are smaller than interactions between

s-electrons. The narrow 3d band is overlapped by a broad 4s band,



18.3] ELECTBONS IN METALS 517

and the 2d band (which can contain 10 electrons per atom) gives an

abnormally high value of g(W) as shown in Fig. 18.7.

Information about the widths of energy bands in the solid state can

be obtained directly from soft X-ray emission spectra (see, for example,

Skinner, 1938). If an electron is excited out of an inner shell, then

electrons in outer shells make transitions to the inner shell, emitting

X-rays. For a free atom X-rays of discrete wavelengths are obtained,

since we have sharp energy levels. In a solid a band of wavelengths is

obtained whose width is the sum of the widths of the bands which the

electron leaves and enters; if the latter band corresponds to an inner

electron shell, its width is small and the observed width is practically

entirely that ofthe initial band (compare Fig. 18.2). Since the electrons

come only from the filled part of the band, the observed width is that

only of the filled part, not the whole width.

18.4. Specific heat of the conduction electrons

The specific heat of free electrons can be found from the energy

distribution function equation (4. 18) derived from Fermi-Dirac statistics.

The energy is given by
00

U = j Wg(W)dW
o

and the specific heat C = dU/dT. Since the integration must be carried

out by approximate methods, we quote the result for the internal energy

at a temperature T, which is (for n electrons)

U = U9+£{kTWg{W)}r . (18.15)

Here the difference between U and U is the first term of a power series

in ascending powers of T, but further terms are negligible at ordinary

temperatures. The specific heat of the electrons (per unit volume) is

Cv = dUjdT = jk*T{g(W)}F, (18.16)

where {g(W)}F is the density of states at W = WF ; on substituting from

equation (4.13) we obtain

°r =*^" (18J6a)

Comparison with the classical value, Cv = \rik, shows that the quantum
statistical value is smaller by a factor of the order {kTjWF). The reason



518 ELECTRONS IN METALS [18.4

for this is that only a small fraction « (hTjWF) of the electrons at the

top of the energy distribution curve are able to increase their kinetic

energy, as illustrated by the distribution curve of Fig. 4.3. The increase

in energy of these electrons is « IcT, and so the total internal energy

increases by an amount « n(kT)2IWF . Electrons in the middle of the

band cannot be raised to higher energies unless they can reach energy

levels above WF, since all the available energy levels in the middle of the

band are already occupied by electrons.

006 -

m 0-04

S

a

a
60

O 0-02

Fia. 18.8. Specific heat of cobalt at low temperatures (after Duyckaerts, 1939).

A experimental curve.

B electronic contribution; Cv = 12-0 x 10~42\
C lattice contribution; Cv = 465(T/443) 3

, where 443 is the Debye for cobalt.

The units are cal/g atom/deg.

Since kT < WF at ordinary temperatures, the electronic specific heat

will be only a small fraction of that predicted by classical theory, and
the difficulty of the large excess specific heat predicted by that theory

for metals is removed. An experimental test of equation (18.16) is

possible only at low temperatures, where the specific heat associated

with the lattice vibrations of a solid falls very rapidly. According to

the theory of Debye, the specific heat from this cause is proportional to

T3 at sufficiently low temperatures, and eventually this will become
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small compared with the electronic specific heat, which falls only with T.

The specific heats ofa number ofmetals have been measured, and below
about 20° K they are found to follow a law of the form

Gv = aT3+bT. (18.17)

Figure 18.8 shows the relative magnitudes of the two contributions to

the specific heat of cobalt at temperatures below 20° K. This metal is

ferromagnetic, and like a number of other transition group metals,

8 10

T*(Deg»)

Fia. 18.9. Plot of C\T against T' for copper (Corak, Garfunkel,
Satterthwaite, and Wexler, 1955). The intercept at T* — gives the

coefficient 6 of the electronic specific heat.

shows an abnormally high electronic specific heat. In many metals the

electronic specific heat is predominant only below about 5° K, and
rather precise measurements are required to determine it accurately.

Rearrangement of equation (18.17) shows it may be written in the form

CrIT = aT*+b (18.17 a)

and by plotting the quantity CvjT against T2 a straight-line graph

should be obtained whose intercept gives the value of b. Figure 18.9

shows a typical graph for copper.

The measured values of the electronic specific heats of a number of

representative metals are shown in Table 18.1. To compare them with

values calculated from equation (18.16) we need to know the value of n,

the number of conduction electrons per unit volume, and ofWF, which

by equation (4. 1 1 ) is again dependent on n. It is simplest to discuss n in

terms of the number of conduction electrons per atom. For metals such

as copper and silver, we may reasonably expect one conduction electron

per atom, and for beryllium and magnesium two. With the transition

metals nickel, palladium, and platinum, which belong to the 3d, 4d,

and 5d transition groups respectively, the energy bands are nearly filled,

and the number offree 'particles' is determined by the number of 'holes'



620 ELECTRONS IN METALS [18.4

in the band; from magnetic evidence €iese amount to about 0-6 holes

per atom. Using these values of the number of carriers per atom, we
can compute the electronic specific heat from equation (18.16), and in

each case some deviation is found. The last column of Table 18.1 gives

the ratio of the observed to the calculated electronic specific heat for

free electrons.

Table 18.1

Electronic specific heats of some metals

Number of Ratio of observed

conduction value of electronic

CyjT (in units of electrons spec. ht. to that given
Metal 10-* cal\dea*\g atom) per atom by equation (18.16 a)

Cu ISO 1 1-5

Ag 1-54 1 0-95
Be 0-54 2 0-46

Mg 3-25 2 133
Ni 17-4 0-6f 28
Pd 31 0-55f 27
Pt 16 0-6f 13

The observed values are given in column 2 ; column 4 gives the ratio of these values
to those calculated from equations (18.16 a) and (4.11) assuming the number of conduc-
tion electrons (or holes) per atom given in column 3. This ratio is interpreted as the
ratio of the effective mass m* to the free electron mass m.

t No. of holes per atom, based on magnetic evidence.

The reason for these discrepancies is that we are using formulae

derived for free electrons, whereas we know that in a solid their motion
is modified by the periodic potential. It was pointed out in § 18.2 that

this modification can be allowed for by using the effective mass m*
instead of the true m in many of the formulae derived for free electrons.

Thus equation (4.11) for the Fermi energy becomes

Wf ~^* (3tt2w)*, (18.18)

(18.19)

while the density of states g(W) becomes

= 3nWi/2W^, (18.20)

the last relation being in form the same as for free electrons. These

relations show that {g(W)}%* is proportional to m*, and inversely propor-

tional to WF . Thus for copper (see Table 18.1) the observed specific heat

is about 1-5 times larger than the value calculated on the basis of free
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electrons, from which we conclude that m*[m = 1-5 in this case, and

that the Fermi energy WF should be about 4-7 eV instead of the value

7-0 eV given in Table 4.1.

This effect on the specific heat can be seen in another way which does

not involve the concept of effective mass. The Pauli exclusion principle

restricts the number of points in momentum space to two (including the

electron spin) per elementary volume (h3/V), and so fixes the number

of states in a given range ofwave vector k to k-\-dk. The effect of band

structure is to alter the relation between W and k, so that the value

of g(W) is changed. From equation (18.16) the specific heat is propor-

tional to g{W), since doubling the value of the density of states means

that twice as many electrons can increase their energy for a given

temperature increase. Narrow bands have exceptionally large values

of g(W), as shown in Fig. 18.7, thus giving rise to abnormally large

values of the electronic specific heat in transition elements.

18.5. Electrical and thermal conductivity of metals

On the classical theory of free electrons, the electrical conductivity

ofa metal is given by equation (4.3). For electrons in a periodic potential

this formula holds provided we replace the true electron mass m by the

effective mass m*, so that we have

a = n(e2lm*)r = ne2l/m*v, (18.21)

where n is the number ofelectrons per unit volume and r is the relaxation

time defined in § 4.1. I is the mean path length between collisions, here

taken as vr, where v is the mean electron velocity. Since only electrons

at the Fermi surface can be accelerated and gain energy, the value of

the velocity required is that corresponding to WF ; this velocity is about

108 cm/sec for most metals, and since t « 10_w sec at room tempera-

ture, the mean free path is of the order of 10~6 cm, or about 100 times

the atomic spacing in a solid.

Classical physics gives us no method of calculating the mean path

length, nor does it suggest in what manner it might vary with tempera-

ture. Since the number and the energy of the electrons at the top of

the Fermi band varies insignificantly with temperature, equation (18.21)

shows that any change in the resistance must be associated with a change

in the mean path length. Most metals show a resistance which is roughly

proportional to the absolute temperature at room temperature and
above, but at low temperatures the resistance falls markedly below the

value given by this law. Any theoretical approach to this problem must
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be made through the wave theory, and is extremely complicated. Here
we shall attempt to give only an outline of the results.

It was first pointed out by Houston that the mean path length of an
electron in a perfectly regular lattice of atoms should be infinite. If an
electron is in an allowed energy state, then that is a stationary state,

and in the absence of perturbations, the electron will continue in that

state of fixed energy, and hence fixed velocity, indefinitely. Real metals

do not have perfect lattices fortwo reasons : ( 1 ) the lattice contains foreign

atoms (impurities) or atoms displaced from their normal position (point

defects and dislocations), and (2) the atoms deviate from their mean
positions because of the thermal vibrations. Each of these imperfections

causes scattering of the electron waves in the same way that a defective

insulating crystal scatters a light wave, whereas a perfect crystal does

not. An alloy is an example of a disordered lattice, and we would there-

fore expect its resistance to be higher than that of a pure metal. The
scattering in such a case (or from any of the causes listed in (1) above)

should be independent of temperature, giving rise to the constant

resistance which is characteristic of alloys.

The thermal vibrations of the atoms can be analysed into normal

modes of vibration of the crystal as a whole. In the long wavelength

limit these are identical with the standing waves composed of elastic

waves (longitudinal and transverse) propagated through a continuous

solid, but at shorter wavelengths comparable with the inter-atomic

spacing they must be treated by methods (similar to those used for

electron waves) which allow for the periodic structure of the lattice.

Each mode has wave-vector q and angular frequency to. The energy is

quantized, and at temperatures where fioj « kT quantum effects must

be included in computing the mean energy of each mode ; this treatment

gives the well-known Debye theory of the lattice specific heat. Just as

the electrons have both a wave and a particle aspect, so do the lattice

modes; they are known as 'phonons', a name which emphasizes their

resemblance to the photons of the electromagnetic field and to sound

waves in a solid. The free paths of the phonons are limited by 'collisions'

with other phonons, and scattering by point defects, dislocations and

ultimately by the boundaries of crystallites. In metals there is a further

scattering mechanism due to collisions between the phonons and the

conduction electrons. Such collisions also limit the free paths of the

conduction electrons, and are the main cause of the electrical resistance

at ordinary temperatures. At low temperatures, where the lattice vibra-

tions die out, we would expect the scattering to fall and the conductivity
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to increase rapidly as the temperature approaches the absolute zero.

This is found to be the case, but the conductivity reaches an upper limit

which depends on the previous history of the specimen. This is due to

the lattice defects, which can be reduced by careful annealing. Then, in

general, the purer the specimen the higher the limiting conductivity,

showing that the impurities are responsible for the residual scattering.

A semi-empirical formula, due to Gruneisen, which represents the resis-

tance variation of many pure metals well, is

0IT

(18.22)
T \0) J (e*-l)(l-e-*)'

where the constants A and 6 are chosen to obtain the best fit with

experiment. This formula gives a variation of (p/T) with temperature

which is not unlike the variation of the lattice specific heat of a solid

as given by Debye's theory, and the value of 6 is close to the Debye
characteristic temperature. At high temperatures {pjT) approaches the

constant value ^(A/6), but at low temperatures the resistivity varies as

125J.T(T/0)4 ; this latter relation was deduced theoretically by Bloch.

The electrical resistance of many metals has been measured over a

wide temperature range: the resistivity of three specimens of sodium at

low temperatures is shown in Fig. 18.10. If the constant residual resis-

tance observed at low temperatures, which is due to impurities, is

subtracted from each curve, an identical remainder is obtained at higher

temperatures which we may take to be the resistance of ideally pure

sodium (the fact that the resistance contributions due to electron scatter-

ing by impurities and by phonons are additive is known as 'Matthiesen's

rule'). The close agreement with the Gruneisen formula is shown in

Table 18.2.

In a solid, heat can be transported both by the phonons and by the

conduction electrons, the thermal conductivity in each case increasing

with the mean path length of the carriers. In a metal the phonons are

scattered by collisions with electrons, and their mean path length is

smaller than it would be in an insulator where there is no such scattering

process. Hence the heat transport by the phonons should be smaller

in a metal than in an insulator, whereas experimentally the thermal

conductivity is found to be much larger. We therefore conclude that

the thermal transport in a metal is nearly all due to the electrons, and
in fact the lattice conductivity is negligible in comparison at all tempera-

tures except in superconductors.
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At room temperature the thermal conductivity K of most metals is

practically independent of temperature, but at low temperatures K
increases, and for nearly all pure metals (see Rosenberg, 1955) its

variation can be fitted to a formula of the type

UK = <xT2+PIT. (18.23)

The two terms in the thermal resistivity ljK arise from scattering ofthe

electrons by the phonons and by crystal imperfections (or impurities)

2 6 10 14 18

Temperature (°K)

Fig. 18.10. Low temperature resistance of three specimens of sodium (from MacDonald
and Mendelssohn (1950)).

respectively; for an ideally pure metal with a perfect lattice /J would be

zero. The temperature variation of the thermal resistivity at low tem-

peratures is different from that of the electrical resistivity, causing

departures from the Wiedemann-Franz rule. This rule (see § 4.1) states

that the quantity L = KjaT should be a universal constant for all

metals; L is known as the 'Lorenz number', and on the free electron

theory (see Problem 18.1) it should have the value

T2iIT* = 2-45 X 10"8 watt ohm deg"2
, (18.24)
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where k is Boltzmaim's constant and e the electronic charge. The
numerical constant is different from that in equation (4.6) because the

latter was based on classical statistics and the average velocity is that

of all the electrons, while in equation (18.24) we have used the fact that

only electrons at the Fermi surface with a substantially fixed velocity

are involved. In the derivation of these formulae it is assumed that

scattering of the electrons is equally effective as regards electrical and

Table 18.2

Ratio of the resistance at T° Kto that at 273-2°K for
ideally pure sodium metal

The calculated values are from the Gruneisen formula, equation (18.22).

The experimental values are from D. K. C. MacDonald and K. Mendelssohn (1950).

Calculated Observed

T°K ratio ratio

273-2 1-0000 1-0000

900 0-2600 0-2420

20-4 000327 000326
15-95 0-00100 000098
11-05 000015 0-00017

81 000004 000005
4-2 000000 000000

The value = 202° K is assumed in using the Gruneisen formula to find the calculated
ratio. The residual resistance due to impurity has been subtracted from the measured
resistance before finding the 'observed ratio'. For the purest specimen the ratio of the
residual resistance to the resistance at 273-2° K was 0-0004.

thermal transport, so that the effective mean free path is the same for

both processes. This would make the quantities p and TjK vary

together; the single power of T occurs in the thermal case because the

quantity ofheat carried by the electrons is proportional to the electronic

specific heat, which varies linearly with T. There is no corresponding

term in the electrical case, so that both the electrical resistivity and
TjK are proportional to the reciprocal of the mean path length, i.e. to

the scattering rate.

At temperatures approaching the Debye temperature 6, all phonons
are fully excited and we can use a classical approximation. The mean
free path is inversely proportional to the mean square amplitude of

thermal lattice vibrations, which is proportional to the absolute tempera-

ture. Hence p and TjK both vary as T (giving a thermal conductivity

independent of temperature), and the observed value of L is close to L
for most metals at room temperature. At the opposite extreme of very
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low temperatures where the scattering ofelectrons is all due to impurities,

the mean free path is independent of temperature, so that p and TjK
are constant, and L again approaches L . However, in a pure metal at

low temperatures where scattering is due to phonons oflong wavelengths,

the mean free paths for electrical and thermal transfer are different.

The number of phonons of the right wavelengths to scatter electrons is

proportional to q
2

, and the scattering cross-section for each varies as q,

where q is the wave vector for a phonon. This gives us a scattering rate

constant (defect and
impuiity scattering)'

^T-5 (phonon
' scattering at T < 6),

phonon scattering as T ->- 8

T-2 (phonon
scattering at T < 8)

constant

(phonon scattering

as T->-8)

-+T -+T

FiO. 18.11. Variation of electrical conductivity a and thermal conductivity K -with

temperature in a metal. 8 is the Debye temperature.

proportional to q
s

, and hence to co
3

, where w = q[v, and w is the angular

frequency of the phonon and v its velocity. At any temperature the

preponderant number of phonons are those for which 1iu> is of order kT,

and hence we get a T3 dependence of the rate of scattering. All such

scattering collisions are effective in energy transfer, and TjK varies

as T3
, so that K-1 varies as T2

, corresponding to the first term in

equation (18.23).

In considering the electrical resistivity we must allow for the fact that

the long wavelength phonons carry little momentum, and scatter elec-

trons only through small angles. The forward current carried by an

electron scattered through an angle a. is reduced only by an amount

(1—cos ex), which varies as a2 for small angles, and hence with q
2 and

with T2
. This extra factor ofT2

, together with the factor ofT3 mentioned

above, gives an overall variation of p with T5
. The behaviour of p and

K with temperature is illustrated in Fig. 18.11.
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The difference in the effective mean free path for electrical and thermal
conduction in this region makes L fall below L . A typical plot of the

variation of L is shown in Fig. 18.12, for copper. Below about 10° K
L is close to L , but has a minimum at about 40° K. For ideally pure

copper the electrical resistance can be found by subtracting the residual

resistance observed at very low temperatures, and the thermal resistivity

5 2-0
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Fig. 18.12. Lorenz number for copper (Berman and MacDonald, 1952).

1 experimental curve

;

2 experimental curve for ideally pure copper, obtained by subtracting contributions
to the electrical and thermal resisitivity from impurities.

is given by the first term of equation (18.23). From these two quantities

one finds the Lorenz number L for the ideally pure metal, and this is

shown by curve 2, while the broken fine gives the curve calculated by
Sondheimer. Similar discrepancies between theory and experiment have
been found for other metals.

There are a number ofeffects in connexionwiththe electrical resistance

at low temperatures which we shall not discuss in detail. The most
important of these is 'superconductivity': for a number of metals and
compounds the resistance falls to zero below a certain temperature

characteristic of each substance. At the same time all flux of magnetic

induction B through the substance is expelled; this is not what we should

expect from a straightforward application ofMaxwell's equations, since

a vanishing resistivity requires E = 0, and hence dB/dt = 0, so that

any flux ofB in the metal when it passes into the superconducting state
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should remain fixed, not be reduced to zero. The subject of super-

conductivity is fully discussed inmany books on low temperature physics.
At high frequencies the skin depth in a metal, as calculated using

the conductivity measured at low frequencies, becomes smaller than the

mean free path of an electron. The high frequency resistivity is then

greater than is calculated from the classical formula for the skin depth,

for the effective relaxation time r' is determined by the length of time

the electron spends within the skin depth (i.e. the time it is acted on by

the h.f. electric field) rather than the actual time t between 'collisions'.

This is known as the 'anomalous skin effect' (see, for example, Pippard

(1949); also Problem 18.5).

18.6. The Hall effect

When a block of metal carrying a current of density j parallel to the

2/-axis is placed in a field of magnetic induction B parallel to the z-axis,

a potential difference appears across the metal in the direction of the

a;-axis. This effect was discovered by Hall in 1879. The magnetic

induction B exerts a force on the charged particles carrying the current,

displacing them in the ^-direction. This sets up a non-uniform charge

density which gives rise to an electric field in the ^-direction; in equili-

brium the force due to this field must just balance that due to the

magnetic field, so that

F = eE+ev A B = 0. (18.25)

If we can identify v with the drift velocity of the charged particles,

then j = new, where n is the number of particles of charge e per unit

volume. Then we have

E =]-vA B = - (j A B)/(ne) = -BHQ A B),

where RH , the ratio of the electric field to the product (current density

X magnetic induction B), is known as the Hall coefficient. Its magni-

tudeis
2J

ff
=-l/»|e|, (18.26)

where we have introduced the negative sign explicitly to emphasize that

we would expect BH to be negative for electrons of charge — e. A
rigorous analysis shows that equation (18.26) is correct for a metal

where only the electrons at the Permi surface take part in the conduction

process, so that they all have substantially the same velocity. If a

velocity distribution of the Maxwellian type is used, an expression for

R is obtained larger by a factor (3tt/8); this point arises in the theory

of semiconductors (Chapter 19).
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A comparison of the observed values of MB for various metals and
semiconductors with those calculated from equation (18.26) is given in

Table 18.3. The agreement is quite good for the monovalent metals, but
for other metals, such as the divalent alkaline earth metals, BH is found
to have a positive instead of a negative sign. This unexpected result

suggests that the current is carried by positive instead of negative
charges, for which there was no explanation until the band theory

Table 18.3

Observed and calculated values of the Hall effect

Bjj (in unitt of 10-6 cm"1coulomb)

Calculated, assuming
Metal Observed q electrons per atom,

Lithium -170 -131 (?=1)
Sodium. -250 -24-4 (q = 1)
Copper.... - 5-5 - 7-4 (q = 1)

Silver .... - 8-4 -10-4 (g= 1)
Zinc .... + 4-1 - 4-6 (q = 2)
Cadmium + 6-0 - 6-5 (q = 2)

showed that a nearly full band of electrons behaved in a similar manner
to a set of 'positive holes' (see § 18.2). The Hall effect is important in

being the only simple way in which we can tell whether we have to deal

with electrons or positive holes, and its magnitude gives the number of

carriers n per unit volume. These results cannot be obtained from the

conductivity, but by combining measurements of the conductivity and
the Hall effect we can find both ne and the mobility u (the drift velocity

in unit electric field), since a = neu. This is especially important when
dealing with semiconductors.

18.7. Dia- and paramagnetism of conduction electrons

In most metals the bound electrons attached to the positive ions have
closed electron shells with no permanent magnetic dipole moment and
show only a small diamagnetism corresponding to equation (8.7). In
a magnetic field the conduction electrons are affected in two ways:

(1) the Lorenz force —e(v A B) alters the translational motion and gives

rise to a diamagnetic moment; (2) associated with the electron spin is

a magnetic dipole moment (see Chapter 21), whose component is one
Bohr magneton jS = eh/2m parallel or anti-parallel to the magnetic
field. These two components of the dipole moment are associated with
the two allowed components of the electron spin (see § 4.2), and when a

861110 mm
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magnetic field is applied they have different energies, +/J.B and —/LB
respectively. The latter state, whose dipole moment is parallel to the

field, has a lower energy than the anti-parallel state, and will have the

larger probability of occupation, giving a net paramagnetism. We can-

not calculate this by the methods used in § 8.3, however, for the Langevin

formula derived there assumes a Boltzmann distribution function. The
Fermi-Dirac distribution function must be used for free electrons, and,

since this varies very little with temperature, the susceptibility turns out

to be practically independent oftemperature. We shall derive an expres-

sion for the paramagnetic susceptibility at the absolute zero of tempera-

ture, which can be done rather simply.

At the absolute zero, two electrons with oppositely directed spins

occupy each translational energy level up to a certain energy WF , the top

of the Fermi distribution. When a magnetic field is applied, an electron

can only reverse its spin magnetic dipole from an anti-parallel to a

parallel orientation if the decrease in its magnetic energy {2fiB) is

sufficient to supply the extra kinetic energy required to raise it to an

empty translational energy level. This follows from the Pauli principle,

which shows that two electrons with parallel spins cannot occupy the

same energy level. The effect on the distribution of electrons in the

energy band is shown in Fig. 18.13. This differs from the earlier diagram

(Fig. 4.3) in that the band is drawn in two halves, one containing the

electrons whose spin dipoles are parallel to the field B, the other those

with their spin dipoles anti-parallel. The two half-bands are then

separated in energy by 2J3B, the potential energy difference in the

magnetic field. For the total energy, magnetic plus kinetic, ofthe whole

system to be a minimum, the electrons must fill the two displaced half-

bands up to the same level, as in Fig. 18.13. Any deviation from this

would require a transfer ofelectrons from one half-band to higher vacant

levels in the other half-band, and so increase the energy.

The total magnetic moment ofthe system is 2xfi, where x is the number

ofelectrons transferred from the anti-parallel to the parallel orientation,

since the excess in the latter is then 2x and each electron has a spin dipole

moment of one Bohr magneton j8. The value of x can be found in the

following way. We assume that the energy difference w between suc-

cessive energy levels at the top ofthe Fermi distribution is approximately

constant. To turn round the dipole of one electron then requires that its

kinetic energy be increased by w, since we may take an electron from the

topmost filled level and put it in the next level, which is vacant. To turn

round a second electron requires an additional kinetic energy of Zw, since
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the next two levels with parallel orientation are already filled. The third

electron then must be given extra energy equal to 5w, and for the #th

electron the excess kinetic energy will be (2x—l)w. If a; is very large

compared with unity, this may be taken as 2xw, and at equilibrium 2xw

will just equal 2/32?, so that the half-bands are filled to the same level,

(spin dipoles antiparallel

to magnetic field)

-fband

(spin dipoles parallel

to magnetic field)

Fig. 18.13. Displacement of -+- and — bands of conduction electrons

by an applied magnetic field.

The displacement is equal to the difference of energy 2j3B of a spin

dipole parallel and anti-parallel to the fieldB. The resultant magneti-

zation is due to the excess of electrons in the -f- band.

as in Fig. 18.13. Since two electrons with spins anti-parallel can occupy

each kinetic energy level, the number of such levels in the range W
to W+dW is %g(W), where g(W) is the density of states in this range.

Hence the energy separation w between successive levels at the top of

the Fermi distribution is {^{W)^- 1 = 2{g(W)} F
1

. Hence

2x = 2$B\w = pB{g(W)}F,

and the susceptibility per unit volume is

XP =^ = *>/%( JnV (18.27)

For free electrons the value of {g(W)}F may be obtained from equation

(4.13), and then
3^%/32

XP 2W«
(18.28)

F
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This simple expression was first derived by Pauli, and the phenomenon
is sometimes called 'Pauli paramagnetism'. Since the change in the

Fermi distribution with temperature is very small so long as kTjWF is

small, the susceptibility is practically independent of temperature;

Stoner has shown that the next term in a series expansion for the

susceptibility is smaller by a factor of the order {lcTjWF )'i
.

Comparison ofequations (18.16) and (18.27) shows that both the specific

heat and the paramagnetism of the conduction electrons are determined
by the density of the states {g( W)}F at the Fermi level, and that each is

smaller by a factor of order kTjWF than the corresponding quantity
for a set of particles obeying classical statistics (cf. equation (8.13) or

(20.16) for the susceptibility).

Calculation of the diamagnetic susceptibility arising from the transla-

tional motion of the conduction electrons in a magnetic field is consider-

ably more complicated, and we quote only the result for free electrons,

first derived by Landau:
2 /q \i

Substitution of the formula for WF (equation (4.11)) in equation (18.28)

shows that xp is just three times as great as xa f°r free electrons, so the

net susceptibility is positive. This expression is valid only in small

fields; at high fields further terms become important which give rise to

an oscillatory variation of xa wi*n fundamental period WFj2flB. This

is known as the de Haas-van Alphen effect, and is observed in many
metals at low temperatures.

The formulae given above are valid for free electrons; for electrons in

a periodic potential the formulae are similar, provided we substitute the

effective mass to* for to. Thus the diamagnetic susceptibility becomes

*=-£^y (i8 -3o)

and so decreases when to* increases. The paramagnetic susceptibility %
is still correctly given by equation (18.28), but as W>x ocm*,^ increases

with to*. Thus an increase in the effective mass makes xP predominate
over Xd more than by a factor 3. In addition, interaction effects between
the electrons cause a further increase in xP (for a review, see Van Vleck
(1957)).

Comparison of theoretical results with experiment is complicated by
the fact that a static susceptibility determination measures only the
total susceptibility x = Xa+Xp+Xo where xc ig tne diamagnetic suscepti-

bility of the electrons bound to the positive ion cores. However, this can
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be estimated from values for neighbouring non-metallic elements, or

from calculated values ofJ <r2> (equation (8.7)). The susceptibility due

to the electron spins alone, xP , can be measuredby electron spinresonance

(see Chapter 23), and xa, can then be found from the value of (x
—
Xp
—

Xc)-

The experimental and theoretical results for lithium and sodium are

summarized in Table 18.4, which is based on Van Vleck (1957). Later

measurements of xP give slightly different values, but a satisfactory

comparison with theory must await an experimental determination of

m*Jm.
Table 18.4

Experimental and theoretical values of the volume susceptibility

of lithium and sodium (after Van Vleck (1957))

(In units of 10~ 6 e.m.u./cm3
; to convert to m.k.s./ma multiply by 477)

Lithium Sodium

experiment theory experiment theory

m*\m 1-46 0-985

Xp 208±0-l M7t
1-87J

0-95±0-l 0-64f

0-85J

X 1-89 ±0-05 0-70±0-03

Xe -005 -0-18

Xd -014±015 -019§ -007±013 -0-22§

t From equation (18.28), using effective mass.

J Calculated by Pines, including interaction effects.

§ From equation (18.30), using effective mass.
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PROBLEMS
18.1. Using the kinetic theory expression K= \lv{dXJ/dT) for the thermal con-

ductivity K of a gas, show that on the free electron model

ir
2nvlk 2T

where n is the number of electrons per unit volume of velocity v and mean free

path I, h is Boltzmann's constant, and WF the Fermi energy. This expression is

valid at very low temperatures where I is determined by the impurity scattering,

and corresponds to the second term in equation (18.23).

Verify, by using equation (4.3), that this leads to the expression for

L = KjaT
given in equation (18.24).

18.2. The effect of scattering on the electronic motion may be represented by
a damping term, as in Problem 3.9. If an alternating electric field is applied,

the equation of motion becomes

m(dx/dt)+mx/T = eE exp(jwt).

Show that this leads to an effective conductivity a = o /(l-}-ja>T), where <j is the

conductivity at low frequencies. Thus the conductivity at frequencies where

tor « 1 is complex; the real part gives a contribution to the conduction current,

but with a reduced conductivity at' — o- /'(1 +oj2t2
), while the imaginary part is

equivalent to a displacement current (but of opposite sign to the normal displace-

ment current), so that the dielectric constant of the medium is effectively reduced

from e to e—cr'r/e .

18.3. Using the treatment of § 10.4, find an expression for the complex refractive

index (n—jk) of a metal in the region where relaxation effects in the conductivity

are important, that is, where the conductivity is complex as in Problem 18.2.

If the ordinary dielectric constant of the metal is neglected, show that

(n 2-fc2)/(2nfc) = -cut.

The measurements ofBeattie (1955) show that for aluminium at room temperature

at wavelengths between 6 and 12 microns, the quantity (w2— k*)/(2nk) is roughly

equal to — 11/A, where A is the wavelength in microns (1 micron = 10-6 metre).

Show that this gives a value of t of about 0-6 x 10-14 sec.

18.4. The resistivity of copper at 4° K is approximately 10-10 ohm-metre (10
-8

ohm-cm). Assuming that m*/m = 1-5, and Wp = 4-7 eV, show that the mean free

path of electrons in copper at this temperature is about 7 x 10~4 cm, while the

classical value ofthe skin depth (equation (10.31)) at a wavelength of 3 cm is about

6 x 10-8 cm. Show also that at this wavelength and temperature the value of cut

(see Problem 18.2) is about J. (Assume one electron per atom for n.)

18.5. The anomalous skin effect makes the effective high frequency conductivity a'

less than the d.c. value a by a factor ?S {8/1), where 8 is the effective skin depth
and I the mean free path of the electrons. Assuming that

a'/o = p(S/l),

where /? is a numerical factor (of the order of unity), and that the effective skin
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depth is given by equation (10.31) with a' instead of a, show that the effective

skin depth becomes
g = (a/oj8^Ioa , )

».

From equation (18.21) (l/a) is a constant, and hence 8 becomes independent of

temperature at low temperatures. (The reflecting power of pure metals in the

infrared at low temperatures is principally determined by the anomalous skin

effect, not the relaxation effect.)

18.6. In a simple cubic lattice the energy surfaces given by the 'tight-binding'

approximation are of the form

W = Wx
—MJ(cos^a+ cosifcy a+cosA;a a),

where a is the atomic separation. Show that the width of the energy band is §WS ,

and that near the bottom (kx a -»• 0, etc.) the energy is approximately

W = {W1-3W,)+iWa kV+...,

while near the top (kx a -* ±w, etc.) it is

W=(Wl+iWt)-iWt Va*+..„

where kz = kx+kl+ k%. This shows that the energy surfaces are spheres about

the centre of the zone, or the corners of the zone respectively (compare Fig. 18.6).

Note that the effective mass m* = h*/a?W3, and hence is inversely proportional

to the bandwidth.
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SEMICONDUCTORS

19.1. Intrinsic and extrinsic conductivity

A substance in which the number of electrons is just sufficient to fill

the lowest energy bands at 0° K is an insulator at very low temperatures.
At a non-zero temperature a few electrons may have sufficient energy
to be excited into the lowest unoccupied band (the 'conduction' band),

leaving holes in the highest 'occupied' band (the 'valence' band). This
gives a small electrical conductivity whose magnitude depends on the
temperature and on the width of the energy gap Wg between the full and
empty bands. We shall find in § 19.3 that the number of electrons

excited into the conduction band is proportional to exp(— Wj2kT), and
if the gap is not more than about 1 eV, which corresponds to a value of

kT with T « 12 000° K, there will be a measurable conductivity at

room temperature. This phenomenon is known as 'intrinsic conduc-
tivity' and is a characteristic of pure semiconductors; it has been ob-

served in pure silicon, germanium, indium antimonide (InSb) and some
other substances.

For each electron in the conduction band, there will be a corresponding

'hole' in the filled band. Both electrons and holes contribute to the

conductivity a, so that

o = \e\(neue+nh uh), (19.1)

where the subscripts e, h refer to electrons and holes respectively. As
in § 4.6 the mobilities u

e , uh are taken as positive numbers and no sign

is attached to |e|, though the holes and electrons drift in opposite

directions under the influence of an electric field. For intrinsic con-

ductivity ne = nh , since electrons and holes occur only in pairs. The
equilibrium concentration rises rapidly as the temperature rises, but
the mobilities vary much less rapidly with temperature; hence the

increase in n is the dominant factor and the conductivity rises as the

temperature increases. This is the hall-mark of a semiconductor, and
one of the features (together with its much smaller conductivity) which
distinguishes it from a metal. Another difference is that electrons in the

conduction band are in excited states, and have only a finite lifetime.

An electron from the conduction band can drop down into the top of

the valence band, recombining with a hole and releasing an energy Wg ;
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conversely an electron-hole pair can be created by lifting an electron

from the valence band to the conduction band. Both processes occur

repeatedly, giving a dynamic equilibrium concentration which is a
function of temperature.

The properties of a semiconductor are generally profoundly modified

by the presence of an impurity, or some other cause of irregularity in

the lattice. If these are present in not too great a concentration, they

produce discrete energy levels. The reason for this is that the levels

Empty conduction band

D-
donor impurity level

Energy gap W,

acceptor impurity level

Filled

valence
band

Fig. 19.1. Energy bands in a semiconductor, showing the gap between the valence band
and the conduction band. At 0° K the valence band is full and the conduction band is

empty, so that the substance behaves as an insulator. The discrete levels D, A are due
to the presence of impurities in low concentration, where the impurity atoms are too

far apart for their electronic wave functions to overlap.

only spread out into bands when the impurity atoms are sufficiently

close for their wave functions to overlap, and at low concentrations the

impurity atoms are so far apart that any such overlap is negligible.

These discrete energy levels are important when they lie in the forbidden

band, and particularly so ifthey he close to the conduction or the valence

band, as illustrated in Fig. 19.1. In the former case electrons may
occupy the impurity levelD at low temperatures, and are then localized

on the impurity atom and unable to partake in electrical conduction.

As the temperature rises, these electrons are excited into the empty
band. They behave then as conduction electrons, with negative charges;

the material is known as an w-type semiconductor, and the impurity

levels from which the electrons come are known as 'donor' levels. In

the second case, the impurity levels A which lie just above the valence

band, will be unoccupied at 0° K, but as the temperature rises electrons

are excited from the valence band into these levels, which are therefore

known as 'acceptor' levels. This process leaves holes in the valence band,

which behave as positively charged carriers, and the material is known
as a p-type semiconductor.
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If the impurity level lies close to a conduction or valence band, the

temperature at which appreciable numbers of electrons or holes may be

excited is relatively low, and the 'extrinsic conductivity' due to this

cause may outweigh any intrinsic conductivity, even with small con-

centrations of impurities. In pure germanium at room temperature, for

example, the number of intrinsic electrons in the conduction band is

only about 1013 per cm3
, whereas the number of germanium atoms per

cm3 is 4*5 X 1022 . If an impurity atom which is easily ionized at room

temperature is present to a concentration of 1 part per hundred million

(4-5 x 1014 impurity atoms per cm3
), it can give rise to an extrinsic con-

ductivity which exceeds the intrinsic conductivity.

The extrinsic conductivity increases as the temperature rises until all

the donor impurity atoms are fully ionized, or all the acceptor levels

fully occupied. The number of extrinsic conduction electrons, or holes,

then becomes substantially constant ; the conductivity becomes constant,

or may fall with temperature because ofa decrease in the mobility. This

is known as the 'exhaustion range'.

Extrinsic and intrinsic conductivity may of course be present simul-

taneously, but the former will depend on the impurity content while the

latter is a property ofthe pure material. In each case conduction depends

on excitation into higher levels, and the charge carriers have a finite

lifetime. All substances would be expected to show intrinsic conduc-

tivity at a sufficiently high temperature; 'insulators' are substances

with such large energy gaps that appreciable conductivity sets in only

at temperatures outside the normal laboratory range, and which may
be above the melting-point of the substance.

19.2. Elementary and compound semiconductors

A number ofelements are known to be semiconductors in their normal

allotropic form; the principal ones are silicon, germanium, boron,

selenium, and tellurium. Of these the most important are silicon and
germanium; they are used in many solid-state devices and their proper-

ties have been extensively investigated, so that much more reliable

information is available about their properties than for any other

semiconductor.

The elements carbon, silicon, germanium, tin, and lead belong to

group IV of the periodic table. Silicon, germanium, and the allotrope

grey tin crystallize in the diamond structure (see Fig. 19.2) in which

each atom has four equidistant neighbours arranged in the form of a

regular tetrahedron. Each atom forms four covalent bonds with these
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neighbours, donating one electron to each bond whose spin is paired off

with that of the corresponding electron donated by the neighbour. These

electrons can be regarded as being in a filled valence band, above which

is an energy gap to the next band which is empty and forms a possible

conduction band. This picture represents the position at 0° K, where

the substances behave as insulators. The energy gaps are listed in

Table 19.1. At a non-zero temperature some electrons may be excited

Fig. 19.2. The diamond structure, consisting of four atoms centred

on alternate corners of a simple cubic lattice, bonded to one at the
centre of the cube. The structure is repeated so that every atom

is in identical surroundings.

from the valence band into the conduction band, making the substance

an intrinsic semiconductor. On a localized electron model this corre-

sponds to taking an electron out ofa bond to behave like a 'free electron'.

This leaves a 'hole' in one bond; an electron can migrate from an adjacent

bond to fill this hole, thereby transferring the hole to another bond. In

this way the hole can be pictured as moving in a random way through

the crystal, and being mobile like the 'free' electron, though not neces-

sarily with the same mobility.

Intrinsic conductivity is exhibited only by very pure specimens, and
the properties of silicon and germanium are drastically modified by
small amounts of impurity. If an impurity from group V of the periodic
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table, such as phosphorus, is introduced, it enters 'substitutional^',

occupying the place of a silicon or germanium atom. Like the atom it

replaces, it forms four covalent bonds with its four immediate neighbours.

This uses up four of its valence electrons, leaving one in excess, which
experiences an electrostatic attraction to the phosphorus because of the

extra positive charge of its parent ion. This system of a singly charged

ion and excess electron resembles a hydrogen atom, but one in which
the potential due to the positively charged nucleus is modified by the

presence of the surrounding silicon or germanium ions. These are

electrically polarized by the excess positive charge of the phosphorus

nucleus, and their effect on the electrostatic potential can be crudely

approximated by the introduction of a dielectric constant, making the

potential V = e/4ir€e r. Obviously this device of using a dielectric

constant is only realistic at distances large compared with the inter-

atomic distance, where the electron orbit is so large that it embraces

many atoms, and whose effect then resembles that of a continuous

medium. For an electron of effective mass m* in an orbit of principal

quantum number n the energy is then found to be (see Problem 19.1)

TF=-^!-A = _-^_ x i3. 5 eV, (19.2)

where 13-5 eV is the ionization potential of an electron in the n = 1

state ofa free hydrogen atom. The bulk dielectric constant ofgermanium
is 16, and if we use this value for e, and a value of m*jm = 0-2 (an

average of values obtained from other evidence), we find W ~ 0-01 eV
for the lowest state n = 1. This is fairly close to that actually observed

for group V donors in germanium (for phosphorus the observed value

is 0-012 eV). The corresponding orbit radius is over 40 angstrom units,

which is quite large compared with the inter-atomic distance of 2-45 A.

Since 0-01 eV is equivalent to a temperature of only 120° K, it is evident

that such donor impurities will release nearly all their electrons into the

conduction band at room temperature, a process similar to that of

ionization of free hydrogen atoms at the very high temperatures in the

interior of stars. For group V donors in silicon the corresponding

binding energy is about 0-04 eV (see Problem 19.1).

If a group III element is added as an impurity we have a different

situation. The impurity atom now has one electron too few to fill the

four bonds which it should make on replacing a silicon or germanium
atom, and we are therefore left with a hole in one bond. If this hole

moves away from its parent impurity, all four bonds to the impurity
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atom become filled and it has one net negative charge. Since the hole

is effectively a positive charge, it has an electrostatic attraction to the

negatively charged impurity ion, and we have an 'inside-out' hydrogen
atom consisting of a negatively charged 'nucleus' with the positive hole

in orbit around it. This gives an 'acceptor' level just above the valence
band, the height above the top of the valence band being again about
0-01 eV. At 0° K the valence band is full of electrons, and the hole

occupies the impurity level; it is then localized on the impurity ion,

forming a neutral atom in a bound state. At a finite temperature an
electron may be excited from the valence band into the impurity level

;

this leaves a hole in the valence band which is free to move, and corre-

sponds to ionization of the 'inside out' impurity atom.
This analysis shows that at 0° K the hole is in the highest level (the

acceptor level) and as the temperature rises more and more holes are

excited in the lower levels (the valence band). This behaviour is similar

to that of electrons being excited from donor levels into the conduction
band, except that for the holes energy must be measured downwards
instead of upwards. In § 19.3 we shall find that holes obey similar

equations to electrons provided we measure energy downwards from
the top of the filled band, an example of which has already occurred
in equation (18.14),

A wide range of compounds show semiconducting properties of which
only a few which illustrate general classes, and for which sufficient

information exists to make their properties reasonably well understood,
can be mentioned here. Following the group IV compounds germanium
and silicon, it is natural to discuss first the group Ill-group V com-
pounds, taking as example indium antimonide, InSb, the most studied
of such materials. The two elements, indium and antimony, come in

the periodic table immediately before and after tin. They form a com-
pound in which each atom is surrounded by four equidistant neighbours
at the apices of a regular tetrahedron, as in the diamond structure, but
with the difference that each of the four nearest neighbours is of the
other type (this is known as the zinc-blende structure, after one form
of the compound ZnS). These four bonds are mainly covalent in charac-
ter, and link lattice sites which may be regarded as occupied by In~ and
Sb+ ions in regular alternation. Each of these ions has the same electron

configuration as tin, the group IV element, and forms covalent bonds
in a similar fashion. However, the fact that we now have ions ofalternate
negative and positive charge gives rise to some ionic binding. Indium
antimonide can be prepared in a sufficiently pure state to behave as an
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intrinsic semiconductor, with an energy gap of about 0-24 eV at 0° K,

decreasing to 0-17 eV at room temperature.

The next binary compounds in sequence are the II-VI and I-VII

compounds; these grow progressively more ionic in character, with larger

Fig. 19.3. The zinc-blende structure (two-dimensional representation). It is similar to

the diamond structure, except that Zn and S ions alternate.

energy gaps. This is illustrated in the sequence formed from atoms in

the seventh row of the periodic table:

0-24 eV

.InSbv

Ag Cd In Sn Sb Te I

grey tin

0-08 eV

CdTe'

1-6 eV

Silver iodide is a good insulator, and clearly has a large energy gap.

Though probably not as pure a polar compound as NaCl, we may regard

it as consisting of Ag+ and I- ions, with closed shells of electrons. With

a II-VI compound such as CdTe we have the dilemma of whether to -

regard it as a polar compound, consisting of Cd++ and Te ions, or

a covalent compound formed of Cd~ and Te++ ions. However, the

crystal structure resembles that of zinc-blende, suggesting a covalent
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compound; on the other hand, the group of salts PbS, PbSe, PbTe have
the NaCl structure, suggesting a polar compound. These difficulties

illustrate the reserve with which such extreme classification should be

regarded. In fact the group of lead salts have smaller energy gaps than

CdTe, and their electrical properties are more typical ofsemiconductors.

The energy gaps of a number of substances are given in Table 19.1.

General (but not invariable) rules are that the energy gap diminishes

Table 19.1

Values of the energy gap (eV)

Group IV elements III-V compounds II-VI com/pounds

Diamond ~ 5-3 BN ~ 10
Silicon 1-21 A1P 3
Germanium 0-78 GaAs 1-35 ZnSe ~ 5
Grey tin ~ 0-08 InSb 0-24 CdTe 1-6

PbS ~ 0-4

the heavier the atoms involved (that is, reading downwards in the

table), but increases on moving from covalent to polar compounds (that

is, from left to right). Much less information is available about the polar

semiconductors, owing to the difficulty of preparing them in the pure

state. Apart from foreign atoms, which act as acceptors or donors

according to their group in the periodic table, such crystals may be

non-stoichiometric. For example, lead sulphide may have an excess of

lead, producing donor levels, or of sulphur, producing acceptor levels.

The energy gap varies considerably with temperature, and most of

the above are rounded values. In the case of silicon, germanium, and
InSb the values given in the table are those for 0° K; at room tempera-

ture they are approximately 1-12, 0-66, and 0-17 eV respectively.

19.3. Electron distribution and the Fermi level

Under conditions ofthermal equilibrium the number of electrons with

energy between W and W+dW can be calculated by means of statistical

mechanics, using of course the Fermi-Dirac statistics appropriate to

particles of half-integral spin. This number is (see § 4.2)

dn=f(W)g(W)dW, (19.3)

where f(W) is the Fermi-Dirac function

f{W) = erp{(W-Wr)/kT}+l
{19A)

and g( W) is the density of states. WF is the Fermi level, defined as the
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energy at which the function/(W) = \. In a metal, WF > &I7 at ordinary-

temperatures, and the only electrons which are thermally excited or

can take part in conduction processes are those very close to the Fermi

level.

In a semiconductor, it is not so obvious where the Fermi level lies

with respect to the conduction and valence bands. We shall consider

first an intrinsic semiconductor, where at low temperatures only a few

electrons are excited into the conduction band. In the limit ofextremely

few electrons the chance of an electron occupying a given state is very

low, and the restrictions imposed by the Exclusion Principle play little

role. We are thus in a situation where the classical Maxwell-Boltzmann

statistics are a good approximation, so that we can write

fe(W) = exp{-(Pf—WF)jkT} very nearly. (19.5)

This is just the approximation of equation (19.4) in the limit where

{W—Wp) ^> IcT, so that we can neglect the second term in the denomi-

nator; this approximation is appropriate for electrons in the conduction

band, which is empty of electrons at 0° K. At this temperature the val-

ence band is full, and thus corresponds to energies well below the Fermi
level. In the region where (WF— W) > IcT the first term in the denomi-

nator of equation (19.4) is now very small, and we can write

l ~fviW) = exv{-(WF-W)/JcT}, very nearly. (19.6)

The quantity 1—/„( W) is relevant to the number of holes in the valence

band.

We must now consider the density of states, g(W). This is zero at

the edge of a band and we assume that it varies as the square root of

the distance from the edge of the band. That is, we can modify equation

(4.16) and write ^ W) = C{nl&{W_w (ig 7)

and
9*(W) = C(m*h)HWv-W)K (19.8)

where Wc, Wv are the energies at the bottom of the conduction band and
the top of the valence band respectively.

The total number of electrons in the conduction band is thus

»e = ffo(W)ge(W)dW
w,

oo

= C{m*f | (W-We)iex-p{-(W-WF)lkT} dW.
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On writing y = {W-W
c)lkT, this integral becomes

645

n. = C{m* IcTf exp{-(Wc-

W

F)jkT) j y* e~v dy

= W2)C(m*kT)iexv{-(W
c-WF)lkT}

= Ncexp{-(Wc-WF)lkT}. (19.9)

This result is the same as if we had a number Nc of states at energy Wc ;

thusN is the effective density of states at the bottom of the conduction
band, and on substituting for C from equation (4.16) we find

Nc = 2(2irm*lcTlh?f. (19.10)

Similarly for the number of holes in the valence band we find
w.

nh = j{l-fv(W)}gv(W)dW
— 00

= Nv exV{-(WF-Wv)lkT}, (19.11)

Nv = 2(2iTmtkT/h*)i. (19.12)

For the product nenh we find

^enh = NcNv exv{-(Wc-Wv)lkT} = NcNv exp{-Wg[kT} (19.13)

and since in an intrinsic conductor we must have ne
= nh = n

t
we obtain

n< = ne = nh = (NcNv)iexv{-Wg/2kT}, (19.14)

where Wg = Wc—Wv is the width of the energy gap between the valence

and conduction bands.

To findthe position ofthe Fermi level,WF, we must equate the formulae
for ne and nh , which yields

N„ ._ 2W„-m-W,= expN
c

r kT
whence, since NJNe = (wi^/m*)*,

WF = m±Wv)+lkTln(rntlm*). (19.15)

This result shows that for most intrinsic semiconductors, where m*, m*
are nearly equal, the Fermi level lies in the middle of the energy gap,

as shown in Fig. 19.4. In some cases, such as InSb, where m%jm* « 20,

the level varies markedly in position with temperature, and at room
temperature is shifted well towards the bottom of the conduction band.
When impurities are present, and conduction is partly intrinsic and

partly extrinsic, the position is a good deal more complicated. There is,

however, one important general result which holds provided the numbers
of electrons in the conduction band and holes in the valence band are

851110 n n
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small compared with the density of states. In that case the relations

(19.9)-(19.13) are still valid, since they do not depend on any supposi-

tion about the position of the Fermi level. Thus we have in equation

(19.13) an important relation between the numbers of electrons and

holes, and in the light of equation (19.14) we have also ne
nh = n\,

where n
t
is the number of intrinsic electrons which would exist at the

Conduction band

g(W)

Valence band

/-I

Fig. 19.4. The Fermi-Dirac distribution of electrons and holes in

an intrinsic semiconductor; the figure is drawn for a case where

mfl = mf, so that the Fermi levelWF is in the centre of the forbidden

band. The shaded areas indicate the numbers of electrons in the con-

duction band, and holes in the valence band.

same temperature. The ratio of numbers of electrons and holes depends

on the position of the Fermi level, for which we shall quote some results

only for extreme cases.

When donors or acceptors (but not both together) are present, which

produce discrete levels lying close to the conduction or valence band

respectively, the conductivity at low temperatures is dominated by the
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ionization of the impurity levels. The Fermi level at 0° K then lies

between the donor level and the conduction band, or between the

acceptor level and the top of the valence band (see Fig. 19.5). As the

temperature rises the Fermi level shifts because of a term similar to the

second term in equation (19.15), but involving ]n(NJNc) or \n(NJNv),

Donors X. Acceptors

Pig. 19.5. Variation of Fermi level when either donors or acceptors are present. At very
low temperatures the Fermi level lies midway between the impurity level and the
conduction or valence band. For small impurity concentrations (Nd < Ne orNa < Nv)

the level moves towards the centre of the forbidden band with rising temperature. At
higher temperatures the electron distribution is dominated by the intrinsic contribution,

and Wp is at the centre of the forbidden gap if mjj = m%.

where Nd and Na are the number of donor and acceptor levels per unit

volume respectively. Thus for donors we have

WF = i(Wd+Wc)+&T]n(NdINc) (ne ^Nd), (19.16)

showing that as the temperature rises the Fermi level will rise i£Nd>Nc ,

or fall ifNd <Nc .

In the exhaustion range the donor levels are fully ionized and ne
= Nd ;

in this case the Fermi level is given approximately by

Wr = We+kTMNM ine = Nd). (19.17)

IfNd < Nc the Fermi level lies below the conduction band, the number
of electrons excited into the conduction band is small compared with
the number of available states and they obey the classical statistics.

This condition is called 'non-degenerate'. On the other hand, ifNa > N
the Fermi level lies in the conduction band, and since ne

= Nd, the
number of conduction electrons is greater than the number of available

spates; this condition is called 'degenerate'. This situation is similar to
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that in a metal, where the exclusion principle limits the number of

electrons in a given energy range, and the electron distribution must
be treated by Fermi-Dirac statistics instead of classical statistics.

Similar results are obtained for acceptor impurities, provided we
count energy as increasing downwards from the top of the valence band
rather than upwards from the bottom of the conduction band (cf.

Fig. 19.4).

The importance of the Fermi level lies in the fact that its value is

equal to that of the thermodynamic potential O = U— TS-\-eV of the

electrons. If the electron distributions in two substances are in thermal

equilibrium with each other, then the values of the thermodynamic

potential in the two substances are equal, and hence so also are the

Fermi levels. Thus the position of the Fermi level plays an important

role in discussing the properties of junctions.

19.4. Optical properties

Semiconductors such as germanium and silicon look very much like

metals; they are opaque to visible light and have a high reflectivity.

This is because the quantum carried by a visible photon, which corre-

sponds to an energy roughly between 1-5 and 4 eV, is sufficient to

excite an electron from the valence band right across the forbidden

energy gap into the conduction band. If the absorption coefficient is

measured at longer wavelengths, a sharp drop in absorption would be

expected when the photon energy becomes smaller than the energy gap

Wg ; that is, at wavelengths such that Jiv < Wg . The change in the

absorption coefficient can be quite dramatic, from 104 to 105 cm-1 at

wavelengths shorter than the absorption edge, down to 10_1 cm"1 at

wavelengths beyond the edge, as illustrated in Fig. 19.6. The absorption

beyond the edge depends on the purity of the specimen, since impurities

produce levels in the forbidden band from or to which electrons can still

be excited by photons of lower energy.

An optical determination of the position of the absorption edge gives,

in principle, a direct measurement of the energy gap, whose accuracy is

limited by the fact that the drop in absorption is spread out over a small

but finite range of frequency. Careful analysis of the experimental

results in the light of a detailed theory of how the absorption coefficient

should vary with frequency in the vicinity of the absorption edge has

given quite accurate measurements of the energy gap, and shows

directly how it varies with temperature. However, care is needed in

the interpretation, through the presence of selection rules connected
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with the conservation of linear momentum. A photon of energy hv

carries momentum hvjc, which is negligible compared with the momen-
tum of a particle of non-zero rest mass (such as an electron) of the same

energy. As a result the momentum of an electron excited into the

conduction band must be the same as it was in the valence band before

10«-10»

m

-^lO"1

Less pure

-> X

Fig. 19.6. The absorption edge in a semiconductor such as

germanium. At short wavelengths the semiconductor is quite

opaque, since the light intensity falls as exp(—ax) ; at long wave-
lengths the absorption is higher in impure samples because of
electron excitation in and out of the impurity levels in the for-

bidden band. In germanium the absorption edge lies in the
infra-red at about 1-4

fj,
(14 000 A).

the absorption of a photon. A quantum-mechanical analysis shows that

the crystal momentum k must be conserved, so that we have a selection

rule Ak = 0. If the maximum of the valence band and the minimum
ofthe conduction band both occur at k = 0, as in Fig. 19.7, no difficulty

arises. This applies to InSb, but in germanium and silicon the conduc-

tion band has only a subsidiary minimum at k = 0, the deeper minimum
occurring at a finite value of k, as shown also in Fig. 19.7. Thus transi-

tions in the vicinity of k = do not determine the minimum value of

Wg , defined as the difference of energy between the top of the valence
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band and the bottom of the conduction band. It turns out, however,

that transitions such as that marked Ak ^ in Fig. 19.7 are allowed

(though much weaker) provided the lattice can supply or take up the

momentum required to make the totalmomentum oflattice plus electron

unchanged. This involves the creation or destruction of a phonon

jfc =

Fig. 19.7. Shape of the band edges against crystal momentum k for germanium. The
momentum of a photon is negligible, so that there can be no net transfer of momentum
on absorption. Either Ak = for the electron, or the difference in momentum when
Ak 7^ must be taken up by the creation or destruction of a phonon. For germanium
W„ = 0-75 eV at 0° K, but TF(k = 0)-Wc « 0-14 eV, so that the Ak ^ transitions

give a fine structure on the absorption edge.

(processes involving more than one phonon have negligible probability).

Transitions in which Ak = are known as direct transitions, and transi-

tions in which Ak =£ are called indirect transitions.

Excitons

When an electron is excited from the valence band into the conduction

band by a direct transition, a hole is created in the valence band whose
momentum must be equal and opposite to that of the electron in the

conduction band in order to make Ak = 0. The electron and hole there-

fore move apart in opposite directions. In the vicinity of k = 0, they

move apart rather slowly, and their mutual coulomb attraction begins

to play a role; finally at k = itself the electron and hole stay together.

Under these conditions their behaviour resembles that of an electron

and proton in a hydrogen atom; a better comparison is with an electron

and donor impurity atom, as discussed in § 19.2. Electron and hole may
move in discrete orbits about the mutual centre of mass, giving rise to

a series of energy levels

W = --'—

.

(19.18)
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where mr is the reduced mass given by the relation

= -*+-*•
mz ml

(19.19)

exciton levels

W = in equation (19.18) corresponds to separation of the electron

and hole to such a large distance that their mutual attraction is negligible

(i.e. to 'ionization' of the electron-

hole 'atom') and thus corresponds to

the bottom of the conduction band

at k = 0. A lower energy is obtained

when the electron and hole are to-

gether, so that the levels of equation

(19.18) lie just below the conduction

band (like those of a donor impurity

and bound electron), as shown in

Fig. 19.8. The energy is also of the

same order; if m* = m* = 2mr , the

energy levels are just half those

given by equation (19.2), and he

therefore very close to the conduc-

tion band.

The electron-hole bound pair is

known as an 'exciton' and has been

identified through its hydrogen-like

spectrum in some semiconductors

hv

Fig. 19.8. Exciton levels lying just below
the conduction band in the vicinity of

k = 0. The quantum of energy shown is

that required to excite an electron from
. , , , the valence band to the n = 2 level, and is

With large energy gaps, together sUghtlysmaUer than that corresponding to

with Cu2 and Ge. In germanium the absorption edge, which requires exoita-

excitons are associated bothwith the

direct and indirect transitions. In

the former case a sharp line spectrum would be expected at frequencies

just short of the energy gap at k = 0; in the indirect transitions the

electron-hole pair can be formed with finite momentum and possess

kinetic energy, so that the exciton levels are not sharp but broadened

into bands.

tion to the bottom ofthe conduction band
(n = oo).

Photoconductivity

When radiation whose wavelength is sufficiently short that the energy

quantum hv is larger than the energy gap is shone on a semiconductor,

electrons are lifted into the conduction band and holes created in the

valence band. The presence of this excess of carriers increases the
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conductivity, and the phenomenon is known as photoconductivity.

For small intensities of illumination the increase in conductivity is

approximately proportional to the intensity of the incident radiation,

and the conductivity change is an important method of detecting infra-

red radiation. Such a detector is sensitive only to wavelengths shorter

than the absorption edge; PbS can be used for wavelengths up to about
4/t, and InSb to about 7/t (these limits vary with temperature because
the energy gap and hence the absorption edge are temperature depen-

dent). Such detectors not only have a high sensitivity, but also have a

Incident
radiation semiconductor

'To
- amplifier

Rotating
chopper wheel

Fig. 19.9. Use ofphotoconductive effect in a semiconductor for the detection ofradiation.
The incident radiation is modulated in intensity by a mechanical 'chopper ', and produces
a variation in the resistance of the semiconductor at the modulation frequency. The
resulting alternating voltage across the resistance B is amplified by a narrow-band

amplifier tuned to the modulation frequency.

short response time (varying from 1CM to 10~7 sec) because the excess

carriers quickly disappear through recombination, etc. This makes it

possible to modulate the incident radiation (e.g. by a mechanical chop-

ping device) and obtain an a.c. signal which can readily be amplified

and detected, as illustrated in Fig. 19.9. The use of germanium doped

with suitable impurities makes it possible to construct detectors which

are sensitive to much longer wavelengths, the photoconductive effect

then being due to electrons excited into the conduction band from donor

impurity levels (or holes created by electrons being lifted into acceptor

levels from the valence band). Since the smallest separation of such

discrete levels from the adjacent bands is about 0-01 eV, suitably doped

samples are sensitive to wavelengths up to about 100 fx. Such detectors

must of course be cooled to a temperature where thermal ionization of

the impurity levels is unimportant.
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19.5. Transport properties

In addition to the energy gap Wg , the most important quantities we
require to know about a semiconductor are the numbers of charge

carriers of either sign, their effective masses, and their mobilities. The

best method of measuring the effective mass is by means of cyclotron

resonance, which is discussed in Chapter 23. Determination of Wg by
optical methods is possible only on very pure specimens, and in many
cases it can only be deduced indirectly, using equation (19.13). To bring

out the temperature dependence explicitly we rewrite this in the form

ne nh = (2-S3xl031)(m*mtlm*)iT3exv(-WglkT), (19.20)

where the units are metre-6 . At first sight the simplest method of

finding the number of charged particles would be measurement of the

Hall coefficient RH , whichfrom equation (18.26) is inversely proportional

to the number of carriers. Since this number is so much smaller in a

semiconductor than in a metal, the Hall effect is much larger (w 105 to

106 cm3/coulomb for pure Si and Ge at room temperature) and corre-

spondingly easier to measure. However, we are immediately faced with

the difficulty that the Hall coefficient changes sign according to whether

the current is carried by electrons or positive holes; in particular, in an

intrinsic semiconductor, with equal numbers of each, we would expect

the Hall coefficient to vanish. In practice this does not happen, because

the electrons and holes have different mobilities, and so carry different

fractions ofthe current. The general expression for the Hall coefficient is

H
\e\ (neb+nhf '

where b = /xJ/% is the ratio of the mobilities of electrons and holes, and

B is a coefficient not far from unity. The presence of B arises from the

fact that in a full analysis, different averages over the distributions of

velocity and relaxation time are involved in calculating the conductivity

and the Hall effect. For a metal or a degenerate semiconductor, 5=1;
for a non-degenerate semiconductor with thermal (phonon) scattering,

B = 37r/8, but for ionized impurity scattering B = 1-93.

Measurement of the Hall coefficient RH and the conductivity a makes

it possible to determine both ne and nh , using equations (19.1) and

(19.21), provided that the value of 6 is known. The direct measurement

of mobility is discussed below, but this is possible only with certain

substances such as silicon and germanium. In other cases we can

proceed only by making some assumptions about 6. In an intrinsic
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semiconductor, ne
= nh = nt , and we have the relations (n

t
per metre3)

nt
= (4-8 x 1015)(m*mtlm2)iTiexp(-W

g
j2kT) (19.22)

and i?s = :?_fcy. (19.23)

Although the mobilities we and uh both vary with temperature, their

ratio b does not vary rapidly in comparison with n{ , which is dominated

by the exponential factor in equation (19.22). Thus a plot of ln(RH T*)

against IjT should be a straight line, and this is found to hold for silicon

and germanium. The slope of the straight line yields a value ofWg , but

since Wg is itself temperature dependent, care must be exercised in the

interpretation (see Problem 19.2).

Another approximate method of finding Wg involves only measure-

ment ofthe conductivity. For an intrinsic semiconductor (or an impurity

semiconductor at high temperatures where the conductivity is domi-

nated by the intrinsic electrons), we have

a = \e\ni(ue+uh) (19.24)

and from measurement of the conductivity over a range of temperature

we can find the variation of n and hence determine the energy gap

provided we know how the mobilities vary with temperature. When the

mobility is determined by scattering processes due to lattice vibrations

(phonons) the mobility (see p. 557) should vary as T~ l
. Since from

equation (19.22) n^ varies as T*exp(—Wgj2kT), we should expect that

the conductivity would follow the law

a = a exp(—W„l2kT) (19.25)

so that the energy gap can be found from a plot of In a against IjT.

This method was used in early work, but such plots show a slight curva-

ture, indicating that the mobility does not follow a T~* law exactly.

Determination of the energy gap from the optical absorption edge

needs careful experimentation and interpretation, but it is the most
satisfactory method and the only one which gives directly the energy

gap at a given temperature. Use of the Hall effect or the conductivity

depends on assumptions about the mobility, whose experimental deter-

mination will now be discussed.

Measurement of mobility

The mobility ofelectrons and holes in semiconductors can be measured
directly by a method due originally to Shockley and Haynes. The
specimen is in the form of a narrow rectangular bar, about 0-05 cm
square and a few cm long. A steady voltage is applied between the ends
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to give a field of order 10 V/cm along the bar; two electrodes A, B are

applied to the specimen, as shown in Fig. 19.10. A short voltage pulse

of duration about 1 microsecond is applied to electrode A ; if the semi-

conductor is ra-type, and A is made positive in the pulse, electrons are

withdrawn from the semiconductor by the electrode; some of these may

Microsecond injection pulse, Oscilloscope

Fio. 19.10. Apparatus for direct measurement of mobility. The steady voltage applied

at extreme left produces a uniform field in the semiconductor bar under whose influence

a microsecond pulse of minority carriers drift from A to B. The mean drift velocity is

Ljt, where t is measured on the oscilloscope.

come from the valence band, creating an excess of holes in the semi-

conductor. To preserve electrical neutrality of the specimen, electrons

enter at any terminals which are negative with respect to A. One of

these is B, which is connected (through an amplifier) to the Z-plates of

an oscilloscope; this registers a voltage because of the flow of such

electrons through the resistance R. This pulse does not quite coincide

in time with the pulse at A, but the time delay is that required by an

electromagnetic wave set up by the disturbance at A to travel to B,

which is of order 10-10 seconds and quite negligible. The holes injected

at A are swept by the field towards B, and arrive a time t = Ljv later,

where L is the distance between electrodes A, B and v is the drift velocity

in the steady field. On arrival at B they appear as a second voltage

pulse on the oscilloscope, and the time interval t between the two pulses

can be determined from the oscilloscope trace by calibrating the time-

base. The voltage V between the electrodes A, B due to the steady field

is measured independently. Since the drift velocity v = uE = uVjL,

the time t = Ljv = L2/uV and the mobility is found from the relation

u = L2jVt. (19.26)
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In a typical experiment the value of t is about 30 /xsec. The second

pulse at B due to the arrival of holes is broader and smaller than the

first for two reasons: (a) diffusion of the holes in random directions;

for accurate results the holes must be swept from A to B in a time t

short enough to make diffusion effects small, and the voltage pulse

applied at A must be short compared with t; (6) holes are lost by-

recombination with electrons within the specimen.

To measure the mobility of electrons, all that would seem necessary

at first sight would be to use w-type material and apply a negative pulse

at A. This would inject electrons, creating a local excess, which is,

however, dissipated in an extremely short time (see Problem 19.3),

restoring the equilibrium concentration of electrons everywhere in the

semiconductor. In this case only the first pulse is observed at B, and
no second pulse. When a positive pulse is applied at A, with an tt-type

semiconductor, holes are created, and although electrical neutrality is

restored by an inflow of electrons, we have now a non-equilibrium

distribution with an excess of holes and a corresponding excess of

electrons. Equilibrium is restored only when the holes flow out at B,

or are annihilated within the semiconductor by recombination with

electrons. The net result is that we can measure directly the mobility

only of 'minority carriers'; i.e. of holes in an M-type semiconductor, or

electrons in a £>-type semiconductor. By observing the spread in the

second pulse at B the diffusion constant can be determined, and by
observing its size as a function of L or of electric field E the rate of

recombination can be found.

The quantity measured directly in such experiments is called the

'drift mobility', but in many semiconductors it cannot be so determined

because of rapid diffusion of the carriers. In that case the mobility,

when only one type of carrier is present, can be found from the conduc-

tivity and Hall effect, since then \RH \

= B/n\e\ and \BH a\ = Bu. The
quantity \RH o\ is often written uH and called the 'Hall mobility' to

distinguish it from the drift mobility.

Variation of mobility with temperature

The mobility of electrons or holes in semiconductors is limited by
scattering processes which are basically similar to those in metals, but

the temperature dependence of the mobility is very different for two
reasons. In a metal only electrons at the Fermi surface contribute to

the conduction current, and their velocity v is substantially independent

of temperature; hence we do not need to take into account any velocity
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dependence in a scattering cross-section. Similarly the fact that the

scattering cross-section determines the free path I, while the mobility-

depends on the relaxation time t = Ijv, does not of itself introduce any
temperature dependence. In a semiconductor, however, the average

kinetic energy of the charge carriers is « IcT, and the velocity variation

as T* plays an important role.

Measurements of mobility at various temperatures and different

impurity concentrations show that it is a function of both. In a pure

material the charge carriers are scattered by the lattice vibrations

(phonons); at all but the lowest temperatures (when impurity scattering

Table 19.2

Mobilities in elemental semiconductors

Silicon

Germanium

Electrons

(4-0xl0»)T- 2 - 6

(3-5 xlO^T-1 *

Holes

(2-5 xlO8)?-*3

(9-i x io8)r- 2- 3

The units are cm2/volt-seo, and the values are quoted from Ziman (1960), Electrons

and Phonons (O.U.P.).

dominates in any case) the scattering cross-section is proportional to the

mean square amplitude ofthe thermal fluctuations, and hence is propor-

tional to kT. This gives a mean free path I proportional to T~x which is

the same for all carrier velocities, and the relaxation time t = Ijv and

hence also the mobility should vary as T~!
. Table 19.2 shows that this

law is not very well obeyed, except for electrons in germanium. The

discrepancies may be due either to scattering by short wavelength lattice

vibrations where adjacent atoms vibrate in anti-phase (the so-called

'optical modes'), or to the complicated band structure (see Fig. 19.7),

both of which allow scattering processes with a large change in electron

wave vector (ordinary lattice scattering by the long-wavelength or

'acoustic' modes allows only small changes in electron momentum
because the phonon momentum is small). The observed mobilities in

silicon and germanium at room temperature are found from Table 19.2

to lie between about 500 and 4000 cm2/volt-sec, and are thus considerably

higher than those in metals (for copper the value is about 40 cm2/volt-

sec). The high mobility is partly due to low values of the effective mass

of electrons and holes in the semiconductors.

The scattering cross-section due to neutral impurities is inversely

proportional to carrier velocity, giving a relaxation time independent

of velocity and hence also of temperature. Charged (i.e. ionized)
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impurities will scatter carriers by a process analogous to Rutherford

scattering of alpha particles; the cross-section is inversely proportional

to the square of the carrier energy and hence varies as T~2
, so that the

mean free path varies as T2
. Since the mean velocity varies as 7*, the

relaxation time varies as T*. A special case of scattering by charged

particles is the mutual scattering of electrons and holes.

Table 19.3

Summary of dependence of electron (hole) scattering on

velocity v and temperature T

Scattering mechanism
Cross-section

a

Free path
Joc<t-»

Relaxation time

T = Ijv

Phonons (at ordinary temperatures)
Neutral impurities

Ionized impurities

T
V

V*

constant
4,3 =yt

The velocity and temperature dependence of these scattering mechan-
isms are summarized in Table 19.3. In a first approximation the rates

of scattering by different processes are additive; that is, we can write

(19.27)

At low temperatures the lattice scattering decreases as the lattice

vibrations die away, and the mobility is eventually dominated by the
impurity scattering.

Recombination and diffusion

At any given temperature there is an equilibrium concentration of
electrons and holes in a semiconductor, the two concentrations being
equal in intrinsic material and generally unequal in extrinsic material.

In the experiment of Shockley and Haynes we have seen that an excess

ofminority carriers can be injected at a contact, and to preserve electrical

neutrality there will be a corresponding injection of majority carriers,

possibly at another electrode. Any abnormal charge distribution caused
thereby vanishes in about 10-11 sec (see Problem 19.3), so that we can
write Anh = An

e , where Anh , Ane are the local excesses in the number
of holes and electrons respectively per unit volume. If we did not have
this equality, a space charge p = e{Anh—Ane) would be set up, which
by Poisson's equation

divE = p/ee = (e[ee )(Anh-Ane )

would give rise to strong electric fields. These would cause currents to
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flow which would neutralize the space charge in the time given above.

Obviously this current flow consists mainly of the more numerous

majority carriers, and the controlling factor is the departure from the

equilibrium value of the number of minority carriers. The fact that

Anh = Ane (in practice the equality is not exact, but departures from

it are very small and can be neglected for present purposes) means that

the fractional change in the number of minority carriers may be appre-

ciably greater than thefractional change in majority carriers. A number

of important devices described later in this chapter depend on changes

in the minority carrier concentration; such changes represent departures

from equilibrium, and the mechanisms by which they decay play an

important role in the design of such devices.

As mentioned in § 19.1, the charge carriers in a semiconductor have

a finite lifetime, but this varies widely with the purity of the crystal.

Simple recombination of an electron and a hole can only take place if

certain restrictions on momentum and energy are satisfied, and measure-

ments on very pure germanium show that this process would give a

lifetime greater than 10~2 sec. The observed lifetimes are generally

much shorter, owing to the presence of chemical impurities which

provide extra levels, known as 'traps'. In an n-type material, for

example, electrons may drop from the conduction band into such traps;

holes may then collide with these electrons to give recombination. The

energy and momentum considerations involved in this 'indirect' process

are much less restrictive than for the direct process of recombination,

and the lifetime of the carriers is correspondingly shorter. These pro-

cesses take place in the body of the semiconductor, but the discrete

levels at the surface (see p. 564) may also act as traps which promote

recombination through 'indirect' processes. A further loss of minority

carriers will also occur at the electrodes.

The chance of a hole and an electron recombining is proportional to

the concentration of each species; hence the rate of annihilation is

—anhne , where a is a constant which depends on the mechanism involved.

In thermal equUibrium the loss by recombination is balanced by the

creation ofnew carriers through thermal excitation into the conduction

band; if we denote the rate of creation by c, then clearly c = an\n%,

where n\, %\ are the equilibrium concentrations. When a departure

from equilibrium takes place we have

dnjdt = dnjdt = c~anhne
= a(n\n°e—nhne).

As mentioned above, the fractional change in the majority carrier
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concentration is much smaller than thefractional change in the minority

carrier concentration, and to a first approximation the former may be
neglected. Hence, taking for example the holes in an w-type material,

we may wri e
dnjdf ^ ano^no_n^ = -Anh/rh , (19.28)

showing that the rate of decay of the minority carrier concentration is

simply proportional to the excess of minority carriers. The quantity rh
is the 'recombination lifetime' of the minority carriers.

Recombination at the surface or extraction at an electrode causes a
local diminution in the excess of minority carriers; this is counteracted

by the movement of carriers from regions where they are more numerous.
This is a process of diffusion, and for small field strengths diffusion

currents are much larger than conduction currents. For simplicity, we
consider a case where the minority carrier density nh (taking again

holes in w-type material) varies only in one dimension. Then the number
crossing unit area per second is —Dh(dnhjdx), and the net rate ofincrease

in a thickness dx is d{—Dh(8nhl8x)} = —D^dhv^dx^dx, where Dh is

the diffusion coefficient for the minority carriers. In the steady state

this equals the rate of loss by recombination, which in thickness dx is

{(nh~nh)lTk}d%; hence we obtain the relation

This has a solution (writing Anh for (nh—n\))

Anh = (Anh ) exp(-xlLh), (19.30)

where (Anh) is the excess concentration at x = 0, and Lh = (Dh Th)* is

a measure of the mean distance a minority carrier will move under the

action of diffusion before it is lost by recombination. It is known as

the 'diffusion length' and is an important quantity in transistor design.

A typical value for germanium is 0- 1 cm for both holes in n-type material

and electrons in p-type material; typical values in silicon are smaller

by a factor of about three.

19.6. Metal-semiconductor junctions

To investigate the electrical properties of semiconductors it is neces-

sary to make electrical connexions to them. The behaviour of a junction

between a metal electrode and a semiconductor depends on the nature
and geometry of the connexion, as well as on the properties of the metal
and semiconductor, making a full treatment very complex. The most
important property ofsuch a junction is that the current flow for a given
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voltage is quite different in opposite directions, so that it acts as a

rectifier.

When contact is made between a metal and a semiconductor, a

potential difference is set up between the two in a similar manner to

that between two metals (the contact potential). For an n-type semi-

conductor whose Fermi level is above that of the metal, electrons pass

from the semiconductor to the metal until the two Fermi levels are equal.

This process is illustrated in Fig. 19.11. The excess negative charge on

Conduction band
/////////////

Fermi level

Before contact

Conduction
band

Fermi level

/ /Valence band.
Semiconductor

After equilibrium is established

Fig. 19.11. Energy bands and Fermi levels at a metal to semiconductor contact, before

and after equilibrium is established.

the metal repels electrons near the surface ofthe semiconductor, creating

a layer which is depleted of conduction electrons and so has a higher

resistance than the bulk of the semiconductor. This layer is known as

the 'barrier layer' and is a region of positive space charge because it

contains the ionized donor impurities without the compensating charge

of the negative conduction electrons. By Poisson's equation (equation

(2.1)) the potential will vary through the space charge layer, so that

there will be a potential difference V between the position ofthe bottom
of the conduction band at the surface and in the bulk semiconductor;

the energy bands are therefore distorted near the surface, as shown in

Fig. 19.11.

In equilibrium there will be no net current flow across the barrier,

but this is a dynamic equilibrium between a current —Id of electrons

flowing out of the metal into the semiconductor, and an equal current

851110 o o
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of electrons (and, to a much lesser extent, holes) leaving the semi-

conductor for the metal. The latter may be written in the form

/ exp(

—

eVlkT), since the fraction of the electrons which have sufficient

energy to surmount the barrier V is proportional to exp(—eVJJcT).

If a voltage V is now applied which makes the metal positive with

respect to the semiconductor, this extra voltage appears almost entirely

across the barrier since this has a much larger resistance than either

F

m

Conduction band

Vi
—f-

v.-r
/////

— —Fermi level

Conduction
band

LLL

-d-M

num,
Valence band

Metal Semiconductor

(6) No applied voltage

Metal
Valence band

Semiconductor

(c) Metal negative

(backward direction)

Metal Semiconductor

(a) Metal positive

(forward direction)

Fig. 19.12. Effect of applied voltage V at metal-semiconductor junction. In (a) a for-

ward voltage V is applied, reducing the barrier height to V — V, and giving a large current

flow of electrons from the semiconductor into the metal; in (c) a reverse voltage is

applied, increasing the barrier and reducing the current flow. Note the change with

voltage in the effective thickness of the barrier IS = j
——r*

I, and that the

Fermi level in the metal is depressed when the metal is made positive because of the

negative sign of the electronic charge.

the metal or the bulk semiconductor. The current leaving the semi-

conductor then becomes J exp{—e(V— V)lkT}, because the barrier

height is reduced from V to V— V; on the other hand the current leaving

the metal is still —Id , since the barrier which the electrons in the metal

have to surmount is unaltered (see Fig. 19.12). Since

Id = / exp(-eF/&n
the net current flow is

/ = Id{exp{eVlkT)-l}. (19.31)
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If V is positive and greater than (kT[e), large forward currents can
flow, while if V is negative / approaches —Id ; the current-voltage

characteristic therefore has the form shown in Fig. 14.15, and the
junction is an efficient rectifier.

This treatment gives a satisfactory qualitative treatment of the
rectifying properties, though agreement with experiment is by no means
exact. A satisfactory feature is that it gives the right sign for the
forward direction; that is, that the direction of easy flow of electrons

(for an rc-type semiconductor) is from semiconductor to metal. In an
early theory the flow of electrons through the barrier was ascribed to
the tunnel effect, so that the easy flow was from metal (where the
electron density is high) to semiconductor. However, the tunnel effect

is only appreciable when the barrier thickness is comparable with the
electron wavelength in the metal; i.e. less than 10~7 cm, whereas the
theory of a barrier due to a depletion layer gives a thickness of order
10-6 cm. A simple version of a theory for the barrier thickness put
forward by Schottky is as follows.

We assume that all conduction electrons are removed from the barrier
layer, so that the charge density p = eNd, where Nd is the number of
donors per unit volume (for simplicity we take these all to carry unit
charge, and all to be positively ionized; i.e. we are in the exhaustion
region). Let the surface of the semiconductor be the plane x = 0,

and the barrier extend from the surface to the plane x = 8, so that the
space charge becomes zero for x > S. Then the potential is constant
for x > 8, and the electric field vanishes at x = 8. In the barrier,

Poisson's equation reduces toW = atVlda? = -e2*y«r . (19.32)

Integration, using the boundary conditions dVfdx = (no electric field)

at x = 8, and V = at x = 0, gives

F= -(ea&/2ee ){(a:-8)»-8*}. (19.33)

Hence the difference of potential at the surface x = from that in the
interior of the semiconductor (x > 8) is

V = ei^82/2ee . (19.34)

Ifwe take e « 12 (as in silicon) andNd = 1018 cm-3 (1024 m~3
), 8 is found

to be about 3 X 10-« cm ifV is about 1 volt.

A difficulty in the Schottky theory is that V should be equal to the
difference in the work functions of metal and semiconductor, and hence
Id ,

which is proportional to expf-ePy&T7

), should depend on the metal
used, whereas experimentally it does not. To overcome this difficulty
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Bardeen put forward the idea of 'surface states'. At the surface of the

semiconductor the atomic arrangement is different because there are

no atoms on the one side with which to form bonds. Thus the surface

atoms have different energy levels, and these levels are discrete because

bands are only formed from the levels of atoms which are identical.

There may also be impurity atoms absorbed on the surface. Those

surface levels which he below the Fermi level of the semiconductor will

be filled by electrons which drop into them out of the conduction band,

giving a negative charge on the surface which repels electrons near the

surface. This gives a depletion layer just inside the surface, which acts

as the barrier. IfNs is the number of surface states per unit area, and

Nd the number of donors per unit volume, then the thickness 8 of the

barrier will be determined by the relationNg
= Nd S if we assume that

all the conduction electrons for a distance S are drawn into the surface

states. Application of Poisson's equation to the barrier layer yields

equation (19.34) as before, but on writing S = NJNd we have

V = eNU2*eoNd . (19.35)

This equation shows that V depends onNs andNd for the semiconductor

and is independent of what metal is used to make the contact; in fact

the barrier layer exists in the absence of any contact.

The discussion above has been on the basis ofan w-type semiconductor,

but similar arguments apply to a #-type semiconductor if holes are

substituted for electrons (thereby reversing the direction of easy current

flow). Thus a metal-semiconductor junction will act as a rectifier.

However, in order to use it two junctions must be made to complete a

circuit, and since the forward direction will be in the opposite sense at

the two junctions, no rectifying action will result unless the two junctions

are different in nature. At microwave frequencies one junction must be

very small in cross-section, since otherwise the capacitance between the

metal and bulk semiconductor across the barrier layer acts as a short

circuit, the current flowing as .displacement current through this capaci-

tance instead of real current through the barrier. This small contact

is made by a thin metal whisker (usually tungsten) pressed against the

semiconductor (see Fig. 14. 1 6) ; the other contact is soldered and oflarge

area, so that it offers little resistance (and large capacitance) to the flow

of current in what would otherwise be its 'backward' direction.

Such fine contacts have a relatively high resistance, since the current

has to spread out from a fine point through the interior of the semi-

conductor, and they cannot carry more than a few mA of current. At
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power frequencies semiconductor-metal junctions of large area can be

used; the second contact is soldered, in such a way that the semiconductor

surface is doped to make almost an ohmic contact. In the past both

Cu2 and selenium have been used for such power rectifiers, but semi-

conductor-metal junctions for this purpose have now been superseded

by junctions between two parts, differently doped, of a single semi-

conductor crystal.

Valence band

. ///////////////////////////

Fig. 19.13. Energy bands and Fermi levels at a y-ra junction, before equilibrium is

established.

19.7. The p-n junction

Single crystals of a semiconductor (usually germanium) can be pre-

pared in which one end is doped to make it p-type, and the other end

n-type, the change from p-type to n-type taking place in a region whose

thickness is of order 10-6 cm. Such a unit is called a p-n junction. The
p-type material is made by doping with a concentrationNa of acceptors,

the n-type by doping with a concentration 2V^ of donors; obviously there

will be a narrow region at the junction where the doping concentration

varies from one extreme to the other, but provided this region is small

in width compared with the thickness of the barrier region estimated

below, we can regard the change from^-type to n-type as discontinuous.

In germanium doped with group III and group V impurities the ioniza-

tion potential is so small that at room temperature we can regard the

donors and acceptors as fully ionized (i.e. we are in the exhaustion

region).

The energy level situation shown in Fig. 19.13 is not stable and could

only exist if the n-type and p-type material were in separate crystals.

There is an excess hole concentration in the p-type, and excess electron

concentration in the n-type, so that when they are in the same crystal

holes will diffuse to the right and electrons to the left, each giving a
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positive current to the right. This gives a positive potential to the

M-type material, so that the energy levels of its electrons are lowered

because of their negative charge. This process continues until the Fermi
levels of the two halves are equalized, as in Fig. 19.14. The difference

of potential between the two halves means that strong electric fields

exist near the junction, and these sweep out the mobile carriers in the

j>-type

Fermi level

»-type

Fig. 19.14. Energy bands and the Fermi level at a p-n junction, after equilibrium is

established. The n-type becomes positively charged, so that its electrons have lower

potential energy.

vicinity of the junction, giving a barrier layer of high resistance. The
whole of the potential drop occurs across this barrier layer; removal of

the holes in the barrier layer on the p-type side leaves a negative space

charge of —eNa per unit volume, and removal of electrons on the n-type

side leaves a positive space charge of -f- eNd per unit volume, as shown in

Fig. 19.15. We may apply Poisson's equation to the barrier layer, mak-

ing the same kind of simplifying assumptions as in the treatment of the

metal-semiconductor junction. Let the change from p- to n-type occur

discontinuously at the plane x = 0, and let the barrier thickness be 8^,

and 8„ on each side respectively. Then, taking V = 0, at x = Owe have,

using the boundary conditions dVjdx = at x = — 8p and at x = +Sm :

x < x >
dW
dx*

2ee,

+^
r
a ((*+S*) 2-SI}

dW
dx%

~~

2€€„

eN„

{(s-S
fl
)'-8»}
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Thus the overall potential difference VQ between the w-type material

and the p-type material is the difference between Vn , the value of V at

x = Sn , and Vp at x = —8p
. This is

e
V VP

2ee,
{«+«}. (19.36)

x = —dr x

iZ „

x = dn
I

+ + + +
+ + + +
P =e.Nt

+ + + +
+ + + +

p--e&

2>-type

dV
dx

n-type

=

Fig. 19.15. Space charge density at a p-n junction, on the simplified model used in

the text.

From the fact that dV/dx must be continuous at x
additional condition #A ^8,

we obtain the

(19.37)

Finally, comparison of Figs. 19.13 and 19.14 shows that

4y»-V„) = WFn-WFp « Wg , (19.38)

where WFn , WFp are the Fermi levels in n- and #-type as shown in

Fig. 19.13; in the exhaustion range these he close to the bottom of the

conduction band and top of the valence band respectively, so that the

energy difference is nearly equal to the energy gap. If we take

Na = Nd = 102* m-»,

then for germanium the width of the barrier (Sn+Sp ) is found to be

about 5 X 10~6 cm.

The fact that the barrier layer has a very much higher resistivity than
that ofthe bulk materialmeans that any external voltage applied appears
almost wholly across the barrier layer; there is little potential variation

in the bulk material and currents near the barrier are due to diffusion.



S68 SEMICONDUCTORS [19.7

Majority carriers which cross the barrier become, of course, minority

carriers on the far side; for example, holes leaving the p-type material

on the left of Fig. 19.14 become minority carriers on entering the ra-type

material on the right. This creates an excess of minority carriers at the

barrier edge, giving rise to a diffusion current away from the barrier

which is the controlling factor in the steady state for the net current

flow across the barrier. From equation (19.30), we have for holes in the

^^e Anh
= (Anh)

exV{-(x~Sn)ILh},

where (AraJ is the excess concentration at x — 8n , the right-hand edge

of the barrier. The diffusion hole current density is

jh = -eDh(8nhl8x) = e(Anh)Q(DhILh)exp{-(x-8n)!Lh}

= e(Anh)
(DhILh)

at the barrier edge. A detailed analysis shows that, as we might expect,

the hole concentration at x = Sn is proportional to the density of holes

in the p-type material which have sufficient energy to surmount the

barrier. If an external voltage V is applied which makes the n-type

material less positive, the voltage across the barrier becomes (V— V)

and hence (nh) = A exp{—e(V— V)/kT}. In the absence of any external

voltage (%) is just equal to the equilibrium hole density nh in the

n-type material, so that nh = J.exp(—eVJkT) and

(A%) = (nh)
-nh = nh{exp(eVjkT)-l}.

This gives jh = e{nhDh\

L

h){exp(eVIJcT)-l}

and a similar equation is obtained for the flow of electrons across the

barrier to the left. Hence the total current density across the junction is

where nh , Dh , Lh refer to holes in the n-type material and ne , De , Le to

electrons in the ^p-type. This emphasizes the role played by the minority

carriers.

This equation, due originally to Shockley, is similar to that obtained

in the previous section for a metal-semiconductor junction, and a p-n

junction acts as a rectifier. It can be controlled in production much

better than a metal-semiconductor junction because of the absence of

an external surface. The forward resistance is lower than in a thermionic

vacuum tube diode because of the high density of majority carriers in

a solid, but there is a small back-current, and the junction cannot

withstand such high back voltages. This is because at high field strengths
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the carriers gain sufficient energy from the field to excite electrons from

the valence band into the conduction band, producing more carriers.

This is an avalanche process, and similar to the Townsend discharge in

a gas, so that the back current increases very rapidly beyond a certain

voltage.

Both germanium and silicon are used for p-n junctions. Germanium

has the smaller energy gap, giving a bigger carrier density. The mobility

is also somewhat higher, so that the forward resistance is lower than

Conduction band / p-type

/////////////////////J \//////////////////////
_ _ _ — _ _ — — — — — Fermi level

n-type 1////////\ n-type

nnnnnnnnn/n/////////}nnnnmnn/nn/h
Valence band

Fig. 19.16. The energy bands and Fermi level in an n-p-n junction without external bias.

for silicon, but the back current is higher (in germanium the value of Id
at room temperature is about 10-5 A/cm2

). Silicon can be operated at

higher temperatures before thermal ionization across the energy gap

increases the back current and drops the rectification efficiency appre-

ciably. The absence of a heated cathode requiring its own power supply,

better reliability, and longer life give solid-state rectifiers a great advan-

tage over vacuum tube devices.

19.8. The junction transistor

The junction transistor is a single crystal of semiconductor (usually

germanium) in which different regions are doped in such a way that a

very thin layer of p-type material is produced between two n-type

regions, or vice versa. For convenience we shall restrict our discussion

to the former, but it applies equally to the latter if we interchange the

roles of holes and electrons. A transistor may be regarded as two p-n
junctions back to back, the p-type material in the thin central section

(known as the base) being common to both junctions. When no external

voltage is applied, the electron energy diagram is readily seen from the

considerations of the preceding section to be as illustrated in Fig. 19.16.

In operation the device is connected to batteries as shown in Fig. 19.17,
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a larger voltage being applied to the 'collector' side, so that the electron

energy diagram now becomes as shown in Fig. 19.18. The potential

across the left-hand junction is reduced, so that a large current of

1

emitter junction collector junction

emitter »-type base p-type

'©
+

collector n-type

(!-«)»'.

emitter bias battery collector bias battery

Fig. 19.17. Bias voltages applied to an n^-p-n junction in normal operation. As shown,
the circuit applies to grounded base operation, the signal voltage ve being applied at the

emitter electrode to give an amplified voltage across the load resistance R in the collector

circuit. The arrows show the direction of electron flow.

emitter bias

Conduction band

emitter n-type

-Fermi level-

fcase p-type

Fermi level

collector »-type

collector bias

Fermi level

Valence band,

Fig. 19.18. Electron energies in a correctly biased n-p-n junction.

electrons (the majority carriers in the n-type region) can cross into the

central p-type region. The region to the left is known as the 'emitter',

and the junction to the left as the 'emitter junction'. On arrival in the

central p-type region these electrons become minority carriers, and

diffuse through the right-hand junction (the 'collector junction') since
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the potential drop is in their favour, and arrive at the collector electrode.

With suitable geometry in the base region (e.g. thickness about 10-3 cm,

cross-section a few millimetres) practically all the emitter current goes

on to the collector, and very little flows to the base electrode.

The emitter junction is essentially an n-p junction operated in the

forward direction. Thus its internal resistance is low, and a small change

ve in the emitter voltage produces an appreciable change ie in the emitter

current I
e . If a fraction a of this current reaches the collector, then the

collector current change is ic
= <xie . If a resistance R is connected in

the collector circuit, the voltage change across it is

v„ = Ric
= <xBie = <xR(dIJdVe)ve .

Thus a voltage amplification is obtained provided that uR(dIJdVe) is

large compared with unity. Since a « 0-98, this requires that the load

resistance R be large compared with the input resistance (dVJdIe); it

is possible to fulfil this condition without materially reducing the

voltage at the collector provided that R is not as great as the collector

junction resistance, and since this is a p-n junction working in the

backwards direction its d.c. resistance is high. Typical values are

dVJdIe = 40 ohms, R = 30 000 ohms, giving an amplification of

about 700.

In contrast to a vacuum tube triode, the input impedance is quite low.

If we make the approximation a = 1, so that no current flows out at

the base electrode, then the transistor circuit with grounded base con-

nexion is quite similar to that of Fig. 14.8, and the voltage amplification

is equal to the ratio of the impedances in the collector and emitter

circuits, since the same current flows through each. In practice the

emitter impedance is generally smaller than the internal impedance of

the generator connected in series with it, so the amplification is more
nearly equal to the ratio of the load impedance to the input generator

impedance. The common base connexion circuit that we have described

has a current gain ijie = a, which is less than unity, but other circuits

are possible with either common emitter or common collector circuits.

These have current gain, since the base current is ib
= ie—ic

= (1— a)ie ;

thus the current gain in the two alternative circuits is ic\ih
= a/(l— a.)

or ijib = 1/(1—a) respectively, being in the region 50 to 100 in each

case. The common emitter circuit, in which the collector circuit is

connected back to the point E in Fig. 19.17 instead of to the point B,

is the one generally used in practice, since it gives current, voltage, and
power gain.
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Transistors can be used to perform most of the functions ofvacuum

tubes, and have many advantages. They are smaller (less than 1 cm3
),

more rugged, and have longer life; they require no filament power supply,

and electrode potentials of a few volts rather than 102 volts are needed,

giving much lower power dissipation; the use oip-^n-p transistors as well

as Tir-p-^i produces greater flexibility in circuitry. Their disadvantages

are : smaller power handling capacity, greater susceptibility to damage

through over loading, and greater sensitivity to ambient temperature

(in particular, both the reverse current flow across the junctions due to

diffusion, and the emitter resistance dVJdIe are considerably dependent

on temperature). Transit time effects produce appreciable phase shifts

in the region of 10* c/s rather than at 108 c/s, so that the circuits used

must be designed to cope with such effects at much lower frequencies

than with vacuum tubes. Even at audio-frequencies transistor circuitry

is considerably different from vacuum tube circuitry because of the low

input impedance of the transistor.
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PROBLEMS
19.1. Show that the energy levels of an 'atom' consisting of a positive charge

equal to that ofthe proton, with an effective mass m%, and a negative charge equal

to that ofthe electron, with an effective mass mf, moving in a medium of dielectric

constant e, are those given by equations (19.18) and (19.19).

Show that the binding energy of a donor impurity level in silicon (mj* = oo,

mf/m = 0-4, e = 11-5) is about 0-041 eV, and that the Bohr radius is about 6-5

times the inter-atomic distance (2-35 A).

19.2. In many semiconductors the energy gap varies linearly with T over a fair

temperature range, though it tends to a constant value at low temperatures.

Show that if Wg = Wg—aT, then a plot of ki(RH T*) against 1/T gives a straight

line whose slope gives the value of Wg . Show also that the effect of the tempera-

ture variation of Wg on equation (19.22) is to replace Wg by Wg
and to increase

the apparent value of the product (mfmfi) by exp(2a/3fc).

19.3. By combining equations (1.20), (3.3), and (3.5) show that any abnormal

charge distribution in a conductor ofconductivity a, dielectric constant e, vanishes

in time as p = p exp(— t/r), where t = ee /o\ Show that for germanium where

e = 16, or = 10 (ohm-metre)-1, the value of t is about 1-4 x 10-11 sec.

A sample of germanium contains 1018 holes/m3. Show that the presence of a

net space charge equivalent to 1 per cent of the hole concentration would give

rise to an electric field gradient of about 10' V/m3
.
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19.4. When an external bias voltage V is applied to a p-n. junction with a high
resistance barrier, the voltage across the barrier in equation (19.33) becomes
K—fp = V+Vg, where |e| V„ = W„. Show that the total charge ±Q in each of the
space charge regions of Fig. 19.15, whenNa = Nd = NIt is given by

Q = (eeaeNt)i(V+Va)i per unit area.

This is a function of the applied voltage, and the barrier acts as a capacitance
for a.c. voltages of magnitude

C = (dQ/dV) = i(€c eAr
/)*(F+^)-* per unit area.

Special junction diodes of this type are used as variable capacitors (since C is

a function of V) in the parametric amplifier (§ 16.5).

19.5. Verify that the capacitance derived in the previous problem is the same as
that ofa parallel-plate capacitor with plate separation equal to the barrier thick-
ness and filled with dielectric of relative permittivity e.

19.6. In a crystal the velocity ofa particle is given by the relation ftv = gradj. W,
where grad* = ixia/Bk^+i^d/dk^+i.ld/dk^, in which ix, etc., are unit vectors
along the x, y, z directions. Show that in general v is not parallel to k unless it

is along one ofthe axes, for a particle whose energy W is given by equation (18.14).
Show that with respect to axes (x't y', z') which are derived from the (a;, y, z)

axes by a rotation through an angle d about the j/-axis, equation (18.14) becomes

+2k'x k'z sine cose{\ U).

Hence show that the effective mass for a particle for which k is along the z'-axis is

1 8%W sw?d coa*0

K* dk'} ~ m* +~m*~"

(to*-1 is a tensor quantity, and cross-product terms such as k'x k'z, etc., are absent
only when a suitable choice of axes (usually dictated by the crystal symmetry)
is made.)

19.7. For a semiconductor in the infra-red, where wt> 1, the effective conduc-
tivity (see Problem 18.2) becomes </ = a /(l+to2T2 ). Show that an electro-
magnetic wave will fall in intensity inside the semiconductor as W = W exp(— ax)
where

neoca+coV2
)

provided that k < n in the complex refractive index n—jk. Calculate the value
of a for a sample of germanium in which n = 4, ct = 10 (ohm-metre)-1, at a
frequency where cor = 100.

{Answer: a, — 10_1 per metre, approximately.)



20

THE ATOMIC THEORY OF PARAMAGNETISM

20.1. A general precession theorem
In Chapter 8 the origin of paramagnetism was discussed, and it was
shown to exist in substances containing permanent magnetic dipoles.

Such dipole moments are associated with moving charges, being due
either to the motion of electrons in their orbits about the atomic nucleus
or the spin of the electron about its own axis. From observations of
hyperfine structure in atomic spectra it was inferred that the nuclei
of many types of atom also possess 'spin' due to rotation about an
internal axis, and that a magnetic dipole moment is associated with this
spin. In all these cases the magnetic moment is associated with some
units of angular momentum, and the direction of the magnetic moment
m is parallel to that of the angular momentum vector G, and propor-
tional to it. Thus we may write (cf. equation (8.2))

m = yG, (20.1)

where y is a constant whose reciprocal (1/y) is known as the gyromagnetic
ratio. For an electron of charge — e and mass m moving in an orbit,

y is equal to the classical value —e/2m ; the magnetic moment asso-
ciated with the intrinsic spin of the electron is anomalously large, the
ratio being in this case very nearly equal to —e/m . The minus sign in
each of these cases arises from the fact that the charge carried by the
electron is negative, and shows that the magnetic moment is oppositely
directed to the angular momentum vector. In the case of the nucleus,
the angular momentum is of the same order as that of an electron, being
either a small half-integral or integral multiple of ft, but the magnetic
moment is « a thousand times smaller, corresponding to the greater
mass of the particles (proton and neutron) in the nucleus. The value
of y is then gn(e/2M), where M is the mass of the proton, and gn is a
number which is of the order of unity but is not in general an exact
integer or a simple fraction.

When an atom or nucleus with a permanent magnetic dipole moment
m is placed in a steady magnetic field B, a couple is exerted on it which
may be written in vector form asm A B. The angular momentum must
therefore change (either in magnitude or direction) at a rate equal to
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this couple: that is a, . -r,

Sincem is proportional to and parallel to G, we have

G = yGAB. (20.2)

This is a vector equation whose solution is easily found by writing down
its components referred to Cartesian coordinates. If the magnetic field

is assumed to act along the z-axis the components are

Gx = yBGy \

Gy
= -yBOx . (20.3)

#. = J

Integration of the last equation shows that the component Gz along the

z-axis is a constant. It follows that the angle a. which G makes with B
is constant, and we may write Gs

= G cos a. The equations for the x-

and ^-components may be solved by differentiating one of them and
eliminating either Gx or Gy . One finds

Gx = yBGy = -{yBfGx
with an identical equation for Gy . The solution is of the form

Gx = Aooa(-yBt+e),

and from equation (20.3) we find

Gy = Asia(—yBt+e).

Thus it will be seen that the projection ofG on the xy-plane is ofconstant

magnitude A— Crsina, but rotates with the angular velocity —yB,
which we may write as wL . Thus our solution for the components ofG is

Gx = G8m<xcoa(a)L t-{-e)
y

Gy = G, sinasin(a>i <+e) . (20.4)

Gs = G cos a

The motion is such that the magnitudes of bothm and G remain con-

stant, but their directions 'precess' at a constant angle about the

direction of the field B as in Pig. 20.1. The angular velocity of the pre-

cession depends only on the gyromagnetic ratio and the size of the

magnetic field. The direction of precession is that of a right-handed

screw progressing along B if y is negative, and vice versa. The angle a
depends on the initial conditions prevailing when the magnetic field

was switched on.

Although we have chosen to solve equation (20.2) by the use of a
Cartesian coordinate system, we could have derived a certain amount
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of information about the motion by inspection of the vector equation

(20.2) itself. Since the vector product of two vectors is a vector perpen-

dicular to both, it follows that G is normal to G and to B. Thus, in

Fig. 20. 1 , if instantaneously both G and B are in the plane of the paper,

the motion of G must be normal to the paper. This means that if the

+B

6 sin a

Fig. 20.1. Precession of G about B. The direction of precession is that for an
electronic momentum (y negative).

momentum vector G is drawn from a fixed origin, then its tip must move
out of the paper, and since G always remains normal to G, the tip must

move in a circle around B, i.e. the angular momentum vector precesses

around B.

This processional motion, originally derived in a theorem due to

Larmor, is a quite general result, depending only on the connexion

between angular momentum and magnetic dipole moment. In a quan-

tum mechanical system, such as the atom, the angular momentum plays

an important role, as is well known from atomic theory. In the next

section we turn to consideration of the magnetic moments of single

atoms, making use of our general precession theorem. The chief differ-

ence we shall find from the classical case considered above is that the

angle a is now fixed by the rules of quantization, only a small number
of values being possible, instead of any value.

20.2. The vector model of the atom

An understanding of the origin of magnetic moments in atoms is pos-

sible only when one has a thorough knowledge of the quantum theory of

the behaviour of the electrons in the atom. A comprehensive discussion

of this theory is far beyond the scope of this book, and it is therefore

necessary to assume the reader is acquainted with atomic structure to
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the extent given in most elementary textbooks of atomic physics. The
outline which follows is intended only as a resume of the theory, mainly
in terms of orbits rather than wave functions. The results quoted will

be those appropriate to the wave-mechanical theory, however, unless

otherwise indicated.

The state ofan electron in an atom is defined by four quantum numbers
n, I, ra^ and s, whose significance is as follows. The principal quantum
number n has integral values from unity upwards, and the energy of the

electron is mainly determined by the value of n. On the original Bohr
theory the energy depended only on the value of n, its value being, for

an atom with only one electron,

wn = ~^r> (20.5)

where R is a universal constant (Kydberg's number), and Ze the charge

on the nucleus. The same result is obtained by wave mechanics for a
one-electron atom, but this result does not hold for atoms with several

electrons owing to the electrostatic repulsion between the electrons. For
most atoms it remains true that electrons with the lower values of n
have the lower energy, and the difference of energy for successive values

of n decreases as n becomes larger (cf. Fig. 20.2).

The quantum number I is defined by the value of the angular momen-
tum whichthe electron possesses in its orbit around the nucleus, this being

equal to *J{l(l+l)}H, where h = h\1-n, and h is Planck's constant. The
allowed values of I are integral, from up to (n— 1) for an electron whose
principal quantum number has the value n. Since the electron is charged,

its motion in an orbit is equivalent to a circulating current, and a mag-
netic dipole moment is associated with the orbit which has the same
value as that to be expected on classical theory. That is, a moment

tn = (-e/2ra )VW+l)}£ = -(e£/2ra )VW+l)}.

If the angular momentum is represented by a vector 1 normal to the

plane of the orbit of length proportional to *J{l(l-{- 1)}, then the dipole

momentm is parallel to 1 and proportional to it. The minus sign shows

thatm and 1 have opposite directions, owing to the negative charge

possessed by the electron. We see also that the Bohr theory gives us

a natural unit of atomic dipole moment, equal to (e#/2m ). This is known
as the Bohr magneton, and its magnitude is

0-9273 X 10-23 ampere-metre2 (0-9273 X 10-20 e.m.u.);

it will be denoted by the symbol /?.

851110 p p
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Since each orbit has a magnetic dipole moment associated with it, the

precession theorem of § 20.1 shows that in the presence of a magnetic

field the dipole moment, and hence, also, the angular momentum vector,

will precess about the direction of the applied field. Each vector makes

a constant angle with this direction, and the component of the angular

Sodium Hydrogen
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Fig. 20.2. The energy levels of sodium compared with those of hydrogen. For sodium
the levels are those of the single electron outside the closed shells Is 2

, 2,s
2

, 2p". For the

higher values of n the levels approach closely those of the hydrogen atom. This is

because at large distances from the nucleus the electric field is that of the nuclear charge

+Ze surrounded by (Z— 1) electrons, and hence (by Gauss's theorem) is that of unit

positive charge. Orbits with lower values of n penetrate the closed electron shell and
so feel a greater positive charge, giving a lower energy. This is most marked for the

'penetrating' s-orbits.

momentum in this direction is therefore constant. On quantum theory

the magnitude of this component must be an integral multiple of h,

and it is written m^, where m
l
is called the magnetic quantum number.

It may take all integral values (including 0) between -\-l and —I, as in

Fig. 20.3. Since the magnetic moment is proportional to the angular

momentum, it follows that the moment associated with the orbit has a

fixed component parallel to the direction of the magnetic field of magni-
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tude — m,)8, together with a component of magnitude {1(1+1)— m?}*/?

which rotates in the plane normal to the field. The angular velocity

of precession a> =— (e/2m )B, which is the same as the classical value

given by Larmor's theorem. Note that the

projection ofthe angular momentum on the

field has the value mft, not ^{m/wj+l)})?;

it is a general feature of wave mechanics

that the absolute magnitude of the angular

momentum associated with any quantum
number such as I has the value j{l(l+l)}}i,

while components of angular momentum in

a given direction are of the form m^, where

mi is the associated magnetic quantum
number.

The electron also possesses, in addition

to its orbital motion about the nucleus, a
spin about its own axis, whose angular

momentum is equal to ^J{s(s+l)}fi, where s

is the electronic spin quantum number and
is always equal to J. With the rotating

charge of the electron is associated a mag-
netic moment Fig. 20.3. Quantization of orbi-

tal angular momentum. The
figure is drawn for the case of

1 = 2.

= -9sN{Hs+i)}.

Here the coefficient gs is inserted because the ratio of the magnetic

moment to the angular momentum differs from the classical value

(corresponding to gs = 1). For a long time it was thought that the

value of gs for the electron spin was exactly 2, but it has now been

shown both experimentally and theoretically that the value is

2(l-001160±0-000002):

for our purpose it is sufficient to omit the correction and assume that

gs is 2 for electron spin. In an atom there are relativistic and diamagnetic

corrections to both the orbital and spin magnetic moments (of order 10-6

to 10-4
), which we shall neglect. The minus sign in the expression for

the magnetic moment shows that it is oppositely directed to the angular

momentum vector, owing to the negative charge of the electron, as in the

orbital case. In a magnetic field both the spin angular momentum and
its magnetic moment precess about the direction of the field, as in Fig.
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20.4, the steady component of the angular momentum in this direction

having one of the values ±|^, and the corresponding steady component

of the magnetic moment having the values Tl^jS « =p/?. Note that

these components amount to one Bohr magneton, though the spin is half

integral.

In an atom containing a number ofelectrons, the total angularmomen-
tum will be the vector sum of the individual momenta, both orbit and

Fig. 20.4. Quantization of spin angular momentum s

spin. In general this vector sum can be formed in a number of ways,

with a number of different resultants. To know which of these is correct

or, if several are allowed, which corresponds to the state of lowest energy

(the ground or normal state of the atom), we need to know more about

the mutual interactions between the various electrons. We shall see that

these can be expressed in the form of a set of rules for coupling together

the angular momenta in forming the vector resultant. These rules are

subject to one overriding condition, expressed in the well-known Pauli

principle: 'no two electrons in the same system can be in states with

identical sets of quantum numbers'. When applied to an atom this

means that no two electrons can have identical sets of values for n, I, m^
and ms , where ms is the magnetic quantum number associated with the

electron spin. Since ms can only have the values ±£, it may be omitted
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if we restate the rule as: not more than two electrons can have identical

sets of quantum numbers n, I, rrij. Here it must be understood that any

two such electrons must be in the states ms
= +\ and — \ respectively.

The Pauli principle shows that there is a limit to the number of electrons

with any given quantum number in a given shell. We have already seen

that only two electrons can have identical values of n, I, wij. Sincem
l
can

only have the (21+1) values I, l—l, 1—2,..., —(l—l), —I, only 2(21+1)

electrons can be in a subshell with a given value of I. Again, since I can

only have the values (»— 1), (n— 2),..., 1, 0, only

2{(2n—l)+(2n—3)+...+3+ l} = 2n2 electrons

can have a given value of n. Whenever electrons occupy all the possible

states corresponding to a given n, we have a 'filled shell', and similarly

when all possible states for a given n, I are occupied, we have a 'filled

subshell'. The occurrence of these filled shells gives a similarity between

different elements, expressed in the 'periodic table'. From the point of

view of magnetism the most important property of a closed shell is that

its resultant angular momentum is zero, which can be seen as follows.

When we have two electrons withms
= +\ and —J, the total projection

oftheir spin momentum on any axis (such as that supplied by an external

field) is +\— \ — 0. The precessing components also vanish, as we

should expect from the fact that the total angular momentum should

be ^/{0(0+l)}% — 0. Similarly, for any given value of I, when we have

electrons occupying all the states m
t
= I, (l—l), (1—2),..., —(l—l), —I,

the total projection on any axis adds to zero, and the total orbital angular

momentum is also zero. Since in the case either of spin or orbit the

associated magnetic moments are proportional to the angular momenta,

it follows that the resultant magnetic moment is zero when we have a

closed subshell (n, I). Thus the magnetic moment of an atom is due only

to the unfilled subshells.

Our next problem is that of how to couple together the angular

momenta in a partly-filled subshell. This depends on the mutual inter-

actions between the electrons, of which the two principal types are as

follows:

(a) Mutual repulsion between the electrons, due to their electrical charge.

When this is treated by wave mechanics an unexpected result is found.

The energy of the system contains two terms, one corresponding to the

classical coulomb interaction, the other known as an 'exchange energy',

because it appears to be connected with an exchange of any pair of

electrons between the states we assigned to them before including the
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effect oftheir mutual repulsion. These exchange forces have no analogue
in classical theory, butplay an important role in atomic theory. Bymeans
of the Pauli exclusion principle, their effect can be shown (see § 21.9)

to correspond to a strong coupling between the electron spins, this

coupling being such that within an atom the state with the spins parallel

is more stable and has the lower energy. The energy of interaction of
this coupling may be written in the form W = —2/^ s{ . sp where s^, s^

are the spin vectors, and ^ is called the 'exchange energy', being
positive for any pair of electrons within a given atom but varying in

magnitude, depending on their orbital quantum states. Thus with a
number of electrons, the primary effect of the exchange forces is to

couple together the various vectors ait Sj to form a resultant S, which
in the state of lowest energy has the largest possible value con-

sistent with the exclusion principle. The remaining orbital momenta
are then coupled together by the electrostatic forces to form a
resultant L, which in the state of lowest energy again has the
largest possible value consistent with the exclusion principle. (These
two rules are known as Hund's rules.) Lower values of S and L are pos-

sible, but correspond to states of higher energy. This method ofcoupling

the angular momenta is known as Russell-Saunders coupling. On wave
mechanics S and L are quantum numbers and the absolute magnitudes
of the total angular momenta associated with them are *J{S(S+l)}Ji

and <J{L(L-\-l)}fi; it is common practice to speak just of the vectors s, 1,

S, L, etc. (corresponding to the old quantum theory), but it must be
remembered that the absolute magnitudes associated with these are

V{s(«+1)}, J{l(l+1)}, etc.

(6) Magnetic coupling between the magnetic moments of orbit and spin

('spin-orbit' interaction). The motion of an electron round the charged

nucleus produces a field B which we can estimate as follows. From the

theory of relativity one finds that a charged particle moving with
velocity v through an electric field E experiences a force which is equiva-

lent to a magnetic field B = — (vaE)/c2
, where c is the velocity of

electromagnetic waves. In an atom with nuclear charge Ze and a single

electron the field E at distance r from the nucleus is E = r(Ze/4w€ r3);
in an atom with many electrons the electric field is still radial to a good
approximation (this is the 'central-field' approximation used in atomic

theory), but the field is reduced because of the screening effect of other

electrons. We can therefore write E = r(Z'e/47re r3), where Z'e is the

nuclear charge which would give the correct value ofthe field at distance

r. Then the magnetic field B experienced by the electron through its
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motion through the field E is

B - z '

e
(r a v) = ^ Z '

e G= ^ Z '

e M = Mo 2Z
'pi,

47re c2»"3 47rm r3 47rm r3 An r3

where G is the orbital angular momentum whose quantized value is ML

It was first found empirically and later shown theoretically that this

formula should be multiplied by a factor \ (this is a relativistic effect

associated with the motion of the electron in a curved path). We must

also average B over the distribution of spin moment, giving

b =£&y (2°- 6)

where the brackets < > mean that the average value must be taken. The

interaction with the spin magnetic momentms is then

-ms . B = 0.0(8 . B) = fcg(^y(1 • s) = «1 . s). (20.7)

The effect of this spin-orbit interaction is to tend to couple together

the vectors s and 1 for each electron to form a resultant j; the various

values of j for the individual electrons would then be coupled together

(vectorially) to form the total angular momentum vector J. However,

the spin-orbit interaction is smaller in magnitude than the exchange

interactions between the spins discussed in (a) above, except in the

heaviest elements. We shall therefore confine ourselves to Russell-

Saunders coupling, where the individual spins are coupled to form a

resultant S, and the individual orbital momenta to form a resultant L.

The spin-orbit interaction then couples S and L together with an energy

W = AL. S, (20.8)

which is similar in form to equation (20.7) (it can be shown that the

relation between the two constants is A = ±£/2$, where the positive

sign is required for a shell that is less than half-filled, and the negative

sign for one that is more than half-filled; the spin-orbit coupling para-

meter A vanishes for a half-filled shell). This coupling of S and L gives

a resultant vector J, of angular momentum {J(J-\-l)}*ft. The number
of possible values of J is either (2#-f 1) or (2L-{-l), whichever is the

smaller. L has only integral values, and the values of J are therefore

integral or half-integral according to whether the value of 8 is integral

or half-integral. The latter depends on whether the number of electrons

involved is even or odd.

The nomenclature used to describe atomic energy states is mainly

derived from pre-quantum attempts to analyse atomic spectra, and
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therefore does not possess the simple logical sequence which quantum
theory could give it. Single electron states for which the orbital quantum
number I has the values 0, 1, 2, 3, 4, 5,... are called s, p, d, f, g, h,... states,

and similarly the levels of a many-electron atom for which L = 0, 1, 2,

3, 4, 5,... are denoted by the symbols 8, P, D, F, 0, H,... . The value of

n for a single electron state is given by the number preceding the symbol,

i.e. Is, 2s, 2p, 3s, 3p, 3d, etc. The number of electrons with given values

of n is denoted by a superfix; thus, 3 electrons with n = 2, 1 = 1 appear
as 2p3

. The spectroscopic state ofthe whole atom is denned by the values

of 8, L, and J; the value of the spin multiplicity 28+1 is given by a
superfix preceding the symbol for L, and the value of J by a following

suffix. Thus the symbol lFt means that the state has S = f, L = 3,

J = |; the other possible values of J in this case are |, f , f , thus ranging
in all from L—S to L-\-8.

The coupling scheme for a many-electron atom or ion may be illus-

trated by reference to the energy level diagram for the Cr3 + ion, shown
in Fig. 20.5. The triply charged chromium ion has the configuration

Is2
, 2s

2
, 2p6

, 3s
2

, 3p6
, 3d3

, with three electrons in the partly filled 3d shell.

By Hund's rules the energy is lowest when all three electrons have
parallel spins, giving S = f . The electrons must then all have different

values of ntj, by the Pauli principle, but since we have five possible

values (mj = 2, 1, 0, — 1, — 2) there are (5!/3! 2!) = 10 possible arrange-

ments. The largest possible value ofML = 2 mi
*nat we ca-n have is

3 = 2+1+0, and this belongs to an L = 3 state. This has 2L+1 = 7

values ofML , which therefore take up seven of the possible arrangements

of electrons in the% states; the other three belong to a state with L = 1.

By Hund's rule, the L = 3 states will have lower energy than the L = 1

states. Both are shown in Fig. 20.5, the 4P (L = 1) states being higher

in energy than the *F (L = 3) states by about 14 000 wave numbers.

States of still higher energy are formed by reversing one spin, giving

8 = f . Two electrons with opposite spin can now occupy the mj = 2

state, so that the greatest possible value of L
z
= ML is 5 = 2+2+1,

which belongs to a 2H state. Altogether six doublet states, 2H, 2G, 2F,
2D (twice), 2P are allowed; they have energies ranging from about

14 000 cm-1 to 37 000 cm-1
. All other states are much higher in energy,

the 3dHs configuration lying about 100000 cm-1 above the ground

state 3d3
, *F.

The separation of the various quartet and doublet terms is determined

by a combination of the exchange interaction and coulomb interaction

arising from the mutual repulsion of the electrons. The spin orbit
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coupling splits the iF term into four levels with values of J ranging

from \L— S\ to \L-\-S\, and the 4P term is similarly split, the only

allowed values of J in this case being f, §, and \. From the energy levels

given in Fig. 20.5 it can be verified (see Problem 20.7) that the spin-orbit

coupling constant A has the value 87 cm-1 for the ground states of Cr3+ .

Energy Term Multiplicity
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266 cm"1 & J
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interaction)

Centre of gravity of *F

Fig. 20.5. Quartet energy levels of the free triply charged chromium ion, Crs+, 3d'.

These are formed from the three electrons in the 3d shell : the splitting between the *F
and *P terms is due to electrostatic repulsion between the electrons; the splittings

between levels of different J within each term are due to spin-orbit coupling.

Doublet terms formed from 3d!
3 lie in the energy range 14 000-^37 000 cm-1 . The next

lowest levels are those belonging to the configuration 3dHs, and lie above 100 000 cm-1 .

It can be seen that the splittings due to the 'magnetic' spin-orbit

coupling are an order of magnitude smaller than those due to 'electro-

static' interactions.

20.3. Magnetic moments of free atoms
When we turn to consider the magnetic properties of atoms we find

that the problem is simplified by the fact that these depend only on the

partly filled electron shells, since completely filled shells (and of course

empty shells) have 8, L, and J = 0. The magnetic moment associated

with each electron spin can be described by a vector parallel to and
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proportional to the angular momentum vector s,. and on forming the

vector sum S for a number of electrons the magnetic moments add in

a similar way, so that the total magnetic moment of the spin is parallel

to S and has the same factor of proportionality to it. The same is true

of the total orbital magnetic moment and the total orbital angular

momentum L. When we come to make the vector addition of S and L

Fia. 20.6. Vector coupling of angular momentum vectors L, S, J
(represented by AB, BG, AG) and the associated magnetic moments
mL, ms, m (represented by AB, BD = 2BC, AD). AE is the pro-

jection raj ofm on J.

the problem is not so simple because the factor of proportionality be-

tween the magnetic moment and the angular momentum is not the same

for S and L. The vector representing the total magnetic moment will

not therefore be parallel to J; this is illustrated by the vector diagram

in Fig. 20.6. Here the magnetic moment vector associated with L is

drawn of the same length as L, but on this scale the magnetic moment
vector associated with S must be drawn twice as long as S . The resultant

magnetic moment vector m is therefore at an angle to J.

In considering this question further we must return to the discussion

of the spin-orbit coupling between L and S. This is primarily magnetic

in origin, and arises from the magnetic moments of the orbit and spin.

Each of these produces a magnetic field which interacts with the dipole

moment of the other.

The interaction energy AL . S is equivalent to —m.s . T±L or to —mL . B^;

i.e. to a field 3L = —XLjys h acting on the spin momentms = ys fiS,
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or to a field Bs = —XS/yL ft acting on the orbital momentm^ = yL KL.
Hence from equation (20.2) the equations of motion will be

L = YLL A Bs = YLL A (-AS/y£ «) = - (A/«)(L A S) \

S = y8 S A BL = ys S A (-AL/y
fl *) = -(A/«)(S A L) )'

We note that the couples are equal and opposite, as they must be since

no external couple acts on the system. Since L+S = J, and

LaL = SaS = 0,

we have
L = -(A/«)(LaS+L A L) = -(A/*)(La J) \

S = -(AW(SaL+SaS) = -(A/*)(SaJ)/'

showing that L and S each precess about J with angular velocity X/ft.

Since the magnetic moments associated with L, S are parallel to

them, it follows that they and their resultantm must precess round J
at the same rate. Thus the total magnetic moment of the atom has a
fixed component, m.j, given by the projection ofm on J, and a pre-

cessing component. In general we shall be interested only in the fixed

component, and thismay be calculated by simple algebra ifweremember
that the values of the squares of angular momenta associated with S,

L, and J are S(S+1), L(L+1), J(J+1) (each times ft
2
). The projection

of m on J may be found in the following manner, using the vector

diagram of Fig. 20.6. The magnetic momentmL associated with L is

—j8{Zr(if+l)}*, and its component on J is mL cos BAG. From the

geometry of the triangle,

-cosBAG - S(S+1)-L{L+1)-J(J+1)

and the projection of the orbital moment on J is therefore

rS(S+l)-L(L+l)-J(J+l)l

+P
[ 2{J(J+1)}* J'

where j8 is the Bohr magneton, as before. Similarly the projection of

the spin moment on J has the value

msooaACB = -2p{S(S+1)}* cosACB

4- 2ft
\L(L+l)-S(S+l)-J(J+l)-\

+2/J
[ 2{J(J+1)}* J

'

where the extra factor 2 appears to allow for the anomalous value of the

moment associated with the spin. The sum of these two components is

.L{L+1)—S(S+1)-3J(J+1)mJ = i
8-

2{J(J+l)}i
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By analogy with our definitions of the moments associated with L and

8, we define the magnetic moment rtt associated with J as

mj = -gp{J(J+m
where g is the Lande factor (named after its originator) whose value is,

from comparison of the two equations for trtj,

S 8(S+1)-L(L+1)
* 2^ 2J{J+1)

'
V '

It is easy to see that if 8 or L is zero, so that J = L or J = 8, then

g is 1 or 2 respectively, corresponding to the cases of 'orbit only' and

'spin only'.

When an atom such as we have been considering is placed in an

external magnetic field, the behaviour ofthe angularmomentum vectors

in general will be rather complicated. The reason is that each of the

magnetic moments associated with orbit and spin is acted on by the mag-

netic field due to the magnetic moment of the other as well as the

external magnetic field. No simple description of the motion is possible

when these fields are of the same order of magnitude, but when one is

much larger than the other an approximate treatment is possible. We
shall consider only the case when the external field is very small compared

with the field due to the spin-orbit coupling. The vectors L, S then

precess round J as in the case of zero external field, but J is no longer

stationary in space, its motion being a precession round the external

field B. The precession of L, S about J is at a much higher frequency

than that of J about B, since the external field is small compared with

that due to the spin-orbit coupling, and we may therefore picture the

components of the magnetic moment precessing around J as averaging

to zero, leaving only the steady component along J. This is acted on

by the external field to give the precession of J about B, at an angular

velocity o> = —g(—e/2m )B, where g is the Lande ^-factor. This is

identical with the general result of § 20.1, if we take

y = —g(el2m ) = —gplli.

The quantization rule for the projection of J on the field B is similar

to the previous rules for other angular momentum vectors. The projec-

tion has the value Mj%, where Mj takes the values J, J— I, J— 2,...,

— (J— 1), —J. The component of the magnetic dipole moment of the

atom parallel to the field thus has the value —Mjgfi, and the energy is

WMj = -m . B = Mj g/3B. (20. 12)

Thus the 2J+1 levels with different values of Mj are split in energy
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by the application of a magnetic field, but have the same energy when
B = 0. In the latter case they are said to be 'degenerate', and the

application of a field 'lifts the degeneracy'. This 'Zeeman splitting' is

illustrated in Fig. 20.7 for the *F states of the Cr3+ ion in a field B = 10
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Fig. 20.7. Zeeman splitting of the 4F states of the Cr3+ ion (see

Fig. 20.5) in a magnetic fieldB = 106 gauss (10 weber/m2
). Note that

the Zeeman splittings are very much smaller relative to the spin-orbit

splittings (separation of states of different J) than the figure suggests.

weber/metre2 = 105 gauss. The value of the spin-orbit coupling para-

meter A is about 87 cm-1 for this ion (see Problem 20.7), and the frequency
of precession of L, S about J is X/h = 2-6 x 106 Mc/s. In contrast the

frequency of precession of J about B in the J = f state is only about

6x10* Mc/s in a field of B = 105 gauss. Thus our assumption of a very
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fast precession of L, S about J, and a much slower precession of J
about B, will be valid for all fields of ordinary magnitude. In Fig. 20.7

this corresponds to the fact that the Zeeman splittings between the states

of different Mj (but the same J) are very small compared with the

separation between states of different J. It is only when this inequality

holds that the energy of a Zeeman sub-level is linearly proportional to

the applied field (equation (20.12)); when the Zeeman energy (~j35)
is comparable with A the behaviour of the energy levels is more compli-

cated. In the opposite extreme when fiB > A, the coupling between L
and S is broken down and each tends to precess independently about
the external field; this is known as the Paschen-Back effect, and can
be observed only in very high fields for light atoms where the spin-orbit

coupling is small.

20.4. The measurement of atomic magnetic moments—the
Stern-Gerlach experiment

The spatial quantization of angular momentum (that is the fact that

Mj can have only a discrete number of values, and not a continuous

range, as in classical theory) was directly demonstrated in the celebrated

atomic beam experiment of Stern and Gerlach in 1922, which also made
possible the direct measurement of the magnetic moment of an atom.

Thoughthis experiment has been succeeded by more refined and accurate

methods, it remains an historical landmark, and developments of this

method, mainly due to Rabi and his colleagues, have made experiments

with atomic and molecular beams the basis of the extremely accurate

knowledge we now possess about atomic magnetic moments, and their

interaction with the magnetic moment of the nucleus.

A molecular or atomic beam is a beam of molecules or atoms moving
with thermal velocities in a given direction. It is formed by heating the

substance in an oven until its vapour pressure is about 10"2 mm Hg,
the oven being in a highly evacuated enclosure. Atoms or molecules

effuse through a narrow orifice Sx (see Fig. 20.8), and if the pressure is

so low that the mean free path is large compared with the dimensions

of 8X no collisions occur in the orifice and all molecules will be moving
in substantially the same direction. The angular diameter of the beam
is then further limited by the slits S2 , 83 . The total path traversed by
the beam in the apparatus may be up to 50 cm and the pressure must
be so low (< 10-6 mm) that very few collisions occur to scatter the
molecules out of the beam.

In order to determine the magnetic moment of an atom, Stern and
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Gerlach deflected the beam in an inhomogeneous magnetic field. This

was obtained from a magnet with one wedge-shaped pole piece, which
gives a field gradient dBfdz in the z-direction, which is perpendicular to

the path of the beam. The beam traversed the inhomogeneous field for

a distance I and then struck a detector, which in the early experiments

was simply a target cooled in liquid air on which the molecules condensed.

St

OvenD
".* Magnet

K///////////1

Detector
plate

W///////A i
Fig. 20.8. Experimental arrangement for the Stern-Gerlach experiment.

M end view of pole pieces producing inhomogeneous field.

D density of trace on detector plate for atoms in doublet ground state, e.g. Ag,s<Sj.
8X 8X Ss collimating slits.

If tna is the component parallel to 8B/8z of the magnetic moment of the

atom, then the force exerted on the atom in the z-direction is m.z(8BJdz),

and the deflexion « after traversing the field gradient for a molecule of

mass M and velocity v is

* = \{ljvYmz{dBl8z)jM = Pme{dB{dz)l2MvK (20.13)

To obtain appreciable deflexions (of the order of a millimetre) fields of

about 104 gauss with gradients of about 105 gauss/cm are required. The
deflexion is inversely proportional to the thermal energy \M

v

2 of the

molecules, and the traces are thus spread out owing to the distribution

of velocities appropriate to the temperature of the oven. This limits

the accuracy ofthis type ofexperiment, but with atoms such as sodium or
silver, which are both in 2S

t states, two distinct traces were obtained, with
deflexions appropriate to values of mz equal to ±one Bohr magneton.
Thusboththe existence ofspatial quantization corresponding toMj= ± J
and the magnetic moment ofone Bohrmagneton associated with electron

spin of \U were confirmed. Later modifications of these experiments
gave fairly precise values of atomic magnetic moments, but much higher

accuracy has been obtained by the magnetic resonance method, outlined

in Chapter 23.

20.5. Curie's law and the approach to saturation

A theoretical derivation of Curie's law due to Langevin was given in

Chapter 8. This was based on a classical approach in its use ofBoltzmann
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statistics, but used the idea of the existence of permanent magnetic

moments of fixed values. This latter assumption is not in accordance

with classical theory, for we should then expect a continuous range of

magnetic moments from — oo to +00. It was shown independently by

BohrandbyMiss vanLeeuwen that ifsuch a continuousrange is assumed,

the paramagnetic and diamagnetic contributions to the susceptibility

of any system should be exactly equal and opposite, and thus, in a

strictly classical calculation, the susceptibility would be zero. The

quantum mechanical approach outlined in § 20.2 shows that finite per-

manent magnetic dipoles do exist in atoms, and we must now examine

how the Langevin calculation must be modified to take account of the

fact that only a finite number of projections of the moment on an

external field are allowed.

It was shown in § 20.3 that the potential energy W of an atom in a

magnetic field is MjgfiB, where Mj is the magnetic quantum number,

and g the Lande factor appropriate to the spectroscopic state of the

atom. As in classical theory, the probability of an atom being in a state

with an energy W is proportional to exp(— WjkT), and for a given value

ofMj this is therefore proportional to exp(—Mjgf}BlkT). Thus the frac-

tion of all atoms in this state is exp(—M.jg$B\kT)\^ e^(-Mjg^BjkT),
where the summation is over all values of Mj. (We assume that all the

atoms are in the same spectroscopic state L, S, J, this being the ground

state of the atom.) The component of the atomic magnetic moment
parallel to B is —Mjgp, and the total magnetic moment of a system of

n atoms will therefore be

nm - n
z**pi-wi*n '

( ]

where the summation in each case is over all values of Mj from -\-J to

— J. This expression is rather clumsy to handle, but it may be shown

by an algebraic reduction that it reduces to the form (see Problem 20.1)

nm

where y = JgfiBjkT. The expression in brackets in equation (20.15) is

called the Brillouin function. When J becomes very large it approaches

as a limit the Langevin function {cothy— (l/«/)}, as we should expect

from the fact that a summation over a large number of terms can be

replaced by an integration, as used in the derivation in § 8.3.

At normal field strengths and ordinary temperatures, the value of y
is very small; at B = 1 weber/m2 = 104 gauss and T = 290° K, with
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g = 2 and J = \, y is about 0-002. It is then possible to make a series

expansion of either equation (20.14) or (20.15). To the first order the

former equation becomes

nm = -ngP^MAl-MJ gpBlkT)/'
!

l(l-MjgPBIkT)

(2J+\)kT Z< J '

The summation amounts to £J(J+1)(2J+1), and the susceptibility is

thUS nm_ n ng*fi*J(J+l) _C
K H 3kT T' v

•
l

which is the same as the classical expression (equation (8. 13)) if we write

m2 = p»j8V(J+l).

This is just the value of the atomic magnetic moment which we should

expect on the quantum mechanical theory, but the magnetic moment
of the whole system is different at higher field strengths, corresponding

to the difference between the Langevin and Brillouin functions. In par-

ticular, the limiting saturation moment reached at high field strengths

and low temperatures (large values of y) is ngfiJ, and not

nm = ngPj{J(J+l)}.

This is because the greatest component of each moment parallel to B is

Jgfi, and the actual magnetic moment always precesses at a finite angle

to the field. The correctness of the Brillouin function has been verified

in a number of experiments, representative results being those of Henry
shown in' Fig. 20.9. Note that the close approach to saturation is

obtained by the combination of high field (50 kilogauss) and low tem-

perature (4° K and lower).

20.6. Susceptibility of paramagnetic solids—the 4/ group
The theory given above applies only to an assembly of free atoms,

and the situation is rather different when one considers matter in the

aggregated state, because of the large forces exerted by the atoms on

each other. These are mainly electrical in origin, and are generally far

stronger than the interaction between the magnetic moment of an

atom and an external magnetic field. We must therefore consider the

effect ofthe inter-atomic forces first, and we shall find that whereas most
free atoms have permanent magnetic dipole moments, most bound atoms
do not. This is due to the fact that the exchange forces between electrons

in different atoms are nearly always of opposite sign to those between
851110 q q
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electrons in the same atom, and they therefore tend to make the electron

spins line up anti-parallel, giving no resultant spin whenever possible.

Thus in the formation of a homo-polar molecule such as N2 , the binding

electrons from the nitrogen atoms are shared between the two atoms with

7-00

6-00

5-00

§ 4-00

3-00

ffl 2-00

I -00

o-ool

III

II

I

f

—Brillouin

Ol-30°K a2-00°K
• 3-00°K n4-21°K

JS/T, in units of weber nr* deg-1 (10* gauss deg -1
)

Fia. 20.9. Plot of average magnetic moment per ion m against BjT
for (I) potassium chromium alum (J = S = §•), (II) iron ammonium
alum (J = 8 = f ), and (III) gadolinium sulphate octaliydrate

(J-S = |).

their spins anti-parallel. The orbits are also arranged so that the electrons

have no resultant orbital angular momentum; the total angular momen-
tum is therefore zero and the molecule has no permanent magnetic

moment, though there will always be an induced negative moment when
a magnetic field is applied, giving rise to diamagnetism. In hetero-

polar binding a molecule such as NaCl is formed ofthe two ions Na+ and

Cl~, both of which have closed electron shells; thus again there is no

resultant magnetic moment. Though this picture of molecule formation

is oversimplified, and in general we have a mixture of homo-polar and

hetero-polar binding, the general result of no permanent magnetic

moment is still true. Thus the only common gases with permanent

moments are NO, which has an odd number of electrons, so that a resul-

tant spin must remain (there is also one unit of orbital angular momen-
tum), and 2 , where two electron spins are unpaired, giving oxygen gas

a paramagnetism appropriate to S = 1, g = 2.
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In the solid state most substances consist of ions with closed shells of

electrons and are therefore diamagnetic. The main exceptions to this

rule arise in compounds of the so-called 'transition elements', where an
electron shell is in process of being filled. Such elements are marked by
their possession ofmore than one chemical valency, and some (ifnot all)

of their ions of different valency have unclosed shells, and hence a
permanent magnetic moment. Since it is the electrons in the unclosed

Table 20.1

Comparison of theoretical and measured values ofp2 for

trivalent rare earth ions

No. of Ground Average
electrons spectro-

Theoretical values
experimental

in if scopic value of

P*shell Ion state s L J 9 p* = g*J(J+l)

La+++ *s.

1 Ce+++ **« i 3 *
6
7 6-43 6

2 Pr+++ 'ff. 1 5 4 4
5 12-8 12

3 Nd+++ lh f 6 f
8
1 1 13-1 12

4 Pm+++ *I* 2 6 4 2.
5 7-2

5 Sm+++ •Bt s
2 5 s

2 t 0-71 (2-5) 2-4
6 Eu+++ 7n 3 3 — 0(12) 12-6
7 Gd+++ *Si

7
2

7
2 2 63 63

8 Tb+++ w. 3 3 6 3
2 94-5 92

9 Dy4++ >Hi$ £
2 5 2

4
3 113 110

10 Ho+++ °I, 2 6 8 6
4 112 110

11 Er+++ lI* 8
2 6 2

&
5 92 90

12 Tm+++ *H, 1 5 6 7
6 67 52

13 Yb+++ »2P
} i 3 7

2
8
7 20-6 19

14 Lu+++ *s. .

The values given in parentheses for Sm8+ and Eus+ are those calculated by Van Vleck
allowing for population of excited states with higher values of J, at T = 293° K.

shell which determine the magnetic properties, we should expect the

paramagnetism to be typical of the ion, not the atom. Thus ions with
the same electron configuration, even if formed from different atoms,

have similar magnetic properties. These ions may be labelled by the

spectroscopic description of the electron shell which is partly full; these

are, 3d (iron group), 4d (palladium group), 4/ (lanthanide group), 5d
(platinum group), and 5/ (actinide group) . The titles in brackets are often

used as being more descriptive, though less precise.

We consider first the 4/group, whose paramagnetism in the solid state

is closest to that of an assembly of free ions. The spectroscopic states of

the free ions of the 4/ shell are shown in Table 20. 1 . It will be seen that

they conform to Hund's rules, the values of first S and then L being

the greatest possible consistent with the Pauli exclusion principle. The
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ground state has the smallest possible value of J in the first half, and

the largest value in the second half, as the spin-orbit coupling interaction

changes sign when the shell is more than half full. The experimental

values of p2 have the following significance. If we assume that the

susceptibility of a substance obeys Curie's law, we may write

X = iJ-onm^kT = nQ np2p2j3kT. (20.17)

Herep is called the effective Bohr magneton number, and by comparison

with equation (20.16) we see that for an assembly of free ions

p2 = g
2J(J+l).

It is convenient to give the experimental results in terms ofp 2
, since this

facilitates comparison with the theory, but it must be remembered that

though we can always calculate a value ofp2 from the susceptibility at

a given temperature, it has little significance if the susceptibility does

not obey Curie's law. The latter can be established by measuring the

susceptibility over a range of temperature. In this connexion it must

be emphasized that only measurements on 'magnetically dilute' salts

are significant; by this phrase is meant salts where the paramagnetic

ions are fairly far apart so that mutual interaction between them may
be neglected (see Problem 20.2 and § 21.1). This condition is generally

fulfilled for hydrated salts, and the values ofp2 in Tables 20.1, 20.2 are

for salts where the effect of mutual interaction on the susceptibility is

appreciable only at very low temperatures.

The calculated values of p2 assume that only the ground state of

angular momentum J is occupied. Since states of different J generally

lie at several thousand °K, this is a good approximation at room tem-

perature, except for the ions 4/ 5
, 4/ 6 where excited levels with higher

values of J are exceptionally low-lying, and whose presence cannot be

neglected. Van Vleck has shown that their inclusion gives much better

agreement with experiment, and his values, calculated for T = 293° K,

are shown in parentheses.

The experimental values ofp2 for the other ions are in fair agreement

with those calculated for an assembly of free ions with angular momen-
tum J, but in fact these values have mostly been deduced by fitting the

experimental measurements of susceptibility to a formula of the type

V-*np2
$

2

f9m«l
*
=
mr+EY (20J8)

This modification of equation (20.17) is known as the Curie-Weiss law

(see § 21.1), but it is better to regard it as an expression which includes

a term in T~2 and is the start of a series expansion in inverse powers of
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T, as can be seen by writing (20.18) in the form

H+4 (20.19)

The empirical values of A which give the best fit to the susceptibility

in the region of room temperature are of order 10-20° K, but at low

temperatures the susceptibility often departs quite markedly from any

such simple formula. The reason for this is that we cannot neglect the

influence of the charged ions which surround each paramagnetic ion in

the solid state. In a magnetically dilute salt these immediate neighbours

carry no permanent magnetic moment (they are diamagnetic ions such

as F_
,

=
, etc.), but they are electrically charged, and have an electro-

static interaction with the 4/ electrons which are responsible for the

paramagnetism. To a good approximation the 4/ electrons can be

regarded as moving in an electric field set up by the neighbouring ions,

known as the 'crystalline electric field'. The energy of interaction with

this field is smaller, for ions of the 4/group, than the coulomb, exchange

and spin-orbit interactions within the paramagnetic ion itself, and gives

rise to a 'Stark' splitting of the 2J+l levels of the ion. This is similar

in nature to the effect of an external electric field on the spectrum of an

atom, first investigated in detail by Stark, but is considerably more

complex because the electrostatic potential set up by the neighbours

varies in a complicated way over the space occupied by the 4/ electrons.

The overall splittings of the 2J+l levels of a 4/ ion are generally of the

order ofa few hundred °K. As can be seen in Fig. 20. 10, the susceptibility

is rather insensitive to such splittings, and approaches that of the free

ion at temperatures where most of the levels are appreciably populated.

At low temperatures where only the very lowest levels are populated,

the susceptibility can be very different from that of the free ion, and in

a single crystal may be highly anisotropic.

At first sight it may appear surprising that the crystalline electric

field can have such a marked effect on the magnetic properties. The

basic reason is that the wave functions corresponding to different values

of the orbital magnetic quantum number ML have different angular

dependencies; i.e. for each value of ML the distribution of electronic

charge has a different shape, and hence acquires a different electrostatic

energy in the crystalline electric field. Thus the primary interaction is

associated with the electronic orbit, and the interaction is zero (except

for a small residual effect due to a slight departure from pure Russell-

Saunders coupling) for an ion such as Eu2+ or Gd3+ with a half-filled shell
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carrying no orbital angular momentum (L = 0). For the other ions the

coupling together of L and S means that states of different Mj have a

different charge distribution, so that the crystalline electric field splits

the 2</-|-l states which otherwise have the same energy in the absence

of a magnetic field. An important restriction on this splitting occurs

100

P*

100
T(°K)

200 300

Eio. 20.10. The values of pl (parallel and perpendicular) for a single crystal of erbium
ethylsulphate ErfCjHjSOjJj.QHjO. This forms hexagonal crystals, and the susceptibility

is symmetrical about the hexagonal axis. The ground state of the Er3 + ion is */$, and
this is split by the crystalline electric field into eight doublets lying at 0, 61, 108, 159,

249, 301, 375, and 438 °K.

for ions with an odd number of electrons, which have half-integral values

of S and hence also of J; in this case the states occur always in pairs

which have the same charge distribution and differ only in the orienta-

tion of the magnetic moment. Each pair must thus retain the same
energy in an electric field, though they can be split in a magnetic field.

This result was proved in a theorem of Kramers and the double

degeneracy of such states in an electric field is known as 'Kramers'

degeneracy'.

20.7. Susceptibility of paramagnetic solids—the 3d group

The spectroscopic ground states of the free ions of the 3d shell are

shown in Table 20.2, whence it can be verified that they follow Hund's
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rules. An assembly of free ions would therefore give a susceptibility

corresponding top2 = g
2J(J-\-l), but a comparison of the values of this

quantity with the experimental values shows a striking disagreement.

In fact the experimental values lie much closer to p2 = 4:8(S+1), the

value which would be expected if there were no orbital angular momen-
tum and the magnetism were due entirely to the electron spin. This is

Table 20.2

No. of
electrons Ground p»
in 3d shell Ion state S L J g*J(J+l) (exper.) 4S(S+1)

K+ Ca*+, Sc»+

Ti4+, V6+
x8»

1 Ti*+ V«+ *n
t i 2 2.

2 2-4 2-9 3
2 ya+ w; 1 3 2 2-67 6-8 8
3 V*+, Ct*+ *F, 3.

2 3 3.
2 0-6 14-8 15

4 Ci^-, Mn»+ '4 2 2 (23-3) 24
5 Mn«* Fe»+ '"Si

s
2

6
2 35 34-0 35

6 Fe*+ °D* 2 2 4 45 28-7 24
7 Co«+ 'Ft SL

2 3 9
2 44 24-0 15

8 Ni"+ *Ft 1 3 4 31-3 9-7 8
9 Cu>+ *Dt i 2 4

2 12-6 3-35 3
10 Cu+ Zns+ W.

The values ofp> (at 300° K) are for double sulphates of the type M"M£(S04)„6H2 or
M"*M'(S01) a,12H,0 (whereM" = divalent paramagnetic ion, M**= trivalent paramagnetic
ion, M' = monovalent diamagnetic ion). In these salts the distance between nearest
paramagnetic ions is at least 6 A, and interaction between them is negligible. The value
in parentheses is for CrS04,6H,O : no double sulphate of Cr^ has been measured.

clearly brought out in Fig. 20.11, in which average experimental values

ofp2 are plotted together with the quantities g
2J(J+l) and 4S(S+l).

This phenomenon, known as the 'quenching' ofthe orbital magnetism,

is a result of the crystalline electric field. In the lanthanide group

the 4/ electrons, which are responsible for the paramagnetism, are

fairly deep seated in the atom, but in the iron group the 3d electrons

are in an outer shell which has a very much larger interaction with the

crystalline electric field of neighbouring charged ions. On the other

hand the spin-orbit coupling in the 3d group is considerably smaller than
in the 4/ group. The result is that interaction between the orbit and
the crystalline electric field is a good deal stronger than the spin-orbit

coupling for 3d ions, so that the orbital momentum is primarily coupled

to the crystal field, and it is no longer correct to regard L and 8 as

coupled to form a resultant J. The quantitative expression of this

situation is that the 2L+1 orbital states are split in the crystal field,
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and have energies differing by about 10000 cm-1
, which is much larger

than the spin-orbit splittings (of order 100-1000 cm-1
) between the

states of different J in the free ion. The simplest case to consider is

that where the crystal field splitting of the orbital levels gives a singlet

state as the lowest level. Such a state has no magnetic moment, and the

orbital moment is completely 'quenched'. On the other hand the electron
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Fig. 20.11. Experimental (at 300° K) and calculated values of/) 2 for

the 3d group.

In the second half of the group the orbital angular momentum is

less effectively quenched than in the first half, so that the values of

p2 lie noticeably above the spin only values.

spin has no direct interaction with the crystalline electric field, and

remains free to orient itself in a magnetic field. Thus, in this case, the

susceptibility would correspond exactly to the 'spin only' value of

p2 = 4S(8-\-l) at all temperatures such that there is no appreciable

population of an excited orbital state.

It can be seen from Fig. 20.11 that the values of p 2 do not follow

exactly the 'spin only' values, particularly for ions with d6 (Fe2+) and

d7 (Co2+) configurations. The basic reason for this is that the crystalline
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electric field does not always result in a singlet orbital state as the lowest

state, but sometimes gives a group of low-lying orbital states which can

make some contribution to the magnetic moment, though less than the

full orbital contribution from a free ion. In principle we could calculate

the splitting ofthe orbital levels, but in practice this is extremely difficult

to do. However, the general features of the magnetic properties of salts

of the 3d group are well understood, mainly through the work of Van

H20«

Fig. 20.12. Octahedron of water molecules round a paramagnetic 3d ion.

Vleck, and we will now attempt to outline the main results ofthe crystal

field approach.

The size of an ion of the 3d group is such that six negatively charged

ions can be packed round it; when these ions are identical, they are

arranged in the form of an octahedron which is very nearly regular. In

hydrated salts these six ions are commonly the oxygens of six water

molecules, as shown in Fig. 20.12. These ions are known as the 'ligand

ions', and in general there is a small amount of homopolar binding

between them and the 3d ion. In the crystal field theory this is ignored,

and the magnetic 3d electrons are assumed to be localized on the 3d ion,

and to move in the electrostatic potential of the surrounding charged

ligand ions. If the 3d ion is assumed to be at the point (0, 0, 0), the ligand

ions may be taken to he at the points

(±o, 0, 0), (0, ±a, 0), (0, 0, ±a)
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thus forming a regular octahedron. If we assign a charge — 2e to each

oxygen ion, the electrostatic potential near the centre of the octahedron

(see Problem 2.18) is

T7 12e 2e (35). , , , , , , .,

and this will change the energy of an electron on the central ion by an
amount

J"
^*(—eV)^> dr, where >fi is the electronic wave function. This

energy change is a quantitative expression of the fact that, since the

electrons on the magnetic ion are negatively charged, they will have
a lower energy in states where they avoid the negatively charged ligand

ions as much as possible, and a higher energy when they do not, because

of the electrostatic repulsion. Taking linear combinations to give real

wave functions, we can write c?-orbitals as a radial function /(r) times

the following functions, which express the angular dependence in Carte-

sian coordinates instead of the spherical harmonics of § 2.2:

r*C
2fi
= i(2*«-!C«-y») >

-4r2(C
2)2-C2(_2 ) = V3sjA

V2

^(C^+CV-i) = V3i/z

-^(G^-C^) = V3 2*J

(de).

The last three (known as de states) are each zero along two of the

cubic axes (see Fig. 20.13), so that the charge density (which is propor-

tional to the square of the wave function) is also zero along two of the

axes. This gives a lower energy for these three states (by symmetry
each must have the same energy in a cubic field, since x, y, z are all

equivalent ifthe octahedron is regular) than for the other two (dy) states

which have a finite density along all three cubic axes. Hence we get

a splitting of the D(d) state as shown in Fig. 20.14 for d1
. The splitting

is similar, but inverted, for d9
, which is one electron short of a filled

<Z-shell. A filled shell has a spherical charge distribution, and the charge

distribution for d9 is equivalent to a filled shell plus a 'positive hole', for

which the electrostatic energy in the crystal field has the opposite sign. A
half-filled shell also has spherical symmetry, with L = 0; for this reason

the ligand field plays virtually no role in affecting the paramagnetism



(a) y> @)™ (6) v-f^*r) (c) y = (!!!r^) /(r)

Fio. 20.13. Angular variation of d wave functions, (a) is a de-state (the other two de-

states are similar but differently oriented) ; (6) and (c) are dy-states. de- and dy-functions
have different symmetry properties : dy-functions do not change sign on reflection in any
one of the cubic axes (i.e. x -» —x, or y -> —y, or z -> — z), while the de-functions change

sign for two such reflections but not for the third.

D

~p-*-l?\ dr

d*,d*

(a) (b) («) (d)

Fig. 20.14. Splittings of D and Estates in a crystal field of octahedral symmetry. The
overall splittings lie generally in the range 10 000-15 000 cm-1 . The strong colours of
many paramagnetic compounds of the 3d group are due to absorption bands in or near
the visible region of the spectrum which arise from transitions between the ground state

and excited states shown above, combined with vibrational effects.
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of d5 ions, whose ground state is *S$. However a de ion, with one elec-

tron outside the half-filled shell, has a similar splitting to d1
, while d4

corresponds to a positive hole in a half-filled shell and behaves like d9

(see Fig. 20.14). Thus d1
, dl, d6

, ds have a basically similar splitting pat-

tern because each is equivalent to a single electron or single hole state,

as far as the orbit is concerned (they do not all have the same spin).

Similarly, the remaining ions d2
, d3

, d1
, d8 are orbitally equivalent to

two-electron or two-hole states (d7 = half-filled shell+2 electrons;

d3 = half-filled shell+2 holes; ds = filled shell+2 holes). They are all

in F states, with L = 3, which are split by a cubic crystal field into

a singlet and two triplet levels, as shown in Fig. 20.14. In d3 and d8

the lowest level is a singlet (it corresponds to a wave function xyz, which

has zero density along all three cubic axes), but in dz and d7 the splitting

pattern is inverted.

Using these crystal field splittings, we can distinguish between two

separate cases:

(a) When the orbital ground state is a singlet, it has no component
of angular momentum along any axis, so that the magnetism is due

primarily to the spin. The susceptibility follows Curie's law very exactly

(for example, the susceptibility ofa chrome alum such as CrK(S04),12H2

does not deviate from Curie's law by more than 2 per cent between room
temperature and 2° K). There are, however, two residual effects of the

spin-orbit coupling: (1) the effective g-value differs from the free spin

value by an amount of order A/A, where A is the spin-orbit coupling and
A the splitting between the ground orbital level and the excited orbital

states shown in Fig. 20.14. The spin-orbit constant A is positive if the

d-shell is less than half-filled, and negative if it is more than half-filled.

It is also larger for the ions at the end ofthe group because ofthe increased

nuclear charge. Thus the effective value of g is about 1 per cent smaller

than the free spin value for Cr3+, d3
, but 10 per cent higher for Ni2+ , d8

.

(2) Where the spin is 1 or more, the 2#+l spin states may be split by
amounts of order (A2/A), which is usually of order 0-1-10 cm-1

. This

gives a specific heat anomaly, of which a typical example is shown in

Fig. 20.15.

(6) When the ground state is not a singlet, there is a first-order

contribution from the orbit to the paramagnetism, but less than that

for the free ion. When the ground state is a triplet in Fig. 20.14, it

behaves like a P-state with L = 1, and an effective gL which is —1
for d1 and d6

, and — f for e?
2 and d7

. Thus it can interact with the

spin through the spin-orbit interaction, giving states with an effective
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J of S—l, 8, and S+l if 8 > 1, or \ and f if 8 = J. The splittings

between these levels are of order 100 cm-1 (140° K), so that Curie's

law is not obeyed because excited states become occupied as the tem-

perature is raised. This is particularly noticeable for cobalt (Co2+, d7
)

salts, as shown in Fig. 20.16. The ions di
, d9 are exceptional because the

Fig. 20.15. Magnetic specific heat anomaly of aNiS04,6H2 (after Stout and Hadley,
1964). The anomaly is associated with the spin triplet states, which lie at 0, 6-44, and

7-26° K respectively.

doublet orbital states left as their ground states by the octahedral field

have effectively gL = 0. Thus they behave rather like case (a). Figure

20.16 shows a typical cupric salt, Cu2+, d9
, where Curie's law is obeyed

closely, but the effective g-value is more than 10 per cent higher than
the free spin value, giving p2 = 3-76 instead of the value 4:S(S+1) = 3

we would expect for a single hole (S = J).

A striking effect in many single crystals of paramagnetic substances

of the 4/ group is the high anisotropy of the susceptibility; this arises

because the surroundings of the paramagnetic ion in such crystals have
only axial symmetry. For the regular octahedron shown in Fig. 20.12

there would be no anisotropy, but in the 3d group this octahedron is

normally somewhat distorted, and as a result the orbital contributions

to the magnetism depend on the direction in which the external field is

applied relative to the crystal axes. The anisotropy is large when the
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splitting of the lowest orbital levels is small; that is, when there are also

considerable departures from Curie's law, as in cobalt salts.

20.8. Susceptibility of paramagnetic solids—strongly bonded
compounds
Much less is known in detail about the magnetic properties of salts

of the id and 5d groups, but in many cases it appears that the binding

to the ligand ions is covalent rather than ionic in character. This is true

I

o

100 200 300
T(°K)

Fig. 20.16. Variation ofp2 with temperature for two iron group salts.

also for a few salts of the iron group, notably the complex cyanides such

as K3Fe(CN)6 . In the latter, and in salts such as K2
IrCl 6 where the

magnetic Ir4+ ion has the configuration 5d5, the ligand ions (six CN
groups in the former case, six Cl~ ions in the latter) are again arranged

in the form of a very nearly regular octahedron. We shall confine the

discussion to this type of compound, as it affords an interesting com-

parison with the pure crystal field approach.

In a covalent bond the electrons are shared between the two ions

concerned, in contrast with a purely ionic case where the electrons are

localized on each ion. The latter is an over-simplification, and in practice

there is always a smallamount ofcovalent bonding, so that we distinguish

only between weak bonding, and strong bonding. In a complex with

octahedral symmetry, the dy states have maximum density along the
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cubic axes (towards the ligand ions), and can form a-bonds with the

ligand ions, while the de states can only form 77-bonds. In the formation

ofa bond, a d-state on the magnetic ion is combined with the appropriate
bonding state of the ligand ion, and the overlap of the electronic wave
functions gives a splitting of the combined levels, in the same way as

pointed out in § 18.2. The overlap is greater for the dy states (forming

<r-bonds) than for the de states (forming w-bonds), giving the energy

level diagram shown in Fig. 20.17. The lower bonding states are all

(dy, ligand) states anti-bonding

(de, ligand) states anti-bonding

available for magnetic electrons

(de, ligand) states bonding

(dy, ligand) states bonding

filled -with bonding electrons

Fig. 20.17. Splitting of the d-states on the bonding model. The lowest (bonding) states
are filled with electrons, and only the anti-bonding states are available for the magnetic
electrons. In the crystalline electric field approach the bonding states play no role, and
a cubic field splitting (see Fig. 20.14) of the d-states is obtained similar to that for the

anti-bonding states above.

filled with electrons, and behave as filled sub-shells. Thus the states

available for magnetic electrons are the anti-bonding states, which are

split in the same way as by an octahedral crystal field. In weakly bonded
compounds this splitting is about 10000 cm-1

, as mentioned in the

previous section, but in the strongly bonded compounds it is very much
larger, so that the latter behave as though subjected to a very much
stronger crystalline electric field. However, the approach from the

bonding viewpoint is more correct, since it allows the magnetic electron

wave functions to spread out from the central ion on to the ligand ions,

for which there is direct experimental evidence from measurements of

the hyperfine interaction between the magnetic electrons and the nuclear

moments of the ligand ions.

In this more general approach, allowing for bonding, the splitting

between the de states and the dy anti-bonding states is ascribed to the

'ligand field', and it is interesting to contrast the two cases of small and
large ligand field. Here the comparison is with the electrostatic and
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exchange energy which is responsible for Russell-Saunders coupling,

and when the ligand field splitting is large compared with this exchange

energy we must regard the Russell-Saunders coupling as broken. The

way in which the de and dy anti-bonding states are occupied by the

magnetic electrons in the two cases is determined by the competition

between the exchange energy (which favours parallel orientation of the

(a)

d6 (ionic or weak
bonding)'

(»>

d* (strong bonding)

(0 (<i)

Fig. 20.18. Single electron model of filling of d-states split by an octahedral crystal field.

The exchange energy forms parallel spin arrangements (subject to the exclusion prin-

ciple) ; the crystal field splitting favours electrons in the de states.

electron spins) and the ligand field splitting (which favours electrons

going into the de states because of their lower energy).

We may represent each orbital state by a pair of square boxes, as in

Fig. 20.18, into each of which we can put one electron, with spin up or

down. With one electron, the state of lowest energy will obviously be

when this electron is in the de states. When further electrons are added,

they will also go into the de states, but with spins parallel in order to

make the exchange energy a minimum; up to three electrons can be

accommodated in this way. The de shell is then half full, and behaves

like a state with zero orbital momentum (corresponding to the singlet

orbital ground state for d3 in Fig. 20. 14) and S = § . When more electrons
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are added, they cannot go into the de shell with parallel spin, because
this would violate the exclusion principle. There is therefore a com-
petition between the exchange energy, which prefers parallel spin, and
the ligand field energy, which prefers the de states. In the hydrated
salts, the latter is less important, and the fourth and fifth electrons go
into the dy states with parallel spin, making d5 a state with L = 0,
S = f (a half-filled d-shell). In the more strongly-bonded salts the ligand
field splitting is so large that no electrons go into the dy states, since
they have a lower energy by occupying the de states with anti-parallel
spin, as shown in Fig. 20.18 (c). Thus a strongly bonded d* salt behaves
as if it had one hole in the de shell; for example, K3Fe(CN)6 , where the
Fe3+ ion has a d5 configuration, has magnetic properties quite different
from hydrated ferric compounds, showing considerable departures from
Curie's law, a susceptibility close to that of a single spin, and strong
anisotropy in single crystals. With six electrons, d*, strongly bonded,
the de shell is completed, and the ion has no permanent magnetic dipole
moment (K3Co(CN)6 has only a small temperature-independent para-
magnetism). Any further electrons would have to go into the dy states,

but these are so high in energy that such ions are usually chemically
unstable. However, when the ligand field is less strong, the dy states

are occupied, as shown in Fig. 20.18(d) for a hydrated Ni2+ ds
, ion.

Here the de states are completely filled and the dy half-filled, giving
again a ground state with no orbital momentum (cf. Fig. 20.14 (c)). On
this single electron picture we can see that the orbital momentum is

effectively quenched whenever the two sets of de and dy states are each
either empty, half-filled, or completely filled with electrons; the reader
can verify that a half-filled sub-shell, with all electron spins parallel, can
be achieved by only one possible arrangement of the electrons in the
various boxes, and therefore corresponds to a singlet orbital state. On
the other hand, when the de states are occupied by one or two electrons,

or four or five electrons, there are three equivalent ways of arranging
them, giving a triply degenerate orbital state. This corresponds to the
triplet state which is lowest for d1

, d2
, d6, d7 in Fig. 20.14.

20.9. Electronic paramagnetism—a summary
In conclusion we may summarize the magnetic properties as being

the result of competition between the electrostatic (including exchange)
interactions between electrons on the same ion, spin-orbit interaction

between these electrons, and electrostatic (crystal field) or covalent

bonding interaction with ligand ions. In the 4/ group the latter is the
851110 Er
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weakest of the three, giving splittings of order 102 cm-1 while the spin-

orbit coupling is W 103 cm-1
. In ionic 3d! salts, the spin-orbit coupling

(« 102 cm-1
) is too small to compete with the crystal field (10* cm-1

),

but the latter is smaller than the exchange interaction (e.g. the mean
separation between the quartet, S = §, states and the doublet, S = J

,

states for Cr3+ is about 2 X 10* cm-1
). In the strongly bonded salts,

interaction with the ligands outweighs the exchange and electrostatic

interactions between the electrons within the magnetic ion, breaking

down the Russell-Saunders coupling.

In the 5/, or actinide group, the behaviour is generally similar to that of

the 4/ (lanthanide group), though only the salts of the first members

of the group (U, Np, Pu) have been investigated in any detail because

of the high radioactivity of the other members. An exception is the

complex ions U02 , Np02 , etc., where strong covalent binding exists

between the actinide ion and the two oxygen ions.

20.10. Nuclear moments and hyperfine structure

In § 20.1 it was mentioned that the nuclei of many types of atoms

possess angular momentum. This is associated with a 'spin' of the

nucleus about an internal axis, and the angular momentum is quantized

just as in the case ofthe orbital and spin angular momenta ofthe electron.

The fundamental nuclear particles ('nucleons') are the proton and the

neutron, each of which possesses a spin of \ft, like the electron. All

nuclei are regarded as assemblies ofprotons and neutrons bound together

;

the number ofprotons is equal to Z, the atomic number, since the nuclear

charge is Ze, and the number of neutrons N = {A— Z), where A is the

atomic mass number. The spin of any given nucleus is denoted by

Ift, and / is characteristic of any given isotope. The number of nucleons

in a nucleus is equal to A, and the nuclear spin is half-integral or integral

according to whether A is odd or even. No simple rule can be given for

calculating the nuclear spin a priori in a particular case, though the

observed values can be fitted into a shell model not greatly different

from that used in atomic theory. The most important rule is that all

nuclei containing an even number of protons and an even number of

neutrons have / = in the ground state. This can be understood in

terms of a 'pairing off' of the spins of protons and neutrons similar to

that of a pair of electrons in an s-state. For nuclei with an odd proton

or odd neutron the value ofJ is attributed to the resultant of the intrinsic

spin of £ for the odd nucleon and an 'orbital' momentum whose value

is an integral number of units of ft, due to circulation of this odd nucleon
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within the nucleus. Relatively few stable nuclei exist which contain odd
numbers of both protons and neutrons (such as |D and ^N) but these

have integral values of / other than zero, an exceptionally high value

being J = 7 for 178Lu. The highest half-integral value so far observed

is f. These values are for the ground states of nuclei. Investigation of

nuclear structure has led to the assignment of spin values for many
excited nuclear states, but these have not been observed directly, except

in a few cases where the excited states have an abnormally long life.

All nuclei which have a non-zero value of the spin / possess magnetic

moments, and these are measured in terms of a unit called the 'nuclear

magneton'. The value of this unit is /?„ = ehj2M, which is similar to

that for the Bohr magneton except that the mass in the denominator is

that of the proton instead of that of the electron. If the proton obeyed
a similar wave equation to that for the electron, we would expect it to

possess a moment of one nuclear magneton associated with its spin \,

just as the electron has a moment of one Bohr magneton and spin \.

In fact the moment of the proton is +2-793 nuclear magnetons (n.m.),

and the neutron (which, being uncharged, we should not have expected
to possess a magnetic moment) has in fact a moment of —1-913 n.m.
Here the significance of the plus and minus signs is that the magnetic
moments are respectively parallel and anti-parallel to the spin. Since

the magnetic moment of neither neutron nor proton is an integral

number of nuclear magnetons we should not expect the moments of

more complicated nuclei to be simple integers. They do, however,
follow the trend which the nuclear shell model would indicate (see

Problem 20.5); in general we write the nuclear magnetic moment as

mn — 9nPn I> where gn is the nuclear magnetogyric ratio.

Interactions between a nuclear magnet and its surroundings are small.

In a magnetic field each of the 2m2+l states corresponding to different

orientations of the nuclear moment takes up a different energy

Wmi = -mn .B = -gr
ni8„mZJB; (20.21)

in a field of 1 weber/metre2 (104 gauss) the separation between successive

levels corresponds to a frequency of order 107 c/s. In an atom or ion
which has a permanent electronic magnetic moment, the latter sets up
a magnetic field at the nucleus which may be as much as 107 gauss, being
generally larger in the heavier atoms. This magnetic field is partly due
to the electronic orbit and partly to the spin, but for most purposes we
need consider only the steady component of the electronic field Be,

which is parallel to and proportional to the resultant electronic angular
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momentum vector J. Thus we have an additional 'hyperfine' energy

W = -mn .Be
= AJ A, (20.22)

where A is a constant whose order of magnitude can be estimated as

follows. The electronic field Be is of order m
e
<i?e

-3
> = —grj8J(.R~3>,

where <-R;~ 3
> is the mean inverse cube of the distance of the electron

from the nucleus; since mn = grn j8n I, A is of order ggn^n<R~
z
'). In

frequency units A/h generally lies in the range 108-1010 c/s, so that the

hyperfine energy may approach 1 cm-1 = 1-43° K.

In addition to possessing a magnetic moment, a nucleus may have

a non-spherical distribution of electric charge. Its electrostatic potential

can then be expanded as in § 2.3, giving an energy of interaction with

the electrons of the form (see equations (2.30)-(2.34))

W =— f f PePn dT<>
dT

«'

*"*o J J l-R.-r.|

= -L[
Ze

\^+JJ-^^mB2,_m+ eto.}. (20.23)

Here the subscripts e, n refer to the electrons and nuclei respectively;

Ze = j pn drn is the nuclear charge, so that the first term is the coulomb

interaction due to a point charge at the nucleus, and the quantities in

the second term are

^2,m =
J
Pn rn^,nSfinAn) ^Tm>

K-m = J
(-l) lml

Pe^e-
3
<Vm(0e><W <*V

This term represents the interaction between the electric quadrupole

moments of the nucleus and of the electrons, whose nature is that of

a tensor. The charge distribution is spherical for nuclei with / = or \,

and for electronic shells with J = or £, so that the quadrupole inter-

action vanishes in either case. Since the nuclear charge is symmetric
about the axis of nuclear precession, the nuclear terms can be expressed

in terms of a single quantity

^2,0 = j P»W(3oobV»-1) drn = ^{
3W
j

(
7/l

7

1p }.
(20.24)

where Q = 1 j Pn r*(3 cos2 n- 1 ) drn (20.25)

is called the nuclear electric quadrupole moment, and has the dimensions

of an area of the same order as the (nuclear radius)2
. It is expressed in

terms of the 'barn', a unit equal to 10~24 cm2
. The sign of Q is positive

for a prolate spheroid, and negative for an oblate spheroid, as illustrated



20.10] THE ATOMIC THEORY OF PARAMAGNETISM 613

in Fig. 20.19. The expression in parentheses in equation (20.24) gives

the variation of A20 with the nuclear magnetic quantum number m7,

and it is easily verified that in the states m7 = ± J, A20 = \e,Q.

In the absence of an external magnetic field, the electronic and

nuclear angular momentum vectors J, I are coupled together by the

magnetic hyperfine energy (equation (20.22)) to form a resultant vector

Axes of nuclear rotation

— M—Sphere

Prolate spheroid

ObIate
s

spheroid

Sphere

Positive quadrupole moment Negative quadrupole moment

Fig. 20.19. Representation of non-spherical charge distribution in nucleus as

combination of sphere and quadrupole.

F. Different values ofF correspond to different energies, since the angle

between J and I is changed, and from the vector model it can be shown
that

Wp = iA
{
F{F+1)_J(J+i)_ 1(1+1)} (20.26)

so that the energies ofsuccessive states form an arithmetical progression

(cf. Problem 20.7, for the corresponding case of spin-orbit coupling).

This rule, known as the Lande interval rule, no longer holds when the

electric quadrupole interaction is included, but it can be shown that then

where

W -IAC+B fg(g+l)-J(J+l)J(J+I)Wr - $AC+BQ 2I(2I_ l)J{2j_ l)
> (20.27)

= F(F+1)-I(I+1)-J(J+1); BQ = 2eQBz>0l^e = tQ(<W\dz%

where 82V/8z2 is the field gradient set up by the electrons at the nucleus.

The energy levels given by equation (20.27) for the case of J = 1, 1 = f
are shown in Fig. 20.20. In general the size of BQ is comparable with

that of A, except in atoms where J or 7 is or \, and BQ vanishes.
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Nuclear spins can be found from observations of hyperfine structure in

spectra, and values of the constants A and BQ are obtained from the

separations of the hyperfine levels. In magnetic resonance experiments

(see § 23.6) the precision with which these constants can be determined

is very high, and nuclear magnetic dipole and electric quadrupole

iBQ
J=|

§A

W.
/ = !

J I -*

U+IB„

'M

F=i T
B

-A-Ba

F=\
\BQ

-§A+IBQ

Magnetic hyperfine

interaction

Magnetic -j- quadrupole interaction

Fig. 20.20. Splitting of ground state of an ion with J = 1, 1 = § due to magnetic dipole
and electric quadrupole interaction. The figure is drawn for positive values of both A
and B. Note that (allowing for the multiplicity 2F+1) the centre of gravity of the levels

remains constant.

moments can be estimated with an accuracy generally limited by the

lack of exact electronic wave functions from which the quantities Be in

equation (20.22) and dW/dz2 must be calculated.

In the solid state an assembly of nuclear dipoles behaves as a simple

paramagnetic substance, contributing an amount (cf. equation (20.16))

_ lx. nglPl 1(1+1)
Xn ~ MT ' ( °- 8)

which is only about 10~6 of that of any electronic paramagnetic sub-

stance, since the susceptibility depends on the square of the magnetic

dipole moment. The nuclear contribution has been detected by static

susceptibility measurements in solid hydrogen, where the nuclear

paramagnetism just outweighs the electronic diamagnetism at about
1° K (see Problem 20.9).
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The nuclear susceptibility follows Curie's law, equation (20.28), only

at temperatures such that hT is large compared with any splittings of

the nuclear levels. In substances without permanent electronic magnetic

dipoles thismeans temperatures down to about 10-6 °K, except where the

nuclear levels are split through an electric quadrupole interaction with

the electrostatic field gradient (the 'crystal field') set up by neighbouring

ions. In such cases the gradient (8
2Vj8z2

) is fixed, unlike in a free atom
where it follows the precessing electronic angular momentum vector for

the orbit, which determines the orientation of the electronic charge

cloud. Hence in a solid in which the local surroundings of a nucleus

have symmetry about an axis (which we take to be the z-axis) the

nuclear levels may be split according to the formula

Wm = 4^-/2,0^,0 = eg^F/^) 3^~^+ 1)
. (20.29)

The splittings range from a few kc/s up to over 2000 Mc/s for 127I in I2 ,

solid iodine.

In substances containing ions with both electronic and nuclear

magnetic dipoles the two contributions to the susceptibility are additive

at temperatures such that hT is large compared with any hyperfine

structure splittings (in practice this usually means down to about 1° K).

Such splittings arise from both nuclear magnetic dipole and electric

quadrupole interactions in the same way as for free atoms, but the effects

are more complicated because of the complex interaction ofthe electrons

with the crystal or ligand field discussed in §§ 20.6-20.9. The hyperfine

splittings usually correspond to temperatures in the range 10_3-1° K,

and affect both the electronic and nuclear contributions to the suscepti-

bility in this temperature range and below.
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PROBLEMS
20.1. In statistical mechanics the partition function Z is defined as

£ = 2«p(-H5/jfen
t

where W
t

is the energy of the ith state. Show that for an assembly of non-
interacting paramagnetic ions, each of angular momentum J, in a field B

z = smh{(2J'+i)y/2J}
sinh{y/2J)

where y = Jg^BjkT.
The magnetizationM for an assembly of n such atoms is given by the formula

M = nkT-^(loge Z).

Using this formula, derive the Brillouin function of equation (20.15).

20.2. Show that the energy of interaction of two magnetic dipoles m a distance r
apart is of the order fi mV^OT3

.

In potassium chrome alum, each chromium ion carries a magnetic moment of
3 Bohr magnetons, and the mean distance apart is about 7-8 x 10" 8 cm. Assuming
that serious departures from Curie's law will occur when the interaction energy
between two neighbouring dipoles is W kT, show that this temperature is approxi-
mately 0-01° K. (In fact the levels of each chromium ion are split by about 0-2° K
through a high order effect ofthe crystalline field, and this is more important than
the magnetic dipole interaction between neighbouring ions ; it also gives a specific
anomaly at about 1°K of the type shown in Fig. 20.15.)

20.3. For a Cu++ ion, S = J and the energy levels ofthe ground state in a magnetic
field B are of the form w = ±igpB_ i<xBK
Show that in small fields (gfiB/kT^ 1) the partition function

Z = 2+aB*/kT+g*p*B*mkT)z+ ...,

and hence that ^/^ = n{g*p*/4JcT+ot} = np^jZkT.
This shows that the term B2 in W gives rise to a temperature-independent contri-
bution to the susceptibility. Note that p2 is then of the form A + BT. (B is very
small for Cu++, but Co++ ions obey this relation below 100° K—see Fig. 20.16.)

20.4. Show that for a system where the magnetic moment associated with orbital
angular momentum Hi is gx

l$ and that associated with spin sh is gs sfi and I and s
are coupled together to form a resultant j, the generalized Lande formula for the
g-factor is

jQ'+l)(g|+g,)+W+ !)-«(<+ l)Kgj-g«)

20.5. On the nuclear shell model the nuclear spin is due to the odd neutron or
proton with spin \ moving in an orbit within the nucleus with angular momentum
Ih. The observed nuclear spin I is either l+% or I— £. Apply the formula of
the last question to calculate the magnetic moment, assuming that for a proton
gx = 1 and gs = 5-586, and for a neutron gt

= and gs
= — 3-826. Show that the

magnetic moment m = gn /3n I of a nucleus of spin I is

(a) odd proton I = 1+ £, m = £„(!+ 2-293),

I = l-i, m = 0.7(1- l-2M)/(/+l),
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(6) odd neutron I = Z+J, m = — l-913/?„ = mn,

I = l-h m = 1-913j8„ 7/(2+1) = -m. 1/(7+1).

These formulae are known as the Schmidt limits. Observed nuclear moments
follow the trend given by these formulae but generally lie between these limits.

20.6. The arrangement of parallel cylindrical conductors carrying equal and
opposite currents of Problem 5.3 is used to give a large field gradient and deflect

atoms in an atomic beam. Each cylinder carries a current of 1000 A and the

axes ofthe cylinders are 1 cm apart. Abeam ofatoms in the a<S$ state from an oven
at 900° K travels parallel to the cylinders at the point where the inhomogeneous
field is a maximum. Calculate the separation between the two components of the

beam after travelling a distance of 20 cm.

(Answer: & 0-01 cm.)

20.7. Use the vector model as in § 20.3 to show that, as a result of the spin-orbit

couplingAL. S (=XLScoaABC in Fig. 20.6), the energyofastate with total angular

momentum J is

Wj = iX{J(J+l)-HL+l)~S(S+l)},
so that Wj—Wj_x = XJ (this is known as the Lande interval rule).

Show from the splittings of the 4P multiplet given in Fig. 20.5 for the Cr3+ ion

that the value of A is about 87 cm-1 (slightly higher values are obtained from the

*P states, but these are perturbed by doublet states which are not far away).

20.8. Hydrogen molecules are oftwo types: (a) ortho-hydrogen, where the nuclear

spin of \h of each proton is parallel to the other and the nuclear spin for the

molecule is I = 1 ; (6) para-hydrogen, where the two proton spins are anti-parallel

giving 2 = for the molecule. Show that at high temperatures where the ratio

of ortho- to para-hydrogen molecules is 3 : 1, the susceptibility due to the nuclear

paramagnetism is identical with that of the same total number of hydrogen atoms
with independent spin I = \. (Note that the equilibrium ratio of 3 : 1 corresponds

to the fact that there are three quantum states for 2=1, associated with three

possible orientations of the spin, each with the same a priori probability as the

single state for 1=0.)

20.9. Calculate the paramagnetic susceptibility ofa gramme molecule ofhydrogen
at 1 ° K due to the nuclear moments, assuming that the ortho-para ratio is still 3:1.

Show that it is of the same order as the diamagnetic susceptibility due to the

electrons, assuming that each of the two electrons is in an orbit for which the mean
radius is the Bohr radius.

(Answers: 2-2 x 10-" and —20 X 10~u (m.k.s.).)

20.10. The ground state of sodium is 2
jSj, and the yellow D-lines are due to transi-

tions to the ground state from the two lowest excited states 2Pj and *P.. Show
that the Lande

1

(/-factors of these two states are f and f respectively.

Hence show that one D-line will be split in a magnetic field B into four com-
ponents, with frequencies 2)1 ±§8, 2>i±fS; and the other Z>-line into six compo-
nents with frequencies D2 ±£8, 2Xj±S, -Da+fS, where 8 = jiB/h, when viewed
normal to the field. (Only theAM = ±1 componentsare seenwhenviewed parallel

to the field.)
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FERROMAGNETISM

21.1. Exchange interaction between paramagnetic ions

In the discussion in §§ 20.5-20.9 of paramagnetism in the solid state,

it was tacitly assumed that interactions between different paramagnetic

ions could be neglected. Such interactions are oftwo types: (a) magnetic

dipole-dipole interaction, arising from the magnetic field due to one

dipole acting on another; (6) exchange interactions between the electrons

in different paramagnetic ions, of the same nature as those between

electrons within the same atom (giving rise to Russell-Saunders coupling)

or between the electrons of different atoms in chemical binding. Ofthese

two types of interaction, the latter greatly outweighs the former in ordi-

nary substances. For example, the Curie point of nickel is 631° K (see

Table 21.1). This is a rough indication of the temperature at which the

interaction between neighbouring nickel ions (separation 2-5 A) is of

the order kT, whereas (Problem 20.2) the purely magnetic interaction

of two atomic dipoles at this distance would be equivalent to JcT with

T less than 1° K. Exchange interaction decreases more rapidly than

magnetic dipole interaction as the atomic separation is increased, though

no simple law can be given for its rate of decrease. As an example, in

paramagnetic salts of the Bd group the exchange interaction is more

important than the magnetic dipole interaction until the separation

between the paramagnetic ions is greater than about 6 A, and then both

are so small that they have an appreciable effect on the magnetic

properties only well below 1° K.

The mechanism of exchange interaction, as originally proposed by

Heisenberg in 1928, is one in which the forces involved are electrostatic

in origin, but which, because of the constraints imposed by the Pauli

exclusion principle, are formally equivalent to a very large coupling

between the electron spins, of the type

W=-2fsi
.s

j
. (21.1)

The quantity£ is known as the exchange energy. Though several types

of indirect exchange interaction have since been suggested (see § 21.9),

they all lead to a basic coupling between the spins ofthis form, dependent

on the cosine ofthe angle between the two spin vectors. For two separate
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atoms with total spin vectors S
{, Sj we may use the vector summations

to show that the total interaction energy is

w = -2/yy Si .s, = -2/2^-2^ = -2/sf .2s, = -2/Sf .S,
i i »' i i

(21.2)

which depends only on the relative orientation of the two total spin

vectors Sj, S
f

. An immediate result of equation (21.2) is that the

exchange interaction vanishes for any closed shell of electrons, since

then S = 0. Thus we need consider only the partly filled shells which
are responsible for permanent magnetic dipole moments in atoms and
ions.

For an ion in which J is a good quantum number (such as ions of the

4/ group), we must project S onto J; the reason for this is that J is a

constant of the motion, and hence so also is the projection of S onto J.

The components of S normal to J are precessing rapidly, so that their

contribution to the scalar product S^.S^ is zero on a time average.

From the equivalences L+2S =gfJ (where g is the Lande" factor),

L+S = J, we find at once that S = (g— 1)J; this result can be derived

in a lengthier but more satisfying way from the vector model (see

Problem 21.4). Thus, for a pair of such ions (assumed identical, with

the same values of J and g) we have

W = -2/Si .Si = -2/(?-l)2J.. J, = -2/'J,. J,-. (21.3)

This gives a coupling of the angular momentum vectors of the same
form as equation (21.2), but with a modified value of the apparent

exchange energy.

In a solid, any given magnetic ion is surrounded by other magnetic

ions, with each of which it will have an exchange interaction. The total

interaction for each ion will therefore be a sum of terms such as (21.3)

taken over all pairs of ions; the energy for atom i is thus

i

The magnetic dipole moment of each ion is proportional to the angular

momentum J, since m = gr/JJ, so that the exchange energy can be

expressed in terms of the dipole moments, giving

»•—•D)-2^
assuming again that all ions have the same Lande gr-factor. In a ferro-

magnetic substance, or a paramagnetic substance subjected to an

external magnetic field, each ion will have an average dipole moment
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in the direction of magnetization, together with fluctuating components

in other directions whose time average is zero. In summing over the

interaction with neighbouring ions, that part associated with the

fluctuating components will tend to average out, since at any instant

the contributions from different neighbours will be as often positive as

negative. To a fair approximation we can therefore replace the vector

sum over the neighbouring dipole moments by a sum over the average

moment per neighbour thp and if we assume further that the only

important interaction is with z equidistant neighbours, each having the

same interaction energyf , we can write

w—€)-2^(IH-#(fk
~-(g£)m.M = -m.BM. (21.4)

Here we have dropped the subscript i, since we assume all ions are

identical, and the energy is the same for each; and we have replaced

the mean moment per ion by the magnetizationM = win, where n is the

number of ions per unit volume. The result is an equation formally

identical with the potential energy of a dipole m in a field

B
tat
= (2z/'lnfPP)M = AM;

we may therefore represent the effect of the exchange forces, to a good

approximation, by an effective 'internal field' B^ which is proportional

to the intensity of magnetization. This concept was first introduced by
Weiss to account for the occurrence of spontaneously magnetized sub-

stances (ferromagnetics).

As a preliminary, we shall discuss the effect of this internal field in

a paramagnetic substance. The total field acting on an ion is then

Bo+Bjjjt = B +AM, where B is the external field. So long as the

magnetization is small compared with the saturation value we may
assume that Curie's law x — @IT still holds if we replace B in our

earlier theory by B +AM. Then we have

M = (C/TJB/rt, = C(B +AM)/Mo T
and hence x = ju. M/B = C}(T— A(7//i ) = CUT— 6). (21.5)

This is known as the Curie-Weiss law, and represents the behaviour of

paramagnetic substances at temperatures T > 6 with fair accuracy;

6 = XCj(i is often called the 'Weiss' constant.

The form of equation (21.5) shows that some radical change in the

magnetic properties is to be expected at the temperature 6, and we may
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interpret the infinite susceptibility which, is predicted by equation (21.5)

at this point in the following way. Since x = V-oM/B , and the maximum
value ofM is finite, being limited to the saturation moment obtainable

when all the dipoles are aligned parallel to one another, we must assume

B = 0; in other words, the substance is magnetized even in the absence

of an external field. This 'spontaneous magnetization', due to the

internal field, is a characteristic offerromagnetism, and the temperature

Table 21.1

Saturation moment and Curie point of some
ferromagnetic materials

Saturation moment at 0° K

Substance

(a)

e.m.u.jg

(6)

Bohr magnetonsjatom
point

Fe .

Co (> 670° K)
(>670°K)

Ni .

MnBi
MnAs
FesOa .

221-7

162-6

(167-3)

57-6

75

146
83-5

2-22

1-715

(1-76)

0-605

3-52

3-40

1-20 (per atom
of Fe)

1043

1394

631
630

318
893

Notes : Cobalt has a phase transition at about 670° K, being hexagonal in structure
below that temperature, and face-centred cubic above. The values in brackets are
obtained by extrapolation.

In the m.k.s. system, the saturation moment in ampere-metre2/kg is the same as the
value given in column (a) ; in any system the values ofM,, the saturation moment per
unit volume, may be obtained by multiplying the values per unit mass by the density.

6 is the boundary between paramagnetic behaviour at T > 6 and ferro-

magnetic behaviour when T < 9. The temperature below which spon-

taneous magnetization appears is known as the Curie point, and the

experimental values for a number of substances are given in Table 21.1.

The 'ferromagnetic Curie temperature' is defined as that below which
spontaneous magnetization sets in, and it often differs by 10° or 20°

from the value of determined in the paramagnetic region by fitting

the observed susceptibility to equation (21.5). The latter value is some-

times called the 'paramagnetic Curie temperature '. On our simple theory

there is no difference between the two Curie temperatures.

Since the Curie constant G = n ng2fPJ(J +l)/3&, the value of the

Weiss constant in equation (21.5) is

= AC/Mo = (2z
t/'lng^)x{t

, ng^J(J+l)l3k}^^

= 2zf'J(J+l)l3k (21.6)
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and on simple theory this is also the value of the Curie temperature Tc .

More sophisticated methods of calculation produce a somewhat different

value ofthe numerical constant, and Rushbrooke andWood (1958) show
that the results can be fitted remarkably well by the empirical formula

Te = ^{z-l){UJ{J+l)-l}. (21.7)

This predicts somewhat lower values for the Curie point than equation

(21.6), and conversely, gives higher estimates of the exchange inter-

action. For example, nickel has its Curie point at 631° K; its crystal

structure is face-centred cubic, for which the number of nearest neigh-

bours is 12, which we take to be the value of z. If we make the further

assumption that J = S = \, then we find that f\h is 105° K from
equation (21.6), and 150° K from (21.7). Thus the exchange energy

(there is no difference between #' and # when we are dealing with

spin-only magnetism), is about 10~2 electron volts. The magnitude of

this interaction can perhaps be appreciated best by expressing it in

\l^~ terms of the internal field B^ of equation (21.4), which is found to be
^»A of order 107 gauss (103 weber/metre2

). This is over 100 times larger than

any field which can easily be produced in the laboratory, so that external

fields would be expected to have little effect on the spontaneous mag-
netization below the Curie point.

Equations (21.6) and (21.7) show that the sign of 6 and Tc is the same
as that off (and hence also offl, so long as we are dealing with identical

ions). Thus a positive value of the exchange energy is required to give

a vanishing denominator in the Curie-Weiss law (equation (21.5)), and
a co-operative state in which the electron spins are parallel to each other.

This ferromagnetic state is a direct consequence of the fact that the

exchange coupling (equation (21.1)) gives a lower energy for any pair

of electrons when their spins are parallel, provided the exchange energy

# is positive. If it is negative, the state of lower energy is one with

anti-parallel spins; the Weiss constant is also negative, and the denomi-
nator of the Curie-Weiss law does not vanish at any real temperature.

Nevertheless a co-operative state does then occur, but one in which the

basic arrangement is of anti-parallel spins. This phenomenon is called

'anti-ferromagnetism', and is discussed in Chapter 22.

21.2. The Weiss theory of spontaneous magnetization

Since the internal field in a ferromagnetic substance is so large, the

magnetization will approach the saturation value even at ordinary
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temperatures. The assumption that the magnetization is small and

proportional to the effective field, used in deriving equation (21.5) for

the susceptibility above the Curie point, thus cannot be used below the

Curie point. Ifwe retain the concept of an internal field, the magnetiza-

tion may be calculated using the Brillouin function (see equation (20. 15))

which may be written in the form

M\Ma = <£(</)• (21.8)

Here Ms is the saturation magnetization per unit volume, and equals

ngJfl, where n is the number of atomic dipoles per unit volume. The

argument of the Brillouin function may be written as

y = gJpB/kT = Ma BjnhT

and B must be taken as the sum of the external field B and the internal

field XM. Hence we have

y = Ms(B +XM)lnkT, (21.9)

which may be solved for M
,
giving

MjM. = y(nkTIXM^)-(B IXMg). (21.10)

The value of the magnetization under any given conditions of B and T
may be found by eliminating the parameter y between the two equations

(21.8) and (21.10). It is clear that this cannot be done analytically, but

the general behaviour ofthe magnetization can be found from a graphical

solution. We shall begin by equating B to zero, and finding the value

ofthe spontaneous magnetizationM in zero field. To obtain a graphical

solution we then plot the two functions MQjMs — <f>(y)
(from equation

(21.8)) andMQ\Mg — y{nkT/XM^) (from equation (21.10)) against y, as in

Fig. 21.1. The second function gives a straight fine which passes through

the origin and intersects the curve for
<f>(y)

at this point. Thus one possible

value ofthe magnetization is always zero. If the temperature T is suffi-

ciently high, the slope of the lineM /Ms = y(nkTj\M*) is so great that

this is the only point of intersection, and the substance must therefore

be unmagnetized in zero external field. This corresponds to the para-

magnetic behaviour above the Curie point, discussed in the last section.

As the temperature T falls, the slope of the line given by equation

(21.10) decreases, until at a certain temperature Tc it is tangential to

the curve (a) at the origin. For small values of y,

<f>(y)
= M\MS = y(J+l)l3J,

and on equating this to the value ofM/Ms given by equation (21.10) with
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CA//* = 6, (21.6 a)

B = 0, the value ofTc is found to be

XMI(J+1\ _ Xng*p*J(J+l)
c nk\BJ ) 3k

where 6 is the Weiss constant defined by equation (21.6). At still lower

temperatures, the slope of the line is less than the initial slope of <f>(y),

and there will be two points of intersection, and two possible values of

the magnetization, one zero and the other finite. It is easy to show that

MjM,

Fig. 21.1. Graphical solution of the equations (21.8) and (21.10) for

spontaneous magnetization.

(a) is the Brillouin function <j>(y) (equation (21.8))

;

(6), (c), (d) are the straight lines MjM
t
= y(nkTjXM?t ) for tempera-

tures T > Tc , T = Tc, and T < Tc respectively, where Tc is the
Curie point (all with B„ = 0)

;

(e) is the function in equation (21.10); an external fieldB is applied,

with the temperature the same as for (d).

the former is unstable and the latter stable. For, if we imagine the

magnetization at any instant to correspond to the point Q on
<f>(y),

then

the internal field produced by the magnetization corresponds to the point

R, and this field will produce the greater magnetization corresponding

to the point 8 on
<f>{y). Thus the magnetization will increase until the

point P is reached where the two curves intersect. Above P, the two
curves cross and any further increase in the magnetization would produce

an internal field insufficient to sustain the increased magnetization. It

thus appears that the state of spontaneous magnetization corresponding

to the point P is stable, while the unmagnetized state is unstable.

Since the value of the spontaneous magnetization is determined by
the intersection with <f>(y) of the line corresponding to equation (21.10)

(with B = 0), and the slope of this line depends on the temperature, it
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is obvious that the whole ofthe curve <j>(y) will be traced out as we lower

the temperature from the Curie point to the absolute zero. From
equation (21.6 a), XM^/nk = 30J/(J+1), and hence we may express

equation (21.10) (with B = 0) in the form

0-2 0-4 0-6 0-8

Reduced temperature (T[d)

1-0

Fig. 21.2. Reduced equation of state for a ferromagnetic substance.

- from the Weiss theory (equation (21.8)) for J = J.

experimental curve for nickel.

—O— experimental curve for a nickel—copper alloy (76%-24%).

(After Oliver and Sucksmith, 1953.)

Elimination of y between this equation and equation (21.8) shows that

a^ 'reduced equation' may be found of the form

M /Ms =f(Tj6), (21.11)

where the function f{Tj6) is the same for all substances with the same

value of J. This function is plotted in Fig. 21.2 (broken line) for the

special case of J = J; the curves for other values of J lie slightly inside

this curve at intermediate values of (Tjd)'. The experimental determina-

tion o£M fMs and the verification of this 'Law of Corresponding States'

will be discussed in § 21.6.

When a considerable external magnetic field B is applied the effect

on the magnetization can be found by a graphical solution of equations

851110 S3
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(21.8) and (21.10), where the term in J3 is retained in the latter equation.

The straight line corresponding to a plot ofMjMa against y is now dis-

placed to the right compared to that for B = at the same temperature.

The intersection with MjMs
= <j>{y) occurs at the point P' in Fig. 21.1,

and the magnetization is slightly increased over that corresponding to P,

the value for zero external field. At temperatures well below the Curie

point M is already close to Ma and <f>{y)
increases only very slowly, so

that the effect of B is small. At temperatures near the Curie point P is

on the steeper part of the curve for <f>(y) near the origin and the increase

inM produced by an external field is more noticeable.

The theory outlined above is similar to the original theory of Weiss

except that the Brillouin function has been substituted for the Langevin

function. Its great success lies in the explanation of the presence of

spontaneous magnetization in a ferromagnetic substance, but there are

also difficulties. The fact that the unmagnetized state is unstable appears

to be contrary to experience, since it is well known that a piece of iron

can be demagnetized by dropping it. Moreover, in a single crystal the

magnetization can be restored by applying an external field of less than

1 gauss, although the internal field is about 107 gauss! We also require

some explanation of the hysteresis curve. To overcome these difficulties

Weiss introduced the concept of domains of magnetization within the

specimen. Each domain contains some 1017-1021 atoms, and a piece

of unmagnetized iron contains many domains all spontaneously mag-

netized, but the directions of magnetization of different domains are

oriented at random. The theory ofspontaneous magnetization applies to

a single domain, but the magnetization of the whole specimen depends

on whether the domains themselves are aligned towards the field or

whether they are randomly oriented. This theory, which was conceived

before the nature of the exchange interaction which causes the spon-

taneous magnetizationwas known, is remarkably successful in explaining

the main features offerromagnetic substances. The existence ofdomains

has been confirmed by the experiments of Bitter, briefly described in the

next section, where we shall first consider what factors determine the size

and shape of the domains.

21.3. Ferromagnetic domains

A considerable advance in the understanding of ferromagnetism

occurred when it became possible to obtain single crystals of iron, cobalt,

and nickel sufficiently large for their magnetization curves to be measured.

In each case it was found that the crystals are anisotropic; that is, the
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magnetization depends on the direction the field makes with the crystal

axes. Fig. 21 .3 shows the curves for iron, which forms body-centred cubic

crystals. TheM-B curve is found to rise more steeplywhenB is parallel

to the edge of the unit cube [100] than any other direction, such as a

face diagonal [ 1 10] or abody diagonal [111]. The energy ofmagnetization

is f J3 dM, and is represented by the area between the magnetization

M«
[100]

* ^^~

c
o^lll]

sr

M /

400 gauss
1

0-04 weber/metre*

B,

Fig. 21.3. Magnetization curves for a single crystal of iron.

The directions of easy magnetization are the cube edges (e.g. [100]).

When the field is not along a cube edge, the initial process is of mag-
netization along the cube edges in directions nearest to that of the

field ; hence the curve for [110] breaks off roughly at Af /V2, and that

for [111] at MJ*J3, since further magnetization requires domain rota-

tion against the anisotropy energy.

curve and the .If-axis (B = 0). This energy is least when the single

crystal of iron is magnetized along the [100] direction (or its equivalents,

[010] and [001]), and these are known as directions ofeasy magnetization.

In the case of nickel, with a face-centred cubic structure, the directions

of easy magnetization are the body diagonals, while for cobalt, with a

hexagonal structure at room temperature, there is only one direction of

easy magnetization, the hexagonal crystal axis.

The excess energy required to magnetize the substance in a hard direc-

tion is known as the anisotropy energy. It is clear that the anisotropy

energy cannot arise from the exchange interaction, for the latter depends
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only on the mutual orientation of the dipoles and not on the angle which

they make with the crystal axes. Its origin is thought to be similar to

that of paramagnetic anisotropy (see end of § 20.7), arising from the

combined effect of spin-orbit coupling and the electric field of the

neighbouring charged ions. The anisotropy energy has the same sym-

metry properties as the crystal, and is smallest for crystals of high

symmetry. Thus it is less for iron or nickel, which are both cubic, than

i

T
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1

>

*

' •
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8 N
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Fig. 21.4. Possible domain structures in a single crystal, where the directions of easy
magnetization are along the edges of a cube.

(a) Single domain ; external lines of field run from north to south pole and give large

external field.

Double domain, where external lines of field run mostly between adjacent north and
south poles, and the energy stored in external field is much reduced.

Arrangement with no free poles and no external field ; the domains with perpendicular
magnetization at top and bottom are called 'domains of flux closure'.

(d) As in (c), but with further subdivision into smaller domains.

(6)

(o)

for cobalt, which has only axial symmetry. The anisotropy energy also

causes a change of length on magnetization (magneto-striction).

In zero field the specimen, whether it is a single crystal or an aggregate

ofcrystals, will be in equilibrium when its potential energy is a minimum.
In an unstrained crystal the important contributions are the exchange

energy, the anisotropy energy, and the magnetostatic energy (the energy

stored in the magnetic field). Ifthe crystal consisted ofone single domain,

as in Fig. 21.4 (a), the 'free poles' at the ends would give rise to a large

external magnetic field and to a large magnetostatic energy. This is

reduced by having two domains oppositely magnetized as in Pig. 21.4 (6),

when the two poles partially cancel one another. Ifthere are no free poles

on any surface the magnetostatic energy is reduced still further. For this

to be the case, the field B at the surface of the crystal must always
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be parallel to the surface, and the normal component of B must be

continuous across the boundary between two domains. If the two

domains are magnetized in perpendicular directions the wall between

them must run at an angle of 45° to each direction of magnetization,

and Fig. 21.4 (c) shows a possible arrangement. The little surface domains

which produce a closed circuit ofB are called domains of closure, and are

generally much smaller than the inner domains. The size ofthe domains

Fig. 21.5. Variation of spin orientation in a Bloch wall.

depends very much on the size and shape ofthe crystal, and this depends

on the previous history of the substance. This fits in with the fact that

the hysteresis curve is very sensitive to the composition and state of the

specimen, since the domain structure must determine the shape of this

curve.

The configuration in Fig. 21.4 (d) is an alternative to that ofFig. 21 .4 (c)

and one might expect the domains always to be very small in size and

large in number; but energy is required to form the boundary between

two domains, since the magnetization on either side is in opposite

directions. The boundary between two domains is known as a 'Bloch

wall'. It has a finite thickness, extending over a number of atoms whose

spins change gradually in direction as we proceed through the wall

(Fig. 21.5).

From equation (21.3) the exchange energy between neighbouring

identical spins is approximately AWe = —

2

i
/'«/2 cos^r, where ifi is the
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angle between the directions of the spin momentum vectors. Therefore,

the total exchange energy in going through the wall is

^=-I2/'J2 cos^..

If the wall thickness extends over many atoms, and the angle between

neighbouring spins is small, we may write cos^
iy
~ 1—

</<J/2,
and the

total increase in exchange energy because the spins are not exactly

parallel is We *Jf'J*2tf,

For a wall which forms the boundary between two domains where the

spins are anti-parallel, the total change in angle in going through the

wall isJ *l>ij
= it> Ifthere is a line ofn' atoms in the thickness ofthe wall,

and ifiti
is the same for all adjacent pairs of atoms, n'^fs^ — -n and

We » »'/'J»(ir/n')* = ir
2/'J2

ln'.

This equation shows that the exchange energy is reduced by making
n' large, and it would seem that the wall should be infinitely thick.

This would increase the anisotropy energy Wa , however, since a number
of spins in the wall are pointing at an angle to the direction of easy

magnetization, and this number increases with the wall thickness. Thus
Wa is proportional to n', and the total energy per unit area of wall in the

substance is We+Wa = v»/'J*ln'a*+Kn'a, (21.12)

where K is a constant roughly equal to the anisotropy energy per unit

volume, a is the lattice constant of the substance, so that, for a simple

cubic crystal, there are 1/a2 atoms per unit area of wall, and n'a is the

thickness of the wall.

The form ofequation (21.12) shows thatjthere will be a minimum value

ofthe total energy for some value of n', which by differentiation is found

to be ri = {ir^'J^Ka3
)*. For nickel, J = £, f is about 10-1* ergs,

K is about 10B ergs/cm3, and a3 is about 10-23 cm3
. Hence n' is of the

order of 100 atoms, and the thickness of the wall is a few hundred Ang-

strom units. Substitution of the optimum value of n' in equation (21.9)

gives the expression 27r{
t
/'K

J

2
la)k for the wall energy per unit area,

whose order of magnitude is found to be about an erg/cm2
.

As the domain width decreases in the flux closure arrangement shown
in Fig. 21.4 (d), the number of walls per unit area of the crystal surface

increases, with a corresponding increase in the energy. The energy

required to form a wall therefore tends to keep the domains small in

number, and large in size. When K is large, particles of about 10-4 cm
diameter are found to consist of a single domain, because the energy
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required to form a wall is more than the reduction in the magnetostatic

energy which would result from the subdivision into domains. In large

crystals another factor which enters into the determination of domain

size is that the domains of closure in Fig. 21.4 (d) may require to be

magnetized in a hard direction, thereby increasing the anisotropy energy.

The volume occupied by the domains of closure decreases as the width

of the domains decreases, and the anisotropy energy therefore tends to

reduce the domain size, while the wall energy tends to increase it. The

optimum domain size is determined by a compromise between these

two effects.

The most striking evidence for the existence of domains is provided

by the Bitter patterns which are obtained when finely powdered iron or

cobalt, or colloidal magnetite, is spread on the surface of the crystal.

The surface must be very carefully prepared and electrolytically polished

to remove irregularities. The particles deposit themselves along the

domain boundaries since here there are strong local inhomogeneous

magnetic fields which attract the particles. A typical Bitter pattern is

shown in Fig. 21.6; the 'fir-tree' effect is obtained when the surface

makes a small angle of 2 or 3 degrees with the true (100) crystal plane.

The branches of the tree are the domains of closure which close the flux

circuit over the primary domains below. On looking through a micro-

scope the patterns can be seen to change as a magnetic field is applied.

The direction of magnetization in a domain is found by making a tiny

scratch on the surface with a fine glass fibre. If the scratch is parallel

to the magnetization the pattern is unchanged, but if it is normal to

it the pattern is distorted. This is because a scratch parallel to the field

behaves as a long narrow cavity, with no free poles at the ends; a scratch

perpendicular to the field will have induced poles on its sides, and there

will be a strong field in the cavity so that the pattern is distorted.

Experiments of this type, and others, in which the scattering of beams

of electrons or polarized neutrons have been used to investigate domain

structure, show that the theory outlined above is correct in its main

features.

The changes in the domain structure which occur when a magnetic

field is applied, and the correspondence between these changes and the

various parts of the magnetization curve, have already been outlined

in § 8.4. The initial portions of the magnetization curve are associated

with movements of the Bloch walls, which are reversible in small fields

but irreversible after larger fields have been applied. Where there are

strains or inclusions of impurities the energy depends on the position of
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Fig. 21.6. Domain patterns on a demagnetized single crystal of silicon-iron (the surface
is very nearly a (100) crystal plane).

The magnetization is normal to the fine scratches visible on the surface, and is directed
as shown in the key diagram above. Domain walls labelled a form the boundary between
domains magnetized in directions differing by 90°, and those labelled 6 are boundaries
between domains differing by 180°. The 'fir-tree' closure domains arise because the
surface is not exactly a crystal plane. Two different types of closure domain (labelled

1 and 2) can be seen on the 90° wall.

(Photograph by L. F. Bates and A. Hart.)
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the wall, as can be seen from considering the effect of a small particle

embedded in the material. Such a particle will be a small domain mag-
netized in one of its own easy directions of magnetization, which do not

in general coincide with those of the surrounding material, or it may be
a particle of a non-ferromagnetic substance. In the latter case there

S:« * a

n n n n

(a) Domain boundary

Fig. 21.7. Effect of a non-magnetic inclusion.

(a) In the middle of a domain.
(6) When intersected by a domain boundary.

will be free poles on its surface, as in Fig. 21.7 (a), and the field of these

poles gives extra magnetostatic energy. If a Bloch wall intersects the

particle, as in Fig. 21.7 (b), this energy will be reduced, just as in the

case of free poles on the surface of a ferromagnetic substance in Fig.

21.4 (a, b). This gives a minimum of energy when a wall intersects

as many inclusions as possible. In a small external field the wall is

displaced slightly away from the minimum energy, but returns when the

field is removed; this gives a reversible wall movement. In larger fields

the wall may be shifted to a more distant position where the energy

curve has passed through a maximum and then diminished; on removing

the field the wall cannot cross the energy maximum and so is unable to

return to its initial position. The displacement is then irreversible. The
more free the material is from strains and inclusions, the greater the size

ofreversible wall movements, and the lower the field required to produce

a movement, thus giving a large initial permeability, and a 'soft' mag-
netic material. With large strains and many inclusions the smaller is

the possibility of boundary movement, and the higher the coercive

force.



634 FEKROMAGNETISM [21.4

21.4. The gyromagnetic effect

It was pointed out in § 20.1 that the magnetic moment of an atom is

proportional to the total electronic angular momentum of the atom. For

a macroscopic system, the total magnetic moment M and the total

electronic angular momentum Ge are formed by similar vector addition

of the individual components, and they should therefore be related in

the same way. Thus we have

M/Ge
= y= -Sf'(e/2m ),

where g' is an effective Lande" factor. It follows from this that if we

could measure in some way the change in electronic angular momentum
associated with the change in magnetization of a specimen, the value

of g' would be determined. Since g' differs by a factor of 2 according

to whether the magnetic moments are associated with orbital or spin

angular momentum, this affords a method of verifying our assumption

that ferromagnetism in the 3d group is associated with the electronic

spins.

Since no external couple is exerted on a specimen by the act ofchanging

its magnetization, the total angular momentum of the system must

remain unaltered. The change A(?e in the electronic angular momentum
must therefore be accompanied by an equal and opposite change

A#lattice= —A(?e

in the angular momentum of the 'lattice', defined as the rest of the

specimen, apart from the electrons responsible for the magnetization.

It is this latter change in angular momentum which is observed, but it

is very small. In a cubic centimetre ofnickel there are some 1 23 electrons

whose individual momenta can be changed by K « 10~34 newton-metre

(10~27 dyne-cm) by reversal of the spin. The total angular momentum
thus imparted to the lattice is only about 10~u newton-metre (10

-4

dyne-cm).

A variety of experimental methods have been used to determine y,

but only a short account will be given here (more details are given by

the authors to whom references are made in this section). The methods

fall into two classes. In one, an unmagnetized specimen is set into

rotation and the resultant magnetization is measured. This is the

Barnett effect, and typical experiments are those of Barnett (1944).

Even with a large specimen, the magnetic moment induced is very

small owing to the limited velocities of rotation which can be em-

ployed. In the second class, the magnetization is changed by a known
amount and the change in angular momentum is determined; this is
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known as the Einstein-de Haas effect, though first suggestedby Richard-

son. This method has the advantage that resonance can be used to

enhance the effect. A ferromagnetic rod is suspended inside a long

solenoid supplied with alternating current whose period is equal to the

torsional oscillation period of the suspended rod. If 3 is the moment
of inertia of the rod, b the damping constant, c the torsion constant of

the suspension, and M sin a>t the magnetic moment of the specimen at

any instant, the equation of motion is

3 j7S+ b yi+ ce = -jT = -oMcoscot.
at* at at y

At resonance, the amplitude of the angle of rotation is (l/y)(Jf/6); b is

found from the logarithmic decrement, and M must be measured

independently.

This method of measuring y was employed by Scott (1951) using a

modification of the apparatus built for the determination of ejm of the

carriers of electric current (see § 3.1). The specimen, in the form of a

rod, is suspended as a torsional pendulum. A coil is wound on the rod,

and by reversing a current in this coil the magnetization of the rod can

be reversed. The change in magnetization is measured by a null magneto-

meter placed half-way between the rod and a standard coil carrying a

steady current which is simultaneously reversed with that in the speci-

men. This steady current is adjusted until a balance is obtained. The
magnetometer is fitted with a mirror, and the light reflected from it falls

on a twin photocell feeding an amplifier, a device similar to that used to

amplify galvanometer deflexions. By this means a null magnetometer

of great sensitivity is produced. A correction was made for the non-

uniformity ofmagnetization ofthe rod, and the earth's field was neutral-

ized by a system of Helmholtz coils. The period of oscillation of the rod

was 26 sec, and its rotation was observed by reflections of a beam of

light from a mirror mounted immediately above the specimen. The
procedure used was to reverse the magnetizing current at a moment
when the specimen passed through the centre of its swing. The direction

of reversal was chosen so that for 60 current reversals the amplitude

was increased, and then for 60 reversals it was decreased. With small

damping, the progressive change in amplitude was very nearly linear,

and the amplitude change for one reversal was obtained from the two

slopes of the plot for 120 reversals.

A number ofexperiments ofhigh precision have been carried out using

both the Einstein-de Haas and Barnett effects, and a mean ofthe results
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obtained between 1944 and 1960 is given in a survey by Meyer and Asch

(1961), who show also that there is good agreement with results of ferro-

magnetic resonance experiments using microwave radiation (see § 23.7).

The results are shown in Table 21.2, and are expressed in terms of

two quantities g and g', obtained from ferromagnetic resonance and gyro-

magnetic experiments respectively. When we have a mixture of orbit

and spin, the magnetic moment and angular momentum may be written

as M = ML+MS = (el2m ){GL+2Gs}, G = GL+GS , and the ratio is

_e_fGL+2G8[
2ra„

M =
4^)' (21.13)

The 'spectroscopic splitting factor' g measured in a ferromagnetic

resonance experiment has been shown by Kittel and Van Vleck to be

defined by M e
{
QL+2GS \ (_e\

2m { Gs )

y
\2m )'G„

from which it follows that

(21.14)

i+7
(21.15)

The results given in Table 21.2 show that this relation is fulfilled within

the experimental error for iron and nickel, and Meyer and Asch show

that this is true also for a wide range of alloys of the 3d group. The

fact that g, g' are so close to 2 shows that the magnetism of the ferro-

magnetic metals of this group is almost entirely due to spin. This result

Table 21.2

Some values of the quantities g' and g

The quantity g' is derived from gyromagnetic (magneto-mechanical) ex-

periments, the quantity g from ferromagnetic resonance experiments; the

values quoted are the means of a number of experimental results, given by

Meyer and Asch (1961).

Substance g' 9

1 1

9
+?

Iron

Cobalt

Nickel

1-928+0-004
1-854+.0-004

l-840± 0-008

2-094±0-003

2-185±0-010

0-996±0004

1-001±0009

is similar to that found for the paramagnetism of salts of 3d group ions

(Chapter 20), and there is little doubt that it is due essentially to the

same cause, 'quenching' of the orbital moment by electrostatic inter-

action with the neighbouring (ligand) ions.



21.5] FERBOMAGNETISM 637

21.5. Thermal effects in ferromagnetism

When a substance is magnetized, with all the electron spins pointing

in one direction, it is in a state of greater order than when it is unmag-
netized, with the spins pointing in random directions. The magnetized

state is therefore one oflower entropy than the unmagnetized state, and
in passing from the former to the latter there will be an increase in the

entropy of the spin system. If the transition is accomplished by heating

a ferromagnetic substance through its Curie point, the entropy change

appears as an anomaly in the specific heat. If it is accomplished by the

sudden (adiabatic) removal of a magnetic field, the entropy change

appears as a fall in the temperature of the substance; this is known as

the magneto-caloric effect. Both this effect andthe specific heat anomaly
have been used to obtain information about the ferromagnetic state.

The specific heat of a substance is C = T{dSjdT), where the entropy

change dS is given by the relation

TdS = dU--BdM; (21.16)
P

dU is the change in the internal energy, and —BdM is the increase

in the magnetic potential energy when the magnetization is increased

by dM at constant field B. The density p appears because M is the

magnetization per unit volume, while the specific heat (and other thermal

quantities) are per unit mass. In a ferromagnet, B = B -\-XM , and the

specific heat is thus

(B +XM\ (dM\

--ml)- <»•">

Below the Curie point any external field B is very small in comparison

with the internal field XM , so that we can write

C-C 1 (*\ d(
MZ

) /analC - CM-2\-p)-d^- (2L18)

Here CM is the specific heat of the substance at constant magnetization,

while the second term arises from the change in magnetization with

temperature. Since M falls with increasing T, it gives a positive con-

tribution to the specific heat (as the temperature rises, the degree of

order in the magnetic system decreases, and the entropy associated with

the magnetization increases). Reference to Fig. 21.2 shows that the

rate of change of M with temperature is greatest just below the

Curie point, and the anomalous specific heat arising from the magnetic

dT dT~
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properties should be greatest at this point, followed by a sharp drop

above the Curie point where M becomes zero.

An experimental curve showing the variation of C with T for nickel

is given in Fig. 21.8. The anomalous specific heat is appreciable only

near the Curie point, but the drop above the Curie point spreads over a

range of temperature, instead of appearing as a sharp discontinuity. In

-200 200 400 y(°c.)

Fig. 21.8. The molar heat of nickel, from the measurements of Grew, 1934.

order to obtain a value for A from the specific heat anomaly, CM must be
estimated and subtracted from the measured specific heat, so that only

the magnetic contribution remains. Measurements are made at constant

pressure, so that we can write CM = Ov+(Gp—Cv)+Ce . C'v is obtained

by extrapolation, using the Debye formula, from measurements at low
temperatures; (Cp—

C

v ) may be found from the expansion coefficient and
compressibility using a standard thermodynamical formula; Ce is the

electronic specific heat. This is abnormally large in a ferromagnetic

metal and difficult to estimate since it is associated with a high electron

density in the 3d band (see § 18.4). dM^jdT must be found by plotting

M2 as a function of temperature, and then A is obtained. This is not a
very accurate method of finding A and the value does not agree too well

with the value obtained from the magnetization curve, probably because
of errors in Ce . However, the general form of the specific heat curve is

not incompatible with theory and this also applies to iron and cobalt,

although the measurements on these metals are less certain (for experi-

mental details, see Grew, 1934). The general form of the specific heat
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anomaly ('lambda type') is typical of a 'co-operative' transition from

an ordered to a disordered state.

If a field is applied to a magnetic substance* there is in general an

increase in magnetization, and this results in a state of greater order

than in zero field. In other words the entropy of the system has

decreased, and the loss of (magnetic) potential energy of the dipoles in

turning towards the field appears as heat of magnetization. If the field

is switched off isothermally, heat is absorbed. If the field is switched

off adiabatically the entropy of the system must remain constant; the

increase in entropy due to increased disorder of the dipoles is then

compensated by a decrease in the entropy associated with thermal

agitation, and there is therefore a fall in temperature. This is the basis

of the 'magnetic cooling' method for obtaining temperatures below 1°K
using paramagnetic substances. This 'magneto-caloric' effect also has

applications to ferromagnetics. Since dS = in a reversible adiabatic

process, we have from equation (21.17)

dT = l^±^]dM. (21.19)

Above the Curie point saturation effects are negligible and M/B is a

constant at a given temperature, so that in a finite change of the mag-

netization we have , R IM . u
AT = {

°! J~ \ A(Jf2
). (21.20)

I
2PVm )

Below the Curie point we can neglect B in comparison with XM, and

we obtain ^
AT = -4— A(M2

). (21.21)
2PCM

If the external field is initially zero, so that the magnetization of each

domain has the spontaneous value Mo, the temperature rise on applying

a field is \

AT = -A- (M*-Ml). (21.22)
ZPLM

IfAT is plotted as a function ofM2
, a curve ofthe form shown in Fig. 21.9

is obtained. It becomes a straight line in the region where the external

field is large enough to change the magnetization of the domains, with

a curved tail at lower fields where the magnetization of the substance is

mainly due to wallmovements or the rotation ofdomains. Extrapolation

of the straight portion to the axis AT — gives M\ from the intercept.

The magneto-caloric effect may be used for a number ofpurposes, such

as investigation of the hysteresis curve, one of the most important being
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the determination of the spontaneous magnetization MQ near the Curie

point. A good description of experimental technique is given by Oliver

andSucksmith(1953)in work on a copper-nickel alloy (24% Cu; 76%Ni).

AT

>jtf a

Fig. 21.9. Curve showing the variation of AT with Afs in the

magneto-caloric effect.

AT = W2pCM)(M*~Ml).

21.6. Measurement of the spontaneous magnetization M as a
function of temperature

In § 21.2 it was shown that the spontaneous magnetization of a single

domain should obey an equation of state which depends only slightly on
J (see Fig. 21.2). In order to test this relation it is necessary to determine
the value ofM for a single domain at zero field over a wide range of

temperature. Since in practice any specimen consists of a number of

domains randomly oriented, so that (apart from remanence) the net

magnetization will be zero, it follows that the spontaneous magnetiza-
tion of a single domain cannot be directly measured. If we apply a
sufficiently strong field, however, the various domains will rotate until

they point in the direction of the external field, and the resultant

magnetic moment will be close to the spontaneous magnetization of the

individual domains. It will slightly exceed it, since the magnetization
under these conditions corresponds, not to the point P in Fig. 21.1, but
to the point P', the stable state in the presence of a magnetic field. In
order to find the value corresponding to P, we must make measurements
ofif for a range ofvalues of the external field, and then extrapolate back
to zero field. Since the fields which are applied are small compared with
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the internal field, the point P' is never far from P, and the extrapolation

required is not very great at temperatures well below the Curie point.

Near the Curie point the magneto-caloric effect is used as described in

the previous section.

In a number of magnetic materials the nucleus of the magnetic ion

possesses a nuclear magnetic dipole moment mn , which interacts with

the magnetic field Be of the electrons (see § 20.10). (The field Be is the

actual magnetic field at the nucleus generated by the magnetic electrons,

and is nothing to do with the effective molecular field Btot introduced

by Weiss to explain ferromagnetism.) The interaction energy

W=-mn .Be

gives a hyperfine splitting of the nuclear levels, from observation of

which Be can be found if the nuclear moment is known. In a ferro-

magnetic substance Be is parallel to the magnetization, and its time

average value is proportional to the average magnetic moment on each

ion (apart from some small corrections). Thus Be is proportional to the

magnetization, and observation of the hyperfine structure separation as

a function of temperature gives a convenient and accurate method of

determining the saturation magnetization curve. This can be done in

zero external field, since it is not necessary to fine up the domains, and

many of the difficulties of direct measurement ofthe bulk magnetization

are avoided.

The magnitude of the electronic field B
e lies generally between 105

and 107 gauss. The nuclear levels have energy Wmj = —
gn^nmIBe,

where ml is the nuclear magnetic quantum number, and are equally

separated by an amount corresponding to a frequency of 108-1010 c/s.

Two methods are available for measuring this separation over a range

of temperature. One of these is the Mossbauer effect, in which a low-

energy y-ray is emitted from a nucleus in an excited state and absorbed

by a nucleus in the ground state. A y-ray photon of energy hv carries

momentum hv/c, so that the emitting or absorbing nucleus is given a

recoil momentum, and hence takes up energy which reduces the photon

energy. If the nuclei are in a solid the recoil momentum is generally

taken up by the solid as a whole, and the energy taken from the y-ray

is negligible. Thus in a solid, unlike a gas (see Problem 21.3), there is

no spread in energy of the photon due to the varying amounts of energy

taken up by the recoil.

Only those y-rays which are extremely narrow are of use, since the

width of the y-ray must be smaller than the hyperfine splitting. For
861110 t t
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magnetic purposes, the 14-4 keV transition between the excited state

(7 = |) and the ground state (I = §) of the isotope 67Fe has been

especially useful. This gives a line width of about 3 Mc/s, and the

hyperfine levels and structure of the MOssbauer gamma-ray are shown

in Fig. 21.10. The structure is exactly analogous to the Zeeman effect

mt
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J = l

<* i>

n a

j k d i
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Unsplit line Line split in magnetic field B,

Fio. 21.10. Hyperfine splitting of the nuclear states of 57Fe in a magnetic field. The
ground state I = £ has gn = +0-18, and the excited state / = f has gn = —0-010; the

allowed transitions are those for which Amj = 0, ± 1. Note the gross disparity in scale

;

the hyperfine splittings are about 10-11 to 10~"18 of the y-ray frequency. In some sub-

stances there is also an electric quadrupole interaction in the I = § state.

in an atomic transition. The splittings are a very small fraction of the

y-ray frequency, and their analysis is made by means of the Doppler

effect produced by a relative motion of the source and absorber. It is

convenient to use a source with no hyperfine structure, such as 67Fe

(derived from the nuclear decay of S7Co) in stainless steel, which is

non-magnetic, since this gives a single emission line, as shown on the

left ofFig. 21.10. For this to be absorbed by a 57Fe nucleus in a magnetic

substance, where six transitions are allowed with slightly different

frequencies as on the right of Fig. 21.10, a Doppler shift is needed of

the correct velocity to bring one ofthe transitions to the same frequency

as the single line on the left. Thus the entire hyperfine pattern can be

scanned by systematically changing the relative velocity of source and

absorber (the velocity required is of order a few mm/sec). Of course

source and absorber can be interchanged, and the choice is determined

by experimental convenience.

The hyperfine field in metallic iron has been determined as a function
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of temperature by means of the Mossbauer effect; the results (see

Fig. 21.11) ofNagle, Frauenfelder, Taylor, Cochran, and Matthias (1960)

show close agreement with the saturation curve determined by con-

ventional means. At sufficiently low temperatures for the magnetization

to reach the saturation value, the hyperfine field is 330 kilogauss. On
applying an external field parallel to the magnetization Hanna, Heberle,

A Bun 1

• Bun 2

Fig. 21.11. The hyperfine magnetic field at a 67Fe nucleus in metallic iron, relative to

that at room temperature, plotted against the reduced temperature T\TC
. The experi-

mental points are measured by the Mossbauer effect, the solid line indicates the relative

saturation magnetization as determined by a bulk measurement (see Nagle et al., 1960).

Perlow, Preston, and Vincent (1960) found that the net field at the 5'Fe

nucleus was reduced, showing that the hyperfine field was in the opposite

sense to the external field, and hence also to the magnetization.

The hyperfine splitting ofthe ground nuclear levels in a ferromagnetic

substance has also been measured by the method of nuclear magnetic

resonance (see § 23.5). For 57Fe this gives a direct observation of transi-

tions between the states mz = +£ and —J of the ground state I — \,

at a frequency such that

hv = W_t~W+i = gnpn Be, (21.23)

where gn is the value for the ground state I — \. This gives a more
precise measurement of Be than the Mossbauer method (in which the



644 FERROMAGNETISM [21.6

line width cannot be less than that determined by the lifetime of the

excited state), and the resonance frequency, about 46 Mc/s in metallic

iron near 0° K, can be found within a few kc/s. Benedek and Armstrong

(1961) have made a careful study of the pressure and temperature

dependence of the resonance frequency in iron, and have shown that

the resonance frequency is not quite linearly proportional to the mag-
netization at higher temperatures, but the departure is less than 1 per

cent at 300° C.

21.7. Foundations of the theory of ferromagnetism

The brief description of the chief properties of ferromagnetic sub-

stances given above shows that we possess a fairly good qualitative

understanding of the basic phenomena. There is no doubt that ferro-

magnetism is due to exchange forces, but the quantitative theory of

ferromagnetism contains many difficulties and can be treated only by
approximate methods. We may distinguish between two separate

problems: (a) the nature of the mechanism giving rise to exchange

forces; (6) development of methods of treating the problem of an

assembly of magnetic particles subject to exchange interaction. We
shall outline the principal approaches to (b) first, and postpone con-

sideration of (a) to § 21.9.

In the original Heisenberg model, the magnetic electrons are regarded

as localized on each atom. This is clearly a good approximation in an

ionic solid, such as the paramagnetic substances discussed in Chapter 20.

In the 3d group, with which we are principally concerned, the crystal

field interaction effectively 'quenches' the orbital magnetism, leaving

only that due to the electron spin. The spins on adjacent atoms then

interact through the exchange interaction. On this basis we should

expect the saturation moment of a ferromagnetic to correspond to an

integral number of spins per atom, and since a g value of 2 is associated

with the spin, we should expect an integral number of Bohr magnetons

per atom. B.eference to Table 21.1 shows that this is by no means the

case. Nickel has a saturation moment corresponding to 0-6 magnetons,

iron 2-22, and cobalt 1-72 magnetons. These substances are, of course,

metals, where the success ofthe band model for the conduction electrons

suggests that it should be used as the basis ofa theory offerromagnetism.

The 'collective electron' model has been investigated principally by
Bloch, Slater, Stoner, and Wohlfarth. As in the theory of metallic

conduction, the electrons obey the Fermi-Dirac statistics, and the

allowed energies fall into bands. The exchange interaction is introduced
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as an internal field\M
,
proportional to the magnetization, as in the Weiss

treatment. This gives a difference in energy between spin dipoles pointing

parallel and anti-parallel to the internal field, which we may represent

by dividing the energy band into two halves as in Fig. 18.13, but with

the important difference that the effective field is now the internal field

Bint and not the external field. Hence the energy separation of the two

halves of the band is 20.8^ = 2P(\M) = 2j8(A 2xo0) = 4x A£2
, where x

is the number of electrons transferred from one half-band to the other,

giving an excess of 2x in the 'parallel' orientation and a net magnetiza-

tion of 2x fi. Thus the energy separation is itself proportional to the

number of electrons transferred. Reference to § 18.7 shows that the

extrakinetic energy required by the xth. electron to transfer it to a vacant

level is approximately 2xw = ix{g(W)F}~
1

, where {g(W)F} is the number

of levels per unit of translational energy at the top ofthe Fermi distribu-

tion. Hence the total kinetic energy required to transfer x electrons is

j 4x{g(W)p}-
1 dx = 2xl{g(W)F}-1 . The change in magnetic energy is

o

— pf-Bfct = —\\M* = — |A(2xo)8)
2 = — 2x2,A

J
e2 . Hence the net change

in energy of the system is

H-^+m-}-
and this will be negative provided that

If the change in energy is negative, it follows that the magnetized state

is one of lower energy and is therefore the stable state; if the energy

change is positive the unmagnetized state will be stable and there will

be no spontaneous ferromagnetism. It turns out that the values of A

are such that ferromagnetism is possible for bands which have a small

energy width, and hence a large value of g(W)F .

In a simple case, such as sodium, we may use the relation

g(W)F = 3n\2WF

given by equation (4.13). Then we have

*(*! > 1 (21.24)

as the condition for ferromagnetism. For sodium, this requires a value

of A about a hundred times larger than that observed in iron. In the

3d group the overlapping 3d and 4s bands produce a much higher value

of g(W)F than that for sodium, and the effect of the overlapping is
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enhanced by the fact that n, the number of free electrons per unit

volume, is also larger. It turns out that g(W)F is greatest when the 3d

band is almost filled, a situation reached by iron, cobalt, and nickel, so

that the condition for ferromagnetism is satisfied. Then the value of x

will rise until any further increase would raise the total energy instead

(a)

i8(W)+-

Fig. 21.12. Schematic diagram of energy bands with exchange interaction.

In both (o) and (6) equal numbers of electrons have been transferred from the anti-

parallel (— ) orientation to the parallel (+ ) orientation. As a result the (+ ) band is

lowered in energy relative to the (— ) band in each case by the same amount, determined
by the size of the internal field set up. In case (a), with a wide energy band, the top
of the Fermi distribution in the (+ ) band comes above that in the ( — ) band, showing
that this displacement has a higher energy than if the numbers in the two bands were
equal. In case (6), with a narrow energy band, the top of the distribution is higher in

the (— ) band, and more electrons will transfer to the (+ ) band, increasing the net
magnetization still further. Hence (6) gives spontaneous magnetization while (a) does not.

oflowering it. Such an equilibrium state is possible because the effective

value of g(W)F changes when we transfer an appreciable fraction of the

total number of electrons from one orientation to the other, as one half-

band is being emptied and the other filled (compare Fig. 21.12). It is

obvious that there is no reason to expect that the saturation magnetic

moment, determined by the position of this equilibrium, should corre-

spond to an integral number of electron spins per atom.

Ferromagnetic substances have abnormally large electronic specific

heats, as would be expected on the energy band picture from the large
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values of g(W)F required for ferromagnetism (see § 18.4). The 'col-

lective electron model', as it is called, also accounts for the difference

between the ferromagnetic and paramagnetic Curie points, and for the

considerable difference in the effective Bohr magneton number derived

from the slope of the Curie-Weiss law in the paramagnetic region from

the value given by the saturation magnetic moment in the ferromagnetic

region.

The 'collective electron' model of ferromagnetism has been criticized

by Van Vleck (1953) on the grounds that it neglects the electrostatic

repulsion of the electrons, which forms part of the 'correlation energy'

mentioned at the end of § 18.2. In a simple metal the energy bands are

rather wide, and the correlation energy has little effect on the ordinary

conduction properties. However, ferromagnetism can occur only if the

bands are rather narrow; this requires d- (or /-)electrons, which are

more tightly bound and for which the energy needed to change the state

of ionization is higher. Thus states of excessive ionization, which are

allowed undue weight on the free electron theory, are very improbable,

and fluctuations in the charge density on each ion are relatively small.

In this respect a localized electron model may form a better starting

point, and Van Vleck has put forward a generalization of this model in

which there is on average a non-integral number of spins per atom, the

spins being continually redistributed between different sites. For

example, the low moment of nickel can be understood ifwe assume that

40 per cent of the nickel ions are in the non-magnetic 3d10 state, with

closed shells, while the remaining 60 per cent are in 3d9 states, each

contributing one Bohr magneton to the total moment. Since all nickel

atoms are identical there is nothing to determine which atoms should

be in the 3d!
10 state and which in 3d9

; any given atom fluctuates rapidly

from one to the other, so that on average it is in a 3d10 state for 40 per

cent of the time, and 3d9 for 60 per cent. In fact neutron diffraction

measurements yield a scattering pattern corresponding to each atom

carrying an identical moment, so that fluctuations between states of

different ionization must average out in a very short time. Van Vleck

has refined this model to include states of higher ionization, typical

values being 53% d10
, 35% d9

, 10% ds
, l\% d7

, 0-1% da
,
giving an

average value of 3d!9
'4

. This gives a 'minimum polarity' for the ions, in

contrast with the excessive polarity allowed in the free electron model.

The problem of the co-operative magnetic state in a conducting solid

with itinerant electrons is extremely difficult to handle mathematically,

and existing methods start from over-simplified models which are
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progressively refined. Ideally any theory should include not only the

exchange interaction, but also the ligand field interaction (§§ 20.6-9),

which is primarily responsible for 'spin only' magnetism in the iron

group, and the spin-orbit interaction, which makes the g, g' values

discussed in § 21.4 different from the free spin value of 2. Considerably

more progress has been made on the magnetic properties of electrically

insulating materials, where the theoretical problems are somewhat

easier, and magnetic resonance experiments provide much more detailed

information; such compounds are mostly anti-ferromagnetic or ferri-

magnetic, whose properties are discussed in Chapter 22. There is,

however, one theoretical technique, originally developed for localized

electrons, but which has since been shown to be valid for itinerant

electrons; in it the collective excitations of the assembly of magnetic

carriers, known as 'spin waves', are handled by means of expansions

valid at low temperatures in the co-operative state. A brief outline of

this method, first formulated by Bloch (1932), is given in the following

section.

21.8. Spin waves

At 0° K, where the magnetization has the saturation value, all the

spins are rigorously parallel, but this is obviously not so at a non-zero

temperature where the magnetization is smaller. However, it would

be incorrect to regard the reduction in magnetization as due to the

reversal of any given individual spin, because any such deviation would

be passed on to neighbouring spins through the exchange interaction

in a time of order (#'
'jK), so that it would not remain localized on any

given atom. In fact the average deviation of each spin from exact

parallelism is small, and can be analysed in terms of sinusoidal spatial

variations throughout the crystal, known as 'spin waves'. In a spin

wave of wave vector ks , the angle between adjacent spins a distance r

apart is kg . r , and since the exchange energy varies with the cosine of

this angle, the extra energy required to excite a wave is proportional

to /'(l -cos ks .r ) = i^'(K-r )
2 = i/'&M cos^

ro , where dk, is the

angle between ks and r . This must be summed over all neighbours, giving

Wk = ftwk = DJcs
2

. (21.25)

This is the dispersion relation connecting the frequency and wavelength

of a spin wave. D is proportional to the exchange energy £' , and in

a cubic lattice with z equidistant neighbours with angular momentum J.

D = i/'zJr*. (21.26)
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The energy required to excite a spin wave is proportional to k2
, and

at low temperatures only long waves will be excited; in the limit at

0° K the only wave present will be k = 0, which corresponds to all the

dipoles being parallel. As the temperature rises more spin waves of

shorter wavelengths will be excited, and the energy required for this

shows up as an additional term in the specific heat. This is quite distinct

from the abnormal electronic specific heat discussed above, and would

be present in a ferromagnetic insulator. It is purely magnetic in origin,

and constitutes the low-temperature tail of the magnetic specific heat

anomaly discussed in § 21.5. Van Kranendonk and Van Vleck (1958)

have shown that a spin wave behaves formally like a harmonic oscillator,

its mean energy being

% = ,* ^nm, , = «&•»*. (
21 -27 )k

exp(ficoklkT)—l
*

where n = {exp(ficokjkT)— 1}
_1

is known as the 'occupation number'.

The number of spin waves of wave vector ks (we have used ks to avoid

confusion with Boltzmann's constant k which occurs in equation (21.27)

is g(ks ) dks = (Vj2n2)k2 dks , as can be seen from equation (4.8) by substi-

tuting k
s
= (277-/A). Hence the internal energy at temperature T is

U = j n{Ka>k)g(ks) dks

00

2tt2 J •

(Dk2)k2 dkg
exp(Dk2JkT)—l

VD lkT\l
f

2n2 \DJ J exp(a;2)—

1

o

where we have made the substitution x2 = {Dk\jkT). The integral can

be taken to infinity at low temperatures, and is therefore just a numerical

constant. Differentiation with respect to temperature gives

Cv = dU/dT = c{kTfDf, (21.28)

where c is a numerical constant whose value depends somewhat on the

crystal structure; for a simple cubic lattice (z = 6) we have (per mole)

Cv = 0-U3kV(kTID)i = 0-113Jfc(F/rg)(JfcT/2/'J)*

= 0-lUB(kTI2f'J)K (21.29)

For the ordinary ferromagnetic metals this magnetic specific heat is

small and difficult to measure in the presence of the abnormally large

electronic specific heat, and the lattice specific heat. It has been detected

in some non-conducting ferrimagnetic compounds (see § 22.3).
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The departure of the magnetization from the absolute saturation

valueMs can be computed similarly, using the fact that each spin wave

reduces the magnetic moment by an amount gfin. Thus

Ms-M = # 2 n =WVM j e^p(^)
_ 1

CO

x2 dx= (gpVI2n*)(kTID)i j*

exp(a;2)—
l'

On substituting for D and using the fact that gfi{Vjrl) = Ms , in a simple

cubic lattice, one obtains the relation

M jMs = l-a{kT\2f'Jf, (21.30)

where a = 0-059/J in a simple cubic lattice. This result is the first term

of a power series where the next terms are in T$, T$, and Ti
. The terms

in T* and T* have been verified in a special case where they are unusually

large (see Gossard, Jaccarino, and Remeika, 1961), using nuclear mag-

netic resonance ofthe 53Cr nucleus in CrBr3 , where the nuclear resonance

frequency is accurately proportional to the magnetization. In gadoli-

nium metal, where the spontaneous magnetization has been measured

by Elliott, Legvold, and Spedding (1953) by the bulk magnetization

method, the T* law holds closely almost up to the Curie point, a result

that has been explained as due to a near cancellation of the higher terms

(Goodings, 1962). These experimental results for the variation of the

magnetization with temperature confirm the validity of the spin wave

method; in contrast, the collective electron model predicts a variation

of the form M jMs = l-bT2 +... (21.31)

while the molecular field model gives an exponential term (see Problem

21.1). Direct experimental confirmation of the existence of spin waves

is obtained from magnetic resonance experiments in thin ferromagnetic

films (see § 23.7).

21.9. Mechanisms of exchange interaction

In § 21.1 it was stated that ferromagnetism is due to exchange inter-

action; certainly we know of no other interaction of the correct form

which is large enough in size to produce ferromagnetism. Though it is

generally agreed that ferromagnetism is due to exchange interaction,

attempts to make numerical calculations of its size have proved very

difficult; more than one mechanism of exchange interaction has been

proposed, each ofwhich no doubt plays a role, but the absence ofreliable
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quantitative information makes an assessment of their relative impor-
tance still rather speculative.

The original treatment of Heisenberg and Dirac deals with the inter-

action between two electrons on the same atom. If the two electrons

did not influence one another the solution of the wave equation would
be a simple product ofthe two solutions for a single electron, ofthe form

The physical interpretation of this is that electron (1) is in orbital k,

and electron (2) is in orbital m. Since the two electrons are equivalent,

the energy is unchanged if the two electrons are interchanged, giving

another solution . ,/<» im

In general, any linear combination of these two solutions is allowed, the

correct combination being determined when we include the electrostatic

energy e2/r12 (where r12 is the distance between the two electrons) of

repulsion between the two negatively charged electrons. The correct

solutions are then the symmetric and anti-symmetric combinations

&ym = (2)-*(fc+tfn ),

0«»t = (2)-*(fc-#n).

These two solutions no longer have the same energy, because the sym-

metrical solution allows the wave function to have a large amplitude

if the two electrons are at the same point, while the anti-symmetric

wave function then vanishes because i/rj = n . Thus the electrostatic

repulsive energy between the two electrons is larger in the first case

than in the second.

So far it has not been necessary to include the electron spin. With
two electrons, the spin states (two for each electron, hence four in all)

are divided between the triplet states (S = 1, M8 = 1, 0, — 1) and the

singlet state S = 0, according to whether the two individual spins are

parallel or anti-parallel. The triplet states are symmetrical with respect

to interchange of the two electrons, the singlet state is anti-symmetrical.

Since only states whose overall symmetry is anti-symmetrical are

allowed in nature, the spin triplet states can only be combined with the

orbital i/tg^f and *ne singlet spin state with the orbital ^rgym. Thus the

difference in electrostatic energy between the symmetrical and anti-

symmetrical orbital states carries with it a corresponding energy differ-

ence between the spin singlet and triplet. This is formally similar to the

introduction of a coupling energy between the electron spins of the type

assumed in § 21.1.
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For two electrons within the same atom, the exchange energy is

always positive, so that the state of lower energy is with the spins

parallel. This coupling is 'ferromagnetic' in nature, and is the justifica-

tion for Hund's rule (§ 20.2) which makes the ground state of the atom

the one with maximum multiplicity in the spin. In the phenomenon
of ferromagnetism proper, however, we are concerned with exchange

interaction between electrons on different atoms, and the electrostatic

energy involved contains terms arising both from the repulsive forces

between the two nuclei and between the two electrons and from the

attractive forces between an electron on one atom and the nucleus of

the other atom. (The much larger energy of attraction between an

electron and the nucleus of its own atom has already been included in

the wave equation for each electron.) In simple molecules like H2 the

overall exchange term is easily shown to be negative, in agreement with

the ground state of the molecule being a singlet, but with more complex

ions such as the 3d group, opinions have differed whether the net effect

(which obviously varies with interatomic distance) would be positive or

negative at the ionic separations typical of 3c? group metals. Since

improved wave functions have become available from electronic com-

puters, attempts have been made to carry out calculations which might

be reasonably realistic. Stuart and Marshall (1960) obtained a positive

energy, though two orders ofmagnitude too small, but Freeman, Nesbet,

and Watson (1962) find a negative energy. Thus 'direct exchange', due

to direct overlap of the electronic wave functions, appears incapable of

accounting for ferromagnetism. A negative exchange energy would give

rise to 'anti-ferromagnetism' (see Chapter 22), where neighbouring spins

are arranged anti-parallel rather than parallel.

In conducting solids an alternative mechanism has been proposed,

which involves exchange interaction between the ferromagnetic 3d

electrons (largely localized) and the itinerant conduction electrons. A
conduction electron is spin-polarized by exchange interaction with one

ion, then moves away to interact with another ion, carrying the memory
of its polarization with it. This gives rise to an indirect exchange

interaction between the two ions, involving the exchange interaction

<̂ sm between the conduction electrons (or V electrons) and the ferro-

magnetic ('m') electrons, and the energy WF at the Fermi surface. The
resultant interaction between the ions is proportional to (/m)

2/^,
since the exchange interaction

cfsm is involved twice, and the polarization

of the conduction electrons is inversely proportional to the Fermi energy

(see § 18.7). Since the wave function of a conduction electron spreads
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throughout the metal, at first sight this exchange interaction appears
to be independent of distance, and necessarily ferromagnetic since

J\mWw must be positive. However, a proper calculation shows that

it can be of either sign and does fall off with distance (though much less

rapidly than direct exchange), being an oscillatory function ofx = 2kF B,

where kF is the wave vector of a conduction electron at the Fermi
surface and B the inter-ionic distance.

In this mechanism the conduction electrons serve as a medium
through which an interaction is transmitted between spins which are

localized. In fact it was first proposed for nuclear spins, the hyperfine

energy of interaction between the nuclear spin and a conduction electron

appearing instead of the exchange interactionfmi above; the oscillatory

nature ofthe interaction was deduced by Rudermann and Kittel (1954).

The exchange mechanism for electrons was proposed by Yosida (1957)

and Kasuya (1956); it is generally thought to provide the mechanism
for ferromagnetism in the lanthanide metals (see § 22.4), where the

magnetic 4/ electrons are quite localized. How large a role it plays in

the 3d metals is uncertain.

Exchange interaction in insulators

In electrical insulators no conduction electrons exist to provide an

exchange mechanism of the type just considered, but exchange inter-

actions of considerable magnitude are found in compounds where the

interionic distance is so large that direct exchange between electrons

localized on the magnetic ions must be negligible. As an example we
consider a simple compound such as an oxide MO, whereM is a dipositive

ion of the 3d group (e.g. Mn2+, Fe2+, Co2+, Ni2+). These have a face-

centred cubic structure similar to that of NaCl, a typical plane of atoms

being shown in Fig. 21.13. Here the circles are drawn in proportion to

the ionic radii, and it can be seen that the much larger anions separate

almost completely even the nearest neighbour cations. However,

neutron diffraction results suggest that the stronger exchange inter-

actions are between ions on next nearest neighbour sites such as A, B
rather than between nearest neighbour sites such as A, C. Direct

overlap between the wave functions of magnetic electrons on the cation

sites is very small, but a purely ionic model where the magnetic electrons

are localized on the cations is an over-simplification. Some degree of

covalent binding is always present, whereby the wave functions of the

magnetic electrons spread over onto the adjacent anions. Direct overlap

of the magnetic electrons from neighbouring cations can therefore take
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place on the intervening anions. Of course the degree of overlap depends

on the amount of covalent bonding, and so also does the size of this

'indirect' exchange interaction; it is very much smaller for ions of the

4/ group, which take almost no part in covalent bonding, than for ions

ofthe 3d group (for example, the transition temperature ofthe lanthanide

oxides is below 10° K, while those ofthe 3d group oxides are over 100° K).

Fio. 21.13. A plane of atoms in an oxide MO, where M++ is a
dipositive ion of the 3d group. The ions are drawn approxi-

mately to size, showing how the small cations (M++) aro well

separated by the lar ge anio (0~).

Although this solves the problem of interaction between ions at

relatively large distances, there are two difficulties. The first is that the

potential energy due to the electrostatic repulsion between the magnetic

electrons in the overlap region leads to a ferromagnetic interaction (as

for electrons within the same atom, where it results in Hund's rules—see

§20.2), whereasthe vast majority ofinsulating magnetic compounds have
an anti-ferromagnetic interaction. Second, the interacting magnetic

electrons form a partly-filled band, which according to the classification

set out in § 18.3 should make the substance an electrical conductor.

However, the energy band is narrow, and the fall in kinetic energy of

an electron (cf. Fig. 18.2) on transferring from a localized state (which

corresponds in energy to the centre of the band) to a conduction state

at the bottom of the band is only W 1 eV. On the other hand, because

of the electrostatic repulsion between the electrons, their potential

energy is least when they are uniformly distributed, giving each ion

the same number of electrons. This potential energy is part of the

'correlation energy' mentioned at the end of § 18.2. For s-electrons, and
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to a smaller extent for ^p-electrons, the correlation energy is small

because their wave functions are extended and the charge density

within the atom is small; however, the extended wave functions give

a larger overlap and greater bandwidth in the solid (cf. Fig. 18.7). Thus
such electrons have a lower energy overall when they are non-localized,

and become conduction electrons. For rf-electrons the bandwidth is

smaller and the correlation energy greater, making the latter corre-

spondingly more important; the 'minimum polarity' model ofVan Vleck

discussed in § 21.7 for nickel is an attempt to allow for this. In com-
pounds the disparity is even greater; the d-electron band width is not

more than about 1 eV, while about 10 eV is required to transfer an
electron from one ion to another (i.e. to create a pair of ions in dn_1 , dn+1

states from a pair both in dn states). Thus it is energetically favourable

for the electrons to remain localized and the substance is an electric

insulator.

As a result of these conflicting energy considerations, the localization

is not, however, absolutely complete. If b is the reduction in kinetic

energy which would result from moving from site to site, while U is the

potential energy required to overcome the electrostatic repulsion, the

equilibrium state is one where the chance ofsuch a movement is of order

bjU, and the net reduction in kinetic energy is of order b2
JU. Through

the exclusion principle this possibility of movement to adjacent sites is

restricted nearly always to electrons with anti-parallel spin, which can

therefore acquire a lower energy than those with parallel spin. This is

equivalent to an anti-ferromagnetic exchange energy of order b^JU,

which is of order 10~2 to 10-1 eV (a few hundred °K).

The first explanation ofhow exchange interaction could arise between
ions at the rather large inter-ionic distances found in compounds was
put forward by Kramers (1934), and a number of subsequent attempts

were made to arrive at more explicit interpretations. The theory out-

lined above is due to Anderson (1963), and though difficult to explain

in simple terms, appears to be the most satisfactory in its general

approach.
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PROBLEMS
21.1. Show that for a substance consisting of atoms or ions in the 2

*Sj state, the

Brillouin function becomes

M/M, = t&nhy, where y = ^BjkT.

Show that for such a ferromagnetic substance at low temperatures, where y is

large, the Weiss internal field treatment of § 21.2 leads to the formula

M /Ms = l-2exp(-2XM Ms/nkT)

for the spontaneous magnetization M in zero field. Note that this does not lead

to a simple power law such as in equations (21.30) or (21.31).

21.2. Using the result of Problem 6.11, show that the magnetostatic energy of

a small spherical particle of nickel, of radius b and magnetized to saturation

(Ms = 6-1 105 ampere/metre = 510 e.m.u./cm3 ), is approximately 2 x 10563 joules

(6 in metres).

From the results of § 21.3, the energy required to form a Bloch wall increases

with b2 (for nickel the wall energy is about an erg/cm2
). Hence show that for

particles whose radius is less than about 10~8 metres, the reduction in magneto-

static energy obtained by division into two domains is less than the energy required

to form a wall.

21.3. The nucleus of an atom of mass M moving with velocity v emits a y-ray of

energy hv in the forward direction. Show by considering the change in momentum
and energy of the atom that the y-ray energy is increased by a fraction (»/c),

provided that the y-ray energy is small compared with the rest mass of the atom
[hv/Mv* <^ 1]. Note that this is the same as the classical Dopplor shift.

21.4. Show, from the vector model diagram of Fig. 20.6, that the ratio to J of the

projection of S on J is

{S{S+l)}icoaACB/{J(J+l)}i = flf-1.
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ANTI-FERROMAGNETISM AND
FERRIMAGNETISM

22.1. Anti-ferromagnetism

In a paramagnetic substance the dipoles are free to orient themselves

at random, and there is a correspondingly high entropy; if there are

2J+1 levels having the same energy in the ground state, the entropy

is -Rln(2J+l). The substance would obey Curie's law down to 0° K
if the ground state contains two or more levels with the same energy

in the absence of an external field, but this would be a violation of the

third law of thermodynamics, by which the entropy in a substance in

thermodynamic equilibrium must be zero at 0° K. In practice there is

always some mutual interaction between the dipoles (either through

exchange or magnetic dipolar interaction), such that the internal energy

U of the system is lower when the dipoles are oriented in an orderly

array than when they are randomly oriented. Thus, at the absolute

zero, where the free energy F — V—TS is equal to U, the equilibrium

state of lowest free energy will be the ordered state with the lowest

internal energy. At a sufficiently high temperature, on the other hand,

the paramagnetic state, with its higher entropy corresponding to the

random orientation of the dipoles, will have the lower free energy

because of the second term in F = U—TS, and will thus be the equili-

brium state. As the temperature falls, any substance where the dipoles

still have some freedom of orientation (this excludes those paramagnetic

substances which have a singlet ground state and a temperature-

independent susceptibility) will make a transition from a disordered

phase into an ordered phase. The ferromagnetic state discussed in the

last chapter, in which all the dipoles are oriented parallel to one another

at 0° K, is the state of lowest energy when the exchange energy #' has

a positive sign. However, ferromagnetism is exhibited by relatively

few substances, though there are many containing transition group ions.

It was suggested by N£el (1936) that in many substances the exchange

interaction is large but negative, resulting in an ordered state where

neighbouring dipoles are aligned in an anti-parallel arrangement. Such

an arrangement for a simple cubic lattice is shown in Fig. 22.1; the

dipoles at adjacent corners ofeach cubic cell point in opposite directions.

851110 u u



658 ANTI-PERKOMAGNETISM AND FEBRIMAGNETISM [22.1

Another simple case is the body-centred cubic lattice, with an ion at

the centre of each cube as well as at the corners; here all the ions at the

corners have their dipoles parallel to each other, but anti-parallel to the

ions at the centres. In each case a given dipole is surrounded by a

number of equidistant dipoles all pointing in the opposite direction,

while the next nearest neighbours point in the same direction again.

Fig. 22.1. Anti-ferromagnetic arrangement of dipoles in a
• simple cubic lattice.

The system may be thought of as consisting of two interlocking sub-

lattices, one of which is spontaneously magnetized in one direction,

while the other is spontaneously magnetized in the opposite direction.

As in ferromagnetism, this spontaneous magnetization ofthe sub-lattices

sets in only below a certain transition temperature, generally known as

the 'Neel temperature'. Above this temperature the dipoles are ran-

domly oriented, and the substance is paramagnetic, obeying a Curie-

Weiss law with the Weiss constant of opposite sign to that found in

ferromagnetism, as we should expect from the reversed sign of the

exchange energy. The onset of spontaneous magnetization in the sub-

lattices as the substance is cooled through the Neel temperature is

accompanied by a specific heat anomaly of the co-operative type, as

illustrated in Fig. 22.2. The substance as a whole exhibits no spon-

taneous magnetization in zero field, since the two sub-lattices are equally

and oppositely polarized. When an external field is applied, a small

magnetization occurs giving a positive susceptibility; the general

behaviour ofthe susceptibility can be explained quite well on a molecular

field model, as outlined below.
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22.2. The molecular field—two sub-lattice model

Let the two sub-lattices be denoted by A and B. Then a dipole in

lattice A is subject to an external field B and an internal field propor-

tional to the magnetization of sub-lattice B which we may write as

S

•a

10 12 H
Temperature, °K

16 18 20

Fig. 22.2. Specific heat of NiCla>6HaO at low temperatures, showing the A-type anomaly
at the Neel temperature, 5-34° K (after Robinson and Friedberg, 1960). The entropy
in the anomaly is R In 3, corresponding to the threefold degeneracy of the S = 1 ground
state of the Ni++ ion. The rise at high temperatures is due to the lattice specific heat.

Note the different shape of the co-operative anomaly from that due to a simple level

splitting in another nickel salt (Fig. 20.15).

—XMB , where the minus sign appears because of the reversed sign of

the exchange integral. The effective field acting on a dipole in A is

therefore „ „ m, ,

*. (22.1)
-Br = Bn

-

-XM„

-XMASimilarly

At high temperatures where the dipoles are randomly oriented the

magnetization of each sub-lattice should obey Curie's law if we take

the effective field instead of the external field. Thus we have

MA = \CBJk T, MB = \CBbIh> T, (22.2)

where C is the Curie constant per unit volume, and the factor \ appears

because only half of the dipoles are in a given sub-lattice. The total
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magnetization is then

M = MA+MB = 7^W {2B -X(MA+MB)} = JL{B -\W).

[22.2

Hence X =

2^T Po T
y

G G
(22.3)

.Bo T+(A(7/2Mo) T+6
This equation for the susceptibility above the Neel point is similar to

that found in ferromagnetism except for the reversed sign of the Weiss

constant 0.

MaHwPJ = +i

1 = Mjg/ingpj

Fig. 22.3. Graphical solution of equations for spontaneous magneti-

zation of an anti-ferromagnetic substance.

Curve CBOAD is the Brillouin function <j>(y), BOA is the straight line

relation betweenM and y when the external field is zero, and B'OA'

is a similar line for the case when an external field is applied parallel

to the direction of the spontaneous magnetization.

In order to investigate the behaviour at low temperatures we cannot

assume Curie's law to hold, since a large spontaneous magnetization

will be set up in each sub-lattice by the internal field. We must use,

instead of equation (22.2), modified forms of equation (21.8):

MA = ingpJ<f>(yA )

MB = \ng$J${yB)

where y = {gfiJjkT) x (effective field on sub-lattice), and (j>(y) is the

Brillouin function given by equation (20.15). The factor \ appears again

because only halfofthe dipoles are in either lattice; we have also assumed

that the magnetism is due to dipoles with angular momentum J.

In the absence ofan external field the magnetization ofeach sub-lattice

is given by the solution of equation (22.4) with

BA = -XMB = -X(-M ) = +XM ,

BB = -XMA = -X(+M ) = -XM ,

)•
(22.4)
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since the two sub-lattices A and B will have equal and opposite magneti-

zation, +M and —M respectively. The equation may be solved graphi-

cally, as in ferromagnetism. The spontaneous magnetization is given by

the pointsA and B in Fig. 22.3, which correspond to the stable condition,

while the other possible solution MA = MB = is unstable. The value

ofM at any temperature is given by the root of the transcendental

equation , T

MD =«j^am
)

As the temperature rises the line BOA becomes steeper, and the points

A, B move back towards the origin; the spontaneous magnetization

Table 22. 1

Niel
temperature

Substance TN ("K) 0/2V XolXTir

Cr . 311 — —
alpha-Mn 100 — —
MnFa 67 1-2 0-76

FeF, 78 1-5 0-72

CoF2 50 — —
NiF2 73 — —
MnO 116 4 to 5 0-69

FeO 198 3 0-75

CuCla,2HaO 4-3 — —
NiCl2>6H2

5-3 — —

disappears at the Neel temperature TN where the line AB is tangential

to the Brillouin function at the origin. Since tf>(y) = t/(J-\-l)/3J for

small values of y, we have

or TN = \Xng*P*J{J+\)filc = AC/2/x = 6.

Thus on this simple theory, due to Van Vleck (1941), the Neel point TN
should have the same value as the Weiss constant 6. The values of both

8 and TN are given in Table 22.1 for a number of substances now estab-

lished as being anti-ferromagnetic. It will be seen that in general and

TN are different, and this can be accounted for by an extension of the

theory given above where interactions with next nearest neighbours

belonging to the same sub-lattice are included (Van Vleck, 1951 ; see

Problem 22.1). In addition other types of arrangement of the dipoles,

where not all the nearest neighbours are anti-parallel, are possible.

When an external field is applied at a temperature below the Neel
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point, a positive magnetization results whose magnitude

from the theory given above. In general, the effect

is to change the magnetization of each sub-lattice sli

may write M, = M +SM j

MB = -M +8M J'

where these must be taken as vector equations if the

field is applied at an arbitrary angle to the direction

magnetization M . If B is parallel to M , so also will

Xn and Xl

[22.2

can be estimated

of applying a field

:ghtly, so that we

(22.5)

external magnetic

of the spontaneous

be SM, and, ifwe

6-SV
Fig. 22.4. Variation of xil and \JL on the simple

ferromagnetism.

theory of anti-

return to the graphical solution of our transcendental equation, we see

that the magnetizations of the sub-lattices will be given by the inter-

section of the dotted line B'A' in Fig. 22.3 with the Brillouin curve.

For the effective fields become, using equation (22.1),

B, = B -A(-M +SM) = AM +(B -ASM),

Bg = B -A(+M +8M) = -AM +(B -ASM).

The resulting net magnetization 2SM will depend on the slope of the

Brillouin function (for small fields) at the point M . As M increases,

this slope decreases, reaching zero at saturation. It follows that the

susceptibility
x\\

(in the direction parallel to M ) decreases to zero as

the temperature falls to zero, as illustrated in Fig. 22.4. The exact shape

of the curve depends only slightly on the value of J, as in the case of the

saturation curve for a ferromagnetic substance.

If the external field is applied perpendicularly toM
the susceptibility more easily. In this case the magnetizations M^, MB
of each of the sub-lattices turn through a small angle a towards B , as

shown in Fig. 22.5. The effective field on a dipole now has the two

, we can evaluate
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components Bz
= ±AJf (the upper sign for lattice A), and

Bx = B -X8M.

For small external fields the angle a is small, and the ratio ofthe magneti-

zation components in the two directions will be

8M
B,

B -\8M

B.

-M, +M„ z

Fig. 22.5. Effect of applying a field B„ perpendicular to the spontaneous magnetiza-
tion M in an anti-ferromagnetic substance.

from which 28M = BJX, and the susceptibility will be

x± = 2p 8MIB = /x /A = 0/22^. (22.6)

Thus x± should be constant below the Neel point and equal to the value

at the Neel point, as shown in Fig. 22.4. For a powdered specimen con-

sisting of micro-crystals with random orientation, we have

X = i(X\\+2X±)>

I (22.7)and we should expect X(r=o)

X(T=T )

The values of this ratio for a number of powdered anti-ferromagnetics

are also given in Table 22. 1 . A more direct check ofthe theory is obtained

from measurements of the susceptibility of a single crystal; Fig. 22.6

shows the experimental points of Stout and Trapp (1963) for MnF2 .

Here the Mn++ ion is in a 6S
i
state, and the susceptibility shows negligible

anisotropy above the Neel point, as would be expected. Below the Neel
point xn faus rapidly and approaches zero, while Xx remains almost

constant, as predicted by the theory.
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the

The two sub-lattice model is valid for many anti-:

stances, but in some cases there are more (in a face-centred

there are generally four). As in ferromagnetism,

action itself gives no preference to any particular

spins relative to the crystal axes; this arises from the

In a simple tetragonal crystal such as MnF2 , the spink

ferromagnetic sub-

cubic lattice

exchange inter-

orientation of the

anisotropy energy,

are aligned along

28

24

20

Susceptibility 16
per g/mole (in units

of.lO-3 e.m.u.)

12

X±
•:*«*»

Xi

[22.2

20 40 60 80 100 120

T(°K)

Fig. 22.6. Principal susceptibilities of a single crystal of MnF,
J. W. Stout, 1963).

the tetragonal axis in a simple two sub-lattice anti-parallel arrangement,

but much more complicated arrangements are possible in which the

vector sum of the dipole moments is zero—the distinctive feature of an

anti-ferromagnetic.

22.3. Ferrimagnetism

The technical importance of magnetic materials in

has increased continuously, the ideal substance bein^

magnetic moment at room temperature, which is

insulator. Ferromagnetic metals and alloys have been

but their high electrical conductivity is a serious

frequency applications because of the eddy current

reason a number of magnetic oxides ('ferrites', of

Fe3 4, is the most famous as the original 'lodestone'

technical interest because of their low electrical

show spontaneous magnetization, remanence, and

_L J_ _L J
140 160 180 200

(after C. Trapp and

plectrical industry

one with a large

also an electrical

widely exploited,

handicap in radio-

losses. For this

which magnetite,

) became of great

conductivity. They
other properties
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similar to ordinary ferromagnetic materials, but the spontaneous

moment does not correspond to the value expected for full parallel

alignment of the dipoles.

In 1948 Neel put forward a theory for such materials; he suggested

that they contain two sub-lattices in which the magnetizations are

oppositely directed, but which give a net moment because the two

sub-lattice moments are unequal. For this phenomenon he coined the

word 'ferrimagnetism'. It can arise from a number of arrangements,

of which the simplest are illustrated in Fig. 22.7. In (a) all the dipoles

are equal in magnitude, but there are more on one sub-lattice than on

+ + 1

t

U _t

(o)'
•

(5) (c)

Fig. 22.7. Three possible arrangements of the dipole moments in a ferrimagnetic material.

(a) Unequal numbers of identical moments on the two sub-lattices.

(6) Unequal moments on the two sub-lattices,

(c) Two equal moments and one unequal.

the other; the most notable example is yttrium iron garnet (YIG). The

simple arrangement (6) with ions of unequal moments occurs rather

rarely. The arrangement (c), with two equal and opposite moments, and

a third moment on one sub-lattice is typical of ferrites such as MnFe2 4.

Ferrites

These have the typical formula M++Fe^" ++ 0|"
-

(equivalent to

MO,Fe2 3 ), where M++ is a dipositive ion, commonly Mn++, Fe++,

Co++, Ni++ , Cu++, Zn++, or Mg++; other tripositive ions such as Cr+++

can replace Fe+++ . The crystallographic structure is cubic and similar

to the mineral spinel (MgAl2 4), and the unit cell, with eight formula

units, equivalent to M8Fe16 32 , contains eight cation sites with tetra-

hedral coordination (to four oxygen ions) and sixteen cation sites with

octahedral coordination (to six oxygen ions), known as the A and B
sites respectively. The division of cations between these sites is not

unique, the limiting cases being:

'normal' structure

'inverse' structure

A sites (8)

8M++
8Fe++-

B sites (16)

16Fe+++
8M+++8Fe+-H-
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Intermediate arrangements are also found, and we
the inverse structure. Each Fe+++ ion is in a 6S

t
stat^

5 Bohr magnetons; however, the moments on the

anti-parallel. If rrtM is the moment of the M++ ion,

moment at 0° K for the unit MFe2 4 will be

m = mM+{mFe)B—(mFe)A = mM+5£-5#
The moments calculated thus (assuming that theM
moment) are compared with the observed moments
agreement is satisfactory; some orbital moment wofcdd

the Fe++, Co++, M++, Cu++ ions, and in magnesium
is not completely inverse.

Table 22.2

will consider only

with a moment of

A and B sites are

the net saturation

ion

= mM . (22.8)

has a 'spin only'

in Table 22.2. The

be expected in

fferrite the structure

M TttM (spin only) Observed moment Ty (°K)

Mn 5 4-4-50 573
Fe 4 40-4-2 858
Co 3 3-3-3-9 793
Ni 2 2-2-2-4 858
Cu 1 1-3-1-4 728
Mg 0-9-1-1 —

The magnetic moments are in Bohr magnetons per unit MFe
aO

Neel suggested that all the interactions in the

ferromagnetic in sign, but that the A-B interaction

stronger than the A-A or B-B interactions. Thus
ture the dominating A-B interaction makes the spins;

parallel, despite their mutual anti-ferromagnetic

supported by the fact that ZnFe2 4 , which has the

has no net moment. Here the A sites are entirely occupied

with no moment, so the A-B interactions are zero,

the B sites are then aligned anti-parallel through the

B-B interaction, in equal numbers, so that the

ferromagnetic. Its Neel temperature (9° K) is quit^

expected if the B-B interactions are weak.

Oarnets

These have the typical formula M3Fe5 12 (of which
equivalent to 5Fe2 3,3M2 3 ), where both the M cation

tripositive ions; the M+++ ion is commonly yttrium

4/ transition group. The crystallographic structure

to the mineral garnet, though this has cations of other

[22.3

ferrites are anti-

is considerably

the inverse struc-

within each group

interaction. This is

normal structure,

by zinc ions,

The ferric ions on

anti-ferromagnetic

compound is anti-

low, as would be

or

i 13

two units are

and the Fe are

a member of the

cubic and similar

valencies. The
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unit cell is complex, containing eight units ofM3Fe5 12 ; for simplicity

we shall discuss mainly yttrium iron garnet, where the Y+++ ion has

a closed shell and carries no magnetic moment. The ferric ions occupy

two types of site; in each unit Y3Fe5 12 two Fe+++ ions occupy 'a' sites,

coordinated to six oxygen ions, and three Fe+++ ions occupy 'd' sites,

coordinated to four oxygen ions. The magnetic moments of the two
'a' ions are antiparallel to those of the three 'd' ions, giving the arrange-

ment shown in Fig. 22.7 (a); the net moment per unit Y3Fe5 12 is thus

that of one Fe+++ ion, or 5 Bohr magnetons (the best experimental value

is 4-96£). The Neel temperature is 545° K.

Amongst other ferrimagnetic materials we mention only BaFe12 19

(equivalent to BaO,6Fe2 3 ). This has a hexagonal structure, with a

number of inequivalent sites for the ferric ions. Of the twelve ferric ions

per formula unit, the moments of eight are anti-parallel to the remaining

four, giving a net moment of 4x5 = 20 Bohr magnetons; the Neel

temperature is about 820° K. Barium ferrite, as it is frequently called,

has a high value of (BH
)max and is used as a permanent magnet material

(cf. Chapter 8). Being hexagonal, it has a high anisotropy energy; it is

used in the form of pressed oriented fine particles.

Discussion

Neel's theory offerrimagnetism had considerable success in explaining

the anomalous behaviour of the susceptibility above the Neel point.

Using a molecular field approximation with three constants representing

the A-B, A-A, and B-B interactions he deduced the relation

1=^+1--^- (22.9)
x C+ Xo T-0 ( }

for a substance where all the magnetic ions have the same moment, such

as YIG, or MFe2 4 when M carries no moment. Here G is the usual

Curie constant, but the other parameters are functions of the molecular

field constants and the numbers of ions in each sub-lattice. The general

behaviour of the inverse susceptibility given by Neel's relation as fitted

to experiments on YIG is shown in Fig. 22.8. The theory also explains

qualitatively the complex behaviour of the spontaneous magnetization

curve below the N6el temperature. The magnetization does not always

increase monotonically as the temperature falls, and in ferrimagnetic

compounds containing more than one type of magnetic ion whose

spontaneous magnetization varies in different ways with temperature

a 'compensation point' may be observed, where the magnetization of

the two sub-lattices is equal and opposite.
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IS

The latter is not

ures the former has

compensation point

+++ ion to have a

The magnetization curve of gadolinium iron garget

shown in Fig. 22.9, together with that of Y3Fe6 12 .

unlike that of a ferromagnetic, but at low temperat

a much higher magnetization, falling to zero at the

at about 295° K. At 0° K we would expect each Gd
moment of 7 Bohr magnetons; ifthese are mutually parallel, but opposed

60

40

_i_

Xm

.20

1 Tre5

soo r

points for YIG
theoretical curve

temperature asymptote;

[22.3

Gd3Fe5 12 ,

T»
700 900

T(°K)
1100 1300 1500

Fig. 22.8. Inverse magnetic susceptibility of the ferrimagnetic
garnet, which has three and two Fe+++ ions on the two sub-lattices

in Fig. 22.7).

substance yttrium iron

(arrangement (a)

-s)P

rimes

to the net ferric moment, we would expect an overall

unit Gd3Fe5 12 of (3x7-{3x5-2x 5})£ =(21-
close to the observed moment. As the temperature

tion of the gadolinium ions, which are subjected to

weak interaction with the ferric ions, falls much more
of the iron lattice with its strong mutual interactions

ions. In fact the behaviour of the Gd ions is not far

magnetic ions with 8 = \ , subjected to an internal

the iron lattice. The Neel temperature of Gd3Fe5

appreciably different from that of Y3Fe5 12 (545

expected on this basis.

Apart from their technical importance, ferrimagnenic

played a major role in advancing our understanding

lems; for this purpose the garnets are more favoured

moment for the

= 16£; this is

the magnetiza-

a comparatively

rapidly than that

between the ferric

from that of para-

iield generated by

L2
(564° K) is not

K), as would be

materials have

of magnetic prob-

than the ferrites,
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since the structure is unique and there are no uncertainties concerning

the sites occupied by the magnetic ions. The absence of conduction

electrons is a great asset, not only technically but also scientifically.

On the one hand we are dealing with localized magnetic moments, so

the theory rests on a much firmer foundation; on the other many
important experiments can be carried out to check the theory which

600

Fig. 22.9. Variation of the spontaneous moment with temperature for Gd,Fe6Ola (GdIG)
and Y3Fe6 12 (YIG) in Bohr magnetons per formula unit.

would otherwise be impossible. An obvious example is magnetic

resonance experiments (cf. Chapter 23) in the frequency range 1010-

1013 c/s, which have been a very fruitful field both for ferrimagnetics

and for anti-ferromagnetics. The absence of conduction electrons plays

a less direct but no less important role in measurements of the magnetic

specific heat contribution predicted by spin wave theory. A term pro-

portional to J1* was first confirmed by Kouvel (1956) using Fe3 4 (it has

also been measured in compounds such as YIG), whereas in the ordinary

ferromagnetic metals it is obscured by the electronic specific heat.

Another experimental achievement is the optical demonstration of the

presence of domains, using the rotation of the plane of polarized light

propagated parallel to the direction of magnetization (the Faraday
effect); when a thin crystal of YIG is placed under a polarizing
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dark regions whose

applied field.

microscope the domains are visible as light and

motion can be observed under the action of an

size

The

so

22.4. The lanthanide ('rare earth') metals

Measurements of the susceptibilities of the lanthanide

temperatures give generally a Curie-Weiss law where

Curie constant agrees well with that expected for

There are two notable exceptions to this: europium m^tal

metal, which are cubic in structure with an ionic

presence of dipositive ions. In addition, cerium tends

transition at low temperatures to a cubic structure

dependent on the thermal history of the specimen,

ions have closed shells and no magnetic moment,

interest here; the Eu2+ ion has a half-filled shell, grouiid

the magnetic behaviour of the metal shows unexpected

We shall therefore restrict ourselves to the metals

positive ions, data for which are given in Table 22.3

No metal shows a co-operative state above rooni

that exchange interactions are small compared

coupling. We may therefore regard the spin and

give a resultant angular momentum J, as in the

(cf. § 20.6). On this basis the saturation moment per

be gJ Bohr magnetons, where g is the Lande factor

ground state J of the free tripositive ion. Values

column 2 of Table 22.3, and are generally substantiated

evidence for gadolinium and the heavier metals.

In considering the exchange interaction, we have

vector S onto the total angular momentum vector J
§21.1. The exchange interaction —2^Si .S3

- betwejen

becomes equivalent to a coupling —2
tf'3i

.J
j
between

momenta, with,/"' = (g— l) 2
^/, as given by equation

the same for all the lanthanon metals, we should

to vary as (g— 1)V(J+l), from equation (21.6). This

for Gd+++, with a half-filled shell, and this metal

effects at a higher temperature (290° K) than any

metal. Reference to Table 22.3 shows that the

co-operative effects appear varies qualitatively in

relation in the second half of the group. However,

more than one ordered phase, being anti-ferromagnet;

peratures and ferromagnetic at lower temperatures.

metals at high

the size of the

tripositive ions.

and ytterbium

indicating the

to show a phase

with Ce4+ ions,

Ce*+ and Yb++
they are not of

state S = f , but

complications.

containing tri-

temperature, so

the spin-orbit

as coupled to

paramagnetic salts

ion at 0° K should

appropriate to the

gJ are given in

by the magnetic

with

orbit

cf

to project the spin

as pointed out in

the spins thus

the total angular

(21.3). Iff were

:t the Curie points

quantity is largest

shows co-operative

other lanthanide

temperature at which

accordance with this

^hese metals show
ic at higher tem-

This effect, which
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appears to require a reversal in" sign of the exchange interaction as the

temperature falls, was for a long time very puzzling.

The 4/ electrons in the lanthanons belong to an inner shell, and their

wave functions are much less extended than those of d-electrons. For

Table 22.3

Magnetic data for the lanthanon metals, assuming Ln+++ ions. For the

values ofg, J see Table 20.1. The value of gJ gives the moment per ion at

0° K assuming the ions are not subject to any crystal field effects. Pm has

been omitted for lack of data (it has no radioactively stable isotopes);

europium metal becomes anti-ferromagnetic below 87° K (and possibly

ferromagnetic at a lower temperature), and appears to contain Eu++ ions,

with a half-filled shell and S = f ; ytterbium metal contains Yb++ ions

with a filled shell and no magnetic moment.

gJ (S--1)V(J+1) TN (°K) Tc (°K)

La
Ce 214 0-18 12-5

Pr 3-2 0-8 25
Nd 317 1-84 7,18
Sm 0-71 4-5 14
Gd 7 12-25 — 290
Tb 9 10-5 228 220
r>y 10 71 179 85
Ho 10 4-5 125 40
Er 9 2-55 80 20
Tm 7 117 50 20
Lu — —

this reason direct exchange, involving overlap of/-electron wave func-

tions on adjacent ions, is unlikely to be important, and the origin of

exchange interaction observed in the lanthanon metals is ascribed to

the second mechanism discussed in § 21.9, the conduction electrons

being polarized by exchange interaction with the 4/ shells, and serving

as a medium whereby the orientation of the moment on one ion can
influence that on neighbouring ions. We can thus regard the metals as

consisting of ions with well-localized moments due to their 4/ shells in

a sea of conduction electrons formed from the valence electrons, which
contribute little to the magnetic properties directly but provide the

medium for exchange interaction.

Electrostatic interaction between the 4/ electrons on a given ion and
the charge on the adjacent ions provides a 'crystal field' interaction in

the metals which would be expected to be of the same order as that in
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salts of the lanthanide group. Direct evidence ftHf

Schottky-type anomalies in the specific heats of

the group; the excess 'magnetic' specific heat due to

tings of the J = 4 state of Pr+++ in praseodymium

Fig. 22.10. The overall splitting produced by the

region of a few hundred CK for Ce, Pr, Nd, and Sm

TISM [22.4

this comes from

> first members of

crystal field split-

metal is shown in

crystal field is in the
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Fig. 22.10. The magnetic specific heat per mole of

crystal field splittings of the 'flj ground state of the Pr8+ i<
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Ce*

of (g— 1)
2J(J+1) are rather low, the exchange

compared with the crystal field. A co-operative ph
temperatures below 25° K, and in praseodymium,

field splitting leaves a singlet as the ground state, thti

has only a small moment.

The lanthanon metals (apart from those with

ions) all form hexagonal crystals, but the structure

gadolinium. In this and the heavier metals the

than in the first metals of the group, while the values

tends to be larger; thus exchange interactions

field splittings, and the co-operative phase sets in at

crystal field effects are relatively less important,

ever, play a major part in determining the magnet
co-operative phase. They produce an 'anisotropy

with powers of the magnetization up to the sixth

complex function of orientation of the magnetic

hexagonal symmetry of the lattice. This

\

ira metal, due to

(Bleaney, 1963).

interaction is small

a|se is found only at

where the crystal

co-operative state

+, Eu++, or Yb++
changes slightly at

cryutal field is smaller

of(gr-l)«J(J+l)

preponderate over crystal

temperatures where

Such effects do, how-

;ic structure in the

energy ' which varies

degree, and is a

moihent, reflecting the

anisotropy energy favours



22.4] ANTI-FERROMAGNETISM AND FERRIMAGNETISM 673

orientation of the moments in certain crystallographic directions, while
the exchange interaction favours a simple parallel orientation. At the
lowest temperatures gadolinium and the heavier metals have a ferro-
magnetic phase in which the direction of magnetization is determined
by the anisotropy energy. The latter is large, and the metals are mag-
netically hard, except in the case of gadolinium. The Gd3+ ion, with a
half-filled 4/ shell is in an 8£

}
state with no orbital moment; it therefore

has no first order interaction with the crystal field, and the anisotropy
energy is relatively small.

At higher temperatures the co-operative phase of terbium and the
following metals changes to an antiferromagnetic state, with no resultant
magnetization. In some cases the moments lie in a spiral arrangement
where the angle between successive layers is a function of the tempera-
ture, and in others the moment lies along the hexagonal axis but shows
a spatial oscillatory variation in magnitude. The equilibrium state is

that with the lowest free energy F = U—TS, and these complex
arrangements have a lower free energy at higher temperatures because
of their higher entropy. At still higher temperatures the paramagnetic
phase becomes the equilibrium phase. Table 22.3 gives both the Neel
temperature TN at which the anti-ferromagnetic phase sets in, and the
Curie temperature Tc .

22.5. Neutron diffraction

A proper description of the theory and practice of neutron diffraction
is outside the scope of this book, and only a brief outline can be given
ofthe major role it has played in establishing the structure ofthe ordered
state ofa magnetic compound. Associated with a particle whose momen-
tum is p is a wavelength A = h/p, where h is Planck's constant; for
neutrons of thermal energies, this wavelength is of the order of an
Angstrom unit (for neutrons in thermal equilibrium with a temperature
of 0° C, the wavelength is 1-55 A). The nuclei of the atoms in a crystal
lattice scatter neutrons, and diffraction patterns are formed in a similar
way to those for X-rays. Neutrons can thus be used for the determina-
tion of crystal structures in much the same way as X-rays; in particular
the positions of hydrogen ions (which, being just protons with no elec-

trons, have virtually zero scattering power for X-rays) in crystal lattices

can be determined accurately.

Inmagneticmaterials,thepermanentelectronicmagneticmomentsgive
an additional scattering mechanism for neutrons which often outweighs
the nuclear scattering, through the interaction between the electronic

851110 x x
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i bf the neutron. If

m
magnetic moment and the nuclear magnetic moment

the electronic moments are randomly oriented, as

substance, the scattered neutrons are incoherent in ph
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at the same angular positions as the peaks due to the nuclear scattering.
In an anti-ferromagnetic the dimensions of the magnetic unit cell may-
differ from those of the chemical unit cell; for instance, in Fig. 22.1, the
magnetic pattern only repeats in the distance PS, whereas the chemical
pattern repeats at the distance PQ. Extra peaks therefore occur in the
diffraction pattern ofthe ordered array (see Fig. 22.11), which are absent
in the disordered array (the paramagnetic state). As with X-rays,
neutron diffraction can be observed using powdered or polycrystalhne
substances, but fuller magnetic information is obtained with single

crystals. Such information includes the symmetry ofthe magnetic array
(i.e. the size of the magnetic unit cell and the relative orientation of
the moments within it), the actual orientation of the moments relative

to the crystal axes, and the size of the individual moments. Though
details of the magnetic structure can often be inferred from other
magnetic measurements, only neutron diffraction gives a direct deter-

mination. The more complicated the magnetic structure, the less likely

it can be deduced indirectly; an obvious example is the helical moment
structure of some lanthanon metals and other substances (in fact MnAu2

was the first such structure discovered by neutron diffraction, in 1959).

Many structural determinations of a simpler nature have been carried

out, of which only two may be mentioned briefly, (a) Although some
suggestions of a ferrimagnetic structure have been put forward for

iron, neutron diffraction shows that every iron atom appears identical

and carries the same moment, at any rate on a time average; (b) the
series of compounds MnF2 , FeF2 , CoF2 , which are tetragonal, have
been shown to have a simple anti-parallel arrangement of spins oriented
along the tetragonal axis, but in MF2 the spins are canted away from
this axis by about 10°, giving a weak ferromagnetic moment (i.e. the
spins are oriented as in Fig. 22.5, but through the anisotropy energy,
not by a magnetic field).
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PROBLEMS
22.1. The theory of anti-ferromagnetism can be extended by assuming that the

to exchange inter-

to ions on the other

i dn emolecular field acting on each sub-lattice contains a term

action with ions on the same sub-lattice as well as a term due

sub-lattice. Show that in the paramagnetic state the equatioi

MA = (C/2n T)(BB-\MB-\'MA ),

MB = (C/2/x T)(B -Ai^-A'MB )

lead to a Curie-Weiss law for the susceptibility (equation (?2.3)) with

6 = (C/2im )(\+X).

22.2. The Neel temperature TN can be found by putting B
question, and finding the condition that the pair of equations

have a solution. (TN is the temperature at which a vanishingly

tion can exist when B = 0, and the Brillouin function

Curie's law.) Show that this gives TN = (C/2/x. )(A— A').

= in the preceding

for MA , MB still

small magnetiza-

is approximated by
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MAGNETIC RESONANCE

23.1. The magnetic resonance phenomenon
It was shown in § 20.1 that when an atom or nucleus with a resultant

angular momentum G and magnetic moment m is placed in a steady-

magnetic field B the equation of motion (obtained from equation

(20.2) by multiplying by y) is

dm/dt = ym a B , (23.1)

where y = m/G is the magnetogyric ratio. The motion represented by
this equation consists ofa precession ofthe angular momentum vector G
and hence also ofm about the direction of B with a uniform angular

velocity —yB , which we shall denote by to£. If the system is un-

disturbed it will continue indefinitely in this state of uniform precession

with m at a fixed angle to B , and it is convenient to make use of

rotating coordinate systems in considering this motion. It is shown in

§ A. 10 that the rate of change (dtn/dt) of any vector quantity such as

m in the laboratory coordinate system is related to the rate of change

(Dm/Dt) in a system rotating with angular velocity to relative to the

laboratory system, by the equation

dm/dt = Dm/D<+to a m.

Substitution of this in equation (23.1) gives

Dm/Dt = ym a B — to am
= ymAB -fmAu

= ymA[B + -|. (23.2)

This result shows that in the rotating coordinate system the apparent

magnetic field is (B +u>/y), and the apparent precession velocity is

—y(B +to/y) = to^— fa). Thus the apparent angular velocity is de-

creased by to, as would be expected from simple considerations of

relative angular velocity. If we write B' = —to/y, the apparent field

in the rotating system is (B — B'), and it is reduced if B' is positive

(i.e. to has the same sign as <aL) as shown in Fig. 23.1. Clearly, if

B' = B , the apparent field (B — B') and precession velocity —y(B — B')
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are both zero, and the vectorm is stationary in the rotating coordinate

system.

We shall now consider the effect of applying a sma|ll

netic field Bx cos cot

B„

B -B'

to the direction of the

This oscillating field

polarized or circularly

latter caseBx is simp'

to Bn , which is constant

-o>/y

(taking

Fig. 23.1. Eflective fields in a rotating

coordinate system.

which rotates about

velocity <o. If the

plane polarized, with

in the x-direction

z-axis), it may be

vectors rotating in

there is no loss ofg
ing only the circularly

If we now transfer

tory system to a

the angular velocity

Bx is stationary in

be represented by a

as shown in Fig. 23

syste:

this

!

an

precess

will

the atom or nucleus feels an apparent magnetic field

to the z-axis, together with the field Bx normal to

resultant field in this rotating system is the vector

fields, which is denoted by Beff
in Fig. 23.1. To

system, the dipole moment m will appear to

angular velocity —yBef{ , and its projection on B
goes on. If m were initially parallel to B (as we

macroscopic system), it would precess about Beff

sequent time would reach a maximum angle 20

tan0 = BJiBo-B').

If B — B' = 0, Beff
= Bx and 6 = \tt, so that m

to reach a position anti-parallel to B before

This occurs only when

to = —yB' = —yB = <aL ,

so that the frequency of the applied field is then the

Larmor precession. Thus the precession about Beff is

with

[23.1
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phenomenon, whose amplitude is greatest when the applied frequency

co is equal to the natural frequency to£ .

In the case of an atomic or nuclear system, the angular momentum
is quantized, and so are its projections on B , so that the energy

W = —m.B is also quantized. We shall consider first the nuclear

case, assuming a nucleus of spin angular momentum K, and magnetic
moment m, where the magnetogyric ratio y = gn{ej2M). Then the

potential energy in a state whose magnetic quantum number is m is

Wm = —m.B = —yfiI.B = —yhmB . (23.3)

Under the influence ofan oscillating magnetic field polarized in the plane

normal to B , transitions between states with different values ofm may
take place according to the selection rule Am = ±1. The quantum of

energy required is

ho = Wm-Wm_1 = -y(hl27r)B . (23.4)

This is the same for all transitions, as shown in Fig. 23.2. From this it

follows that the frequency of the radiation must be

v = -~B = +o)i/2»r. (23.5)

This is the resonance condition, which is the same as that given by the

classical treatment above. The minus sign is significant only if circularly

polarized radiation is used. If a system of nuclei with a positive value

of y is to absorb energy from an applied oscillatory field, the selection

rule for absorption is Am = — 1, and the vector Bx must rotate in the

left-hand sense about B , while if y is negative, the reverse holds. This

gives a method of determining the sign of y, but for many purposes this

is immaterial and linearly polarized radiation may be used. Since

this can be regarded as composed oftwo circularly polarized components
rotating in opposite senses, transitions can be induced whatever the sign

of y. In the usual spectroscopic terminology these are 'magnetic dipole'

transitions, corresponding to the fact that they are caused by the inter-

action of an oscillatory magnetic field with the magnetic dipole moments
of the system. This phenomenon is generally known as 'magnetic
resonance', and it offers a method of determining y directly from a
measurement of a frequency and a magnetic field. The order of magni-
tude of the frequencies required may be found from the specific charge
(e/M) of the proton, if we assume that gn is around unity. The value
of e/M for the proton is nearly equal to the Faraday, i.e. it is about
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108 coulombs/kg (10* e.m.u./g). Hence the frequency

is « 107 c/s in a field of 1 weber/m2 (10 kilogauss)

nuclear magnetic moment. Electronic magnetic

2000 times larger, owing to the smaller mass of the

in the case of a

nioments are some

electron, while the

Am = ±1

Fig. 23.2. Digram showing the nine energy levels and the allowed

them for a nuclear spin / = 4 in a field -B„. Transitions can be induced
field of frequency v if v = — (y/27r)-B .

associated angular momentum is ofthe same order as in the nuclear case,

so that the value ofy and ofthe frequency required are higher in propor-

tion. For an atom with a magnetic moment due only to electron spin,

the wavelength of the radiation required for resonance in a field of

10 700 gauss is 1 cm (a frequency of 3 X 1010 c/s).

The magnetic resonance phenomenon has been ijsed to investigate

systems of both atomic and nuclear magnetic moments, and we shall

discuss first the latter. It makes possible a direct determination of the

value of y, and hence, for a nucleus whose spin I is known, of the nuclear

magnetic moment. The chiefexperimental difficulty lies in the smallness

of the effect, and we shall describe first an ingenious method due to Rabi,

where the phenomenon is detected by its effect on the path of a molecule

in a molecular beam.

[23.1

transitions between
by an oscillating
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23.2. Molecular beams and nuclear magnetic resonance

The use of atomic beams for the measurement of atomic magnetic

moments has been mentioned in § 20.4. The method depends on deflect-

ing the atoms by passing them through an inhomogeneous magnetic

field; the deflexion is proportional to the projection of the magnetic

moment on the direction of the field gradient, and the initial beam is

split into (2.7+1) beams if the total electronic angular momentum has

quantum number J. The magnetic moment can be computed from the

A
LU

8^ F
1

' ^ <** Detector

dBjiz ^^> ""^ ^-^

Fig. 23.3. Rabi's molecular beam apparatus. The broken curves in the B magnet show
the paths of molecules which have undergone a transition in the field JB of the O magnet

due to the r.f. field applied at F perpendicular to JB .

size of the deflexions if the magnitude of the field gradient is known.

The main difficulty in achieving high precision is the spread in velocity

of the atoms in the beam, since the deflexion is inversely proportional

to the square of this velocity.

Application of this method to the determination of nuclear magnetic

moments demands great refinements, since the size of the moment is

some 2000 times smaller than that of an electron, and the deflexion is

correspondingly smaller. For a direct measurement molecules such asH2

or NaCl, with no electronic magnetic moment, must be used. Owing to

the great difficulty of working with purely nuclear moments, methods

were devised using atoms with a hyperfine structure due to magnetic

interaction between the electronic moment and the nuclear magnetic

moment. These are rather complicated, and such deflexion methods

have now been superseded by others making use of magnetic resonance.

The first of these was carried out by Rabi and his colleagues (1939).

A schematic diagram of the apparatus is shown in Fig. 23.3. Molecules

from an oven emerge through a narrow slit, moving at small angles

with the axis of the apparatus. They enter a region of inhomogeneous
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magnetic field in the A-magnet, and are deflected by
tional to the projection of their magnetic moments
the field; thus some of them will pass through the

Neglecting for the moment the C-magnet, we fa

through the .B-magnet, which produces an inhomogebieoi

like that of the A-magnet except that the gradient is

on the nuclear magnets in a molecule is therefore also

that the orientation of these magnets is the same as

through the .4-magnet), and the molecules are

an amount propor-

on the direction of

collimating slit 8.

low the molecules

is field exactly

Reversed. The force

reversed (provided

was when passing

therefore deflected

it

100

pq
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Fig. 23.4. Resonance curve for the F18 nucleus in NflF obtained
by Rabi with the apparatus in Fig. 23.3.

upwards and reach a detector. The proviso about

important, because if it changes between A and B,

produced by B is different from that in A, and the

reach the detector. This gives a means of detecting a

phenomenon, since it can be used to cause a change

after leavingA and before entering B. The (7-magnet

field B , and between its pole faces is a conducting

current which produces an oscillating field Bx cos a>t

pendicular to B . When the resonance condition is

are induced within the Zeeman levels of the nuclear

B , so that the orientation ofthe nuclear moment is

current at the detector then falls, a typical exampli

Fig. 23.4. Here the radio frequency is kept constant

field B is varied through the resonance. The value

the observed values of B (at the centre of the

frequency. From the width of the resonance curve

[23.2

the orientation is

then the deflexion

molecules will not

magnetic resonance

in the orientation

produces a uniform

loop carrying an r.f.

in a direction per-

fulfilled, transitions

moment in the field

changed. The beam
e being shown in

and the magnetic

of y is found from
resonance) and the

in Fig. 23.4 it can
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be seen that the accuracy is very much greater than could be obtained

by a simple deflexion method.

An estimate of the width can be obtained as follows. If the nuclear

moment is initially parallel to B , then at resonance it precesses about

Bx in the rotating coordinate frame with angular velocity yBj, and in

a time t it will exactly reverse its orientation provided that yB1 1 = it.

This corresponds to the maximum in the resonance curve. When we
are off resonance, the moment precesses about Beff , and if BeH is at an

angle d = 45° to B the moment will only reach a maximum angle of

29 = \tt to B . If we take this to define

the half intensity points on the reson-

ance curve, they correspond to

B —B' = ±Blt

so that

Av = ±y(B

Fig. 23.5. Cross-section of the A and
B magnets used in Rabi's apparatus

of Pig. 23.3, normal to the path ofthe

beam (markedB in the figure). The
curved parts of the pole pieces are

cylindrical, but the radius of curva-

ture for the upper pole is larger than

for the lower one.

-B')I2it= ±1/2*,

(23.6)

showing that the line width is simply

related to the time t for which the dipole

moment is subjected to the oscillatory

field.

An experiment of this kind is by no

means easy, as can be seen from the fact

that the deflexion of a molecule is only about 0-05 mm in a magnet

with a field gradient of the order of 105 gauss/cm. This is using a

magnet 50 cm long with pole faces of the shape shown in Fig. 23.5; the

curvature is adjusted to give a uniform value of dBjdz over the width

of the beam. Because of the small deflexions the defining slits at S and

the detector must be very narrow (« 0-01 mm) and the beam intensity

at the detector is very small, being determined by the solid angle which

the detector slit makes with the oven, some 1\ metres away! Originally

the difficulty of detecting a beam of uncharged molecules limited the

method to hydrogen, deuterium, and the alkali metals, whose nuclear

moments were measured with a precision of a few parts per thousand

(see Table 23.1). The spectra ofH2 and D2 are more complicated than

those of heavier molecules, for a rotating Ha molecule has a rotational

magnetic moment of the same order as the nuclear moment; in addition

there is another interaction in the D2 molecule, between the electric

quadrupole moment of the deuterium nucleus and the electric field

gradient of the electrons.
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Present methods of detection depend on

by electron bombardment; the resultant ion is thei|

mass spectrometer to separate it from the backg
Finally it is accelerated onto the first plate of an
in which the secondary electrons ejected by its i

in a photo-multiplier tube (§ 4.4).

Table 23.1

Nuclear spins and magnetic moments of some corhmon isotopes

Nucleus

neutron
1H
2H
3H

Alkali metals :

«Li

'Li
28Na
3»K
"K
85Rb
87Rb

138Cs

Halogens :

i»p

36C1
87C1
79Br
81Br
127J

Magnetic moment (nuclear magnetons)

[23.2

ionization of the molecule

passed through a

;ifound ion current.

electron multiplier,

mpact are amplified as

Molecular

beam value

-1-913
+2-789
+0-856

+0-821
+3-253
+2-215
+0-391
+0-215
+ 1-340

+2-733
+2-558

+2-62
+0-819
+0-681
+2-110
+2-271

Nuclear
resonance value

+2-7927
+0-8574
+.2-9788

+0-8220
+8-2563
+12-2175

+0-3915
+0-2154

+ :i-3527

+2-7505
+2-5789

+ 2-6285

+0-8218
+ 0-6841

+2-1056
+21-2696

+ 5!-8090

An experiment of this kind was carried out by
(1940) to determine the magnitude of the magnetic

neutron. In this case it is not possible to use the method
an inhomogeneous field because the number of neutrons

detector, with the narrow slits required, is too sm|all

Instead, use was made of the fact that the absorpt:

ferromagnetic material, such as iron magnetized to

ent for neutrons whose spin is parallel to the electron

from that for neutrons with anti-parallel spins. Two
blocks are therefore used as 'polarizer' and 'analyser

inhomogeneous field magnetsA and B. From the first

s dip oli

turn

Alvarez and Bloch

e moment ofthe

of deflexion in

reaching the

for detection,

of neutrons in a

saturation, is differ-

in the material

such magnetized

instead of the

ofthese a partially

spins ]



23.2] MAGNETIC RESONANCE 685

polarized beam of neutrons enters a homogeneous field C, where transi-

tions are inducedby the r.f. magnetic field at resonance. When resonance

is achieved, it is detected by a drop in the neutron count of the beam

emerging from the second block, since some of the neutrons have made

transitions to the orientation having greater absorption in the iron. In

later work the precision has been improved by measuring the field of the

C-magnet by proton resonance (see § 23.3), so that by measuring the

radio frequencies required for magnetic resonance of the proton and

neutron in the same field, their relative magnetic moments are immedi-

ately determined (both neutron and proton have / = \). High precision

can only be obtained with narrow resonance curves, and from equation

(23.6) this requires a large value of t; i.e. a long path through the C-field.

The corresponding requirement ofhigh uniformity in the C-field is made

less rigorous by the use oftwo separate oscillatory fields, one at each end

of the C-field. With this arrangement, due to Ramsey (1949), only the

average value of the C-field over the whole path is required to be the

same as that at the position of the oscillatory fields. By means of this

and other special techniques Cohen, Corngold, and Ramsey (1956)

obtained the result (p.p.m. = parts per million)

magnetic moment of neutron/magnetic moment of proton

= 0-685039 (±25 p.p.m.).

By applying an electric field of about 2x 105 V/cm parallel to and in

the same region as the C-field, as suggested by Purcell and Ramsey

(1950), it has been shown from the absence ofany effect due to precession

in the electric field that the upper limit of any electric dipole moment

on the neutron is less than the charge on the electron multiplied by a

length 5 X 10-20 cm (Smith, Purcell, and Ramsey, 1957).

23.3. Nuclear magnetic resonance in bulk material

The molecular beam method of detecting nuclear magnetic resonance

is experimentally very difficult, but it was used because at the time there

seemed no prospect ofdetecting the resonancephenomenon directly ; that

is, by observation ofthe effect ofemission or absorption ofquanta on the

oscillatory field. At radio frequencies the rate of spontaneous emission

of quanta is negligibly small, and spectroscopic lines can be observed

only in absorption. The magnitude of the absorption in nuclear mag-

netic resonance is very small, as can be seen from the following estimate.

From the theory of anomalous dispersion (§ 17.4) the imaginary part of

the susceptibility x" at *ne centre of a narrow line is related to the static
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susceptibility Xo by the formula (see Problem 23.1)

Xo 2Ao>

v

2AV

where Av is the distance from the centre of the line t<j>

intensity has fallen to half its maximum value. Now

/W^/(/+l)
Xo ZkT

waterand in a favourable case, such as the protons in

at room temperature is approximately 10~8 m.k
e.m.u./cm3

). To estimate x" we need an approximate

main cause of line broadening in our case is the

of neighbouring nuclear magnetic moments. The
change the actual field at a given nucleus by an

the orientation and number of neighbouring ma
causes a spread in the magnetic field acting on
so gives a finite line width. The spread in field

of yx mj4cTrd3, where nt is the dipole moment of a

its distance. The mean value of d3
is just half

occupied by the two protons in a water molecule,

Now v/Av = B I(AB), so that at a field of 2000 gauss,

10-8(2000/2) « 10-5 m.k.s./metre3
. For protons,

quency at this field would be « 8-5 Mc/s, and thik

power transmitted through 10km of the substance to

cent (see Problem 23.3), and so it is quite out of the

transmission method. Instead the substance is

magnetic field generated in the coil of a tuned circuii

magnetic resonance phenomenon will then cause a

where Q is the quality factor of the circuit, of

lem 23.2)
A(i/«) = x'VU+x') « io-5

.

The smallest value of (l/Q ), the reciprocal of the quality

circuit in the absence of resonance, that we can expect

so that to detect the resonance requires a measurement

Q of less than 1 per cent.

The circuit used for this purpose by Bloembergen,

(1948) is shown in Fig. 23.6. Power from a signal generator

low resistance R, and then through a small capacitance

circuit with a Q of about 150. This small resistance

ensure that a small constant current is fed to the tun3d

[23.3

(23.7)

a point where the

, the value of xo

s./metre3 (« 10"9

value of Av. The
magnetic fields

of these is to

depending on

;ic dipoles: this

nuclei, and
is of the order

neighbour, and d

average volume

AB « 1 gauss.

X" would be about

resonance fre-

would cause the

fall by only 1-8 per

question to use a

d in the r.f.

for 8-5 Mc/s. The
change in (l/Q),

magnitude (see Prob-

: random

ellect

amount

-gnet:

different

AB

the

whence

the

inserted

(23.8)

factor of the

is about 5x 10-3
,

of a change in

Purcell, and Pound
is fed to a

C4 to a tuned

and capacitance

circuit, and the
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voltage across the tuned circuit therefore varies directly with the Q.

This voltage is not measured directly, however, but is balanced against

the voltage across an exactly similar circuit, shown enclosed in broken

lines. The sample is placed in the coil of one tuned circuit, and this coil

is placed between the poles of an electromagnet, the axis of the coil (and

hence the direction of the oscillating field Bx) being perpendicular to the

i— R.F.
— amplifier

Fig. 23.6. Circuit of Bloembergen, Pureell, and Pound (1948) for the detection of

nuclear magnetic resonance.

low resistances (50 ohm).
capacitors coupling power to the tuned circuits L, C.

capacitors coupling power to the r.f. amplifier which detects the difference in

the voltages across the two tuned circuits.

steady field B . Adjustment of one or both of the capacitors C4 now
brings the voltages across the two tuned circuits nearly to equality, so

that the difference voltage, applied to the input of an r.f. amplifier, is

small enough not to overload it. The steady field B is then varied, and

at resonance the Q of the circuit containing the sample is slightly

diminished, so that the voltage input to the r.f. amplifier alters. This

change could be observed on a vacuum tube voltmeter after detection,

but for it to be appreciable the balance between the two circuits would

have to be steady enough to reduce the difference voltage fed to the

receiver to less than one-thousandth of that across either circuit over

the time occupied in varying B to find the resonance. To overcome

this drawback, a small low frequency modulation of a few gauss is
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superimposed on B . If B is adjusted so that this

over a resonance line, then the change in Q and hkice

input to the receiver recurs each time the line is traversed

a low frequency modulation on this input. After amplification

be detected, and applied (if necessary with further

amplification) to the F-plates of an oscillograph

derived from the low frequency modulation, so that i

[23.3

modulation sweeps

in the voltage

and so gives

this can

low frequency

The X-sweep is

given X-deflexion

liqaidFig. 23.7. Nuclear magnetic resonance signal from protons in

oscilloscope. The vertical deflexion is proportional to the strength

the horizontal deflexion to the variation in the applied

(Photograph by E. A. Kamper.)

water, displayed on
of the absorption and

inagnetic field.

corresponds to a given change in B caused by the modulation

resonance curve obtained in this way with liquid water

shown in Fig. 23.7. As the mean value of B (i.e. the

to the mid-point of the modulation) is slowly varied,

appears at one end of the trace, moves across, and

other end.

The first experiment of this kind was carried out

and Pound (1946). Simultaneously, the nuclear resonance

independently by Bloch, Hansen, and Packard

A typical

as the sample is

:ield corresponding

the resonance line

disappears at the

(1946)

by Pnrcell, Torrey,

was observed

using a slightly
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different principle, known as nuclear induction. To understand this we
shall return to the rotating coordinate system used in Fig. 23. 1 . If there

is some damping mechanism by which energy can be transferred from
the system of nuclear spins to the outside world, the equilibrium state

will be one where the net magnetization M will be parallel to the steady

field B . When a rotating field 'B 1 is applied, the magnetization vector

precesses at an angle 8 about B with the angular velocity w of the

applied rotating field. Thus it is a constant vector in the rotating

coordinate system, though not coplanar with B and Bx (this is the

steady state solution of the forced precession of the damped system).

Theory shows that, if AjB is the line width, 8 is given by

tan 8 = .

Hence 8 is greatest at resonance (B = B'), and the rotating com-

ponent M sin 8 is then also a maximum, leading the rotating field Bx

by an angle \ir. This component will induce a voltage in a coil placed at

right angles to the main coil producing the driving field Bx cos <A. The
induced voltage is an oscillatory one with the same frequency, and the

detector coil must therefore be carefully oriented to reduce as far as

possible any direct pick-up from the driving coil. Here again the steady

field B is 'wobbled' at an audio frequency, since this differentiates

between such stray pick-up, which will not be modulated at the wobble

frequency, and the resonance effect, which is.

23.4. Relaxation effects in nuclear magnetic resonance

The Purcell method is generally known as 'nuclear resonance', and the

Bloch method as 'nuclear induction'; they are alternative methods of

detecting the same phenomenon, and have the same ultimate sensitivity.

Both have been pushed to the limits of sensitivity in applications such

as measurement of the value of y for rare isotopes. In this connexion

line width is of great importance, since the intensity at the centre of an
absorption line varies inversely as the line width (see equation (23.7)),

and the accuracy with which the position of the centre of the line can

be determined is also higher for a narrower line. It turns out that the

line width varies very considerably with the nature of the sample, and
we shall discuss this briefly first.

In the estimate of the line width for H2 made in § 23.3 the field

due to one neighbouring proton was found to be about one gauss. This

was an underestimate of the width to be expected, since there is more than
one neighbour, and we would expect the full width (2AjB) to be about

85iiio y y
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]ce

resonance

difficult

i lejis

. discussed

hbourin

10 gauss. In fact it is found to be about 16 gauss in
^

tures. In liquid water, on the other hand, the

narrow; so narrow, that its actual width is very

as variation of the field produced by the externa

volume of the sample is usually the limiting factor

breadth. By working at low field strength, however,

(1949) were able to show that the overall width was

The explanation for this striking difference from the

follows. In water the molecules are not stationary,

change their positions once every 10-1X sec or so, this

by the relaxation time of the Debye absorption

means that at a given nucleus the field of a neig'

not be constant, but will change its value every 10-11

much shorter time than that of the precession

say, 2 kilogauss, which is « 10~7 sec. At first sight th^

of the random fields of the neighbours might be ex

line, but in fact the nucleus cannot respond to

duration is less than T2
= (Aw)-1 = (yA-B)-1 , the inv

the words of Purcell (1948), 'the nucleus rides out

balanced gyroscope on perfect gymbals'. It turns

rapid the fluctuations the more closely does their

If the rate of fluctuation is lower, on the other hand

of high viscosity such as glycerine, the line width is

reduced, and increases rapidly if the viscosity is i

the temperature. When the Debye relaxation

longer than the characteristic time T2 , the full line

many substances the line width does not have the

to the random magnetic fields of other nuclear dipol

the solid state. This is attributed to internal motion

lattice, which 'averages out' the fields of the neig.

resonance has been used to investigate such interna]

cases.

A second question of considerable importance is

energy is transferred from the nuclear spin system

taming the nuclei. In the absence of an external maj

nuclear spins will point in random directions, and x
B is now applied, the energy levels corresponding

spin or orientations will be split, as shown in Fig. 23

a spin J = \ is assumed, giving just two levels

tions of these two levels were equal, and after B is

lWiU

to

[23.4

at low tempera-

is extremely

to determine,

magnet over the

:in determining the

Brown and Purcell

than 0-007 gauss,

width in ice is as

but on the average

figure being given

in §17.7. This

I nucleus will

sec. This is a very

in a field of,

rapid fluctuations

to broaden the

Lging fields whose

erse line width : in

storm like a well-

i>ut that the more

average to zero,

as it is in a liquid

not so effectively

by lowering

becomes much
is attained. In

pected width due

moments even in

within the solid

and nuclear

motions in many

period

pected

chain

i the

effect

increased

time

width

ex

hbours,

the rate at which

i;o the lattice con-

,|nietic field B , the

be zero. Ifa field

different nuclear

8. For simplicity,

Originally, the popula-

switched on they will
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remain so until a number are transferred from the upper to the lower

state to give the equilibrium Boltzmann distribution in which

n2 = »1 exp(— WjkT).

This involves a transfer of energy from the system of spins to the lattice,

and the magnetization approaches its equilibrium valueM according to

$n{l+exp(-W72fc!r)}

in{l-exp(.-W]2kT)}

Field zero

Time

Fig. 23.8. The energy levels and the relative populations of a nucleus of spin / = $
before and after a magnetic field is switched on. The populations approach the new
equilibrium values exponentially, with time constant Tv the 'relaxation time'.

the exponential law (compare the corresponding equation for electric

polarization in § 17.7)

dMjdt = (Mo-M)/?1

!,

which gives M —M = M exp(— t/Tj) (23.9)

ifM = at t = 0. The parameter T± is known as the spin-lattice relaxa-

tion time, since it determines the rate at which energy is transferred from
the magnetic dipoles of the system of nuclear spins to the crystal lattice

in which they are embedded. Such a transfer requires that transitions

be induced between the various nuclear levels corresponding to different

orientations, and these can only be caused by the presence ofan oscillating

magnetic field whose frequency satisfies the condition for resonance.

Furthermore, this oscillating field must originate in the thermal motion
of the surroundings of the nucleus. In a liquid the Brownian motion of
neighbouring molecules causes the local magnetic fields of their nuclei

to fluctuate rapidly, and this random fluctuation contains components
of the right frequency to cause transitions. For distilled water at 20° C,
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relaxation

no

» their

Bloembergen, Purcell, and Pound (1948) found the

about 2 sec. This can be shortened by dissolving a

in the water, so that the protons interact with the much
magnetic moments. Another feature is that one would

component of the randomly fluctuating magnetic fields

(and hence Tx to be shortest) when the Debye relaxation t

t is of the order l/a) , where w is the angular frequency

resonance. This was verified by Bloembergen, Purcell

measuring Tx in glycerine over a range of temperatures

wide range of viscosity and hence of the Debye

solids at low temperatures, where there is practically

we should expect Tx to be very long, but in practice

nothing like as long as the values predicted by theory,

to the presence of paramagnetic impurities, where

turn over and so give a fluctuating field. Owing to

moments, very few such impurity ions are required,

contact between the electron spin (or orbit) and the lattice

intimate than that between a nuclear spin and the

so that a transfer of energy to the electron spins

effectively a transfer to the lattice itself.

The variation of Ji with the Debye relaxation

stances is shown in Fig. 23.9. In ethyl alcohol, t <(l/<

as t increases. In glycerin Tx passes through a

again, while in ice, where t > (l/w )> Tx is rising with

variation of Tx (with a corresponding increase in the

the value calculated for an assembly of static dipcl

confirms the internal molecular motion in ice indicated

relaxation. Internal motions exist in many other solids

investigated by measurement ofthe relaxation time

width in nuclear magnetic resonance. Such experiments

considerably to our knowledge of the solid state

[23.4

value of 2\ to be

paramagnetic salt

bigger electronic

expect the desired

to be greatest

ime ofthe liquid

of the magnetic

and Pound by

which gives a

time t. In

thermal motion,

it turns out to be

This is ascribed

the electron spins

larger magnetic

and the thermal

is much more

attice (see § 23.7),

from the nuclei is

time

23.5. Applications of nuclear resonance

The most obvious application of nuclear resonance

ment of y for all possible isotopes. A direct

a precise measurement of the frequency, which is

and of the magnetic field B , which is difficult. For

to measure instead the ratio of y for the unknown ii

standard isotope such as XH, the proton. This ma^r

by measuring the two frequencies of magnetic

r for three sub-

'„) and Tx decreases

minimum and increases

increasing t. This

iLine width towards

es as t increases)

by the Debye

and have been

as well as the line

have added

is to the measure-

measureinent of y involves

comparatively easy,

reason it is usual

sj>tope to that for a

be accomplished

resonance in the same
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magnetic field. To achieve high accuracy, a single sample is used, such as a

solution of a substance containing the unknown isotope in water. From
the discussion of line width in § 23.4 it will be appreciated that a solution

gives the narrowest lines, and hence the greatest accuracy as well as the

greatest intensity at the centre of the line. The sample is surrounded

by two coils, one for each of the two resonance frequencies, which are

io2

NqAlcohol

Ti Nuclear relaxation time
in seconds

10-

io-

Ice

10"11 io-» 10-' io-»

t = Debye time in seconds

10-

Fig. 23.9. The thermal relaxation time T1 for protons in ethyl alcohol, glycerin, and ice,

measured at 29 Mc/s, plotted against the Debye relaxation time t, obtained from dielectric

dispersion data. Note the logarithmic scales. The slope of the solid lines for alcohol and
ice and the shape of the solid curve for glycerin have been drawn in accordance with

theory.

usually arranged to be mutually perpendicular so as to minimize the

mutual inductance between them. The accuracy which can be achieved

in this way is illustrated by the ratio of the nuclear moments of the

deuteron and the proton, found by Wimett (1953) to be

mD/mH = 0-307012192±0-000000015.

The measurement was made with compressed HD gas in order to avoid

difficulties with 'diamagnetic shielding' (see below), and certain other

small corrections.

A table of nuclear moments for hydrogen, the alkali metals, and the

halogens is given in Table 23. 1 ; a complete list would occupymany pages.

The earlier values obtained by the use of molecular beams are shown

for comparison; in the case of the neutron the value is that obtained by

special beam methods outlined in § 23.2. The proton value is obtained

from an absolute measurement of y, described below, and other mag-

netic moments from the measured ratios of y to that for the proton.
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The absolute measurement of y for one nucleus is

siderable importance, the obvious choice being the

a high magnetic moment and gives a large signal) in

principal difficulty is that ofmeasuring the magnetic

accuracy, which can most conveniently be carried

laboratory. The first such measurement was that of

and Hippie (1950) at the United States Bureau of

a magnetic field of 4700 gauss, determined by

[23.5

obviously of con-

proton (which has

liquid water. The
field with sufficient

out in a standards

Thomas, Driscoll,

Standards, who used

meins of the Cotton

The
by

Fig. 23.10. Plan of the apparatus used by Vigoureux (1962) for

of nuclear precession of the proton in a weak magnetic field.

by coils of known dimensions carrying a current I measured
a standard resistor B. The pulse of the polarizing field Bj is provided
coil, in which the subsequent free precession induces a voltage

whose frequency is determined by the period counter

balance (see § 8.6). Later methods have used fields

produced by a standard solenoid whose dimensions

known, so that the field can be calculated from these

the current. To obtain sufficient signal at such low

method of 'free precession' is used. By means of

field B' of 100-1000 gauss is set up at the proton

normal to the standard field B . The subsidiary

! tOfor a short time (> Tx ), long enough for the sample

magnetization parallel to the resultant field (B +BJ,)

it. On removing B' we have therefore a comparatively

tionM = (x/^o)(Bo+B )wliichisalmostnormaltothe

and therefore precesses about B with angular frequency a>p
= —

suring the frequency
field B is provided

the voltage V across

by a subsidiary

which is amplified and

sampl

field

of order 10 gauss

are accurately

dimensions and

frequencies, the

subsidiary coil, a

e in a direction

Bq is maintained

acquire a nuclear

^ind proportional to

large magnetiza-

standard field B ft ,

yP B (
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During this process the magnitude ofM decays towards the value M
appropriate to the field B (in thermal equilibrium M will also be

parallel to B ). The precessing magnetization induces an alternating

voltage in a suitably oriented coil, whose frequency (a>p/27r) can be

determined with an accuracy limited by the number of cycles which

elapse before the signal becomes too small to be observable.

Table 23.2

Values of yv = —

w

p
/B as determined at some Standards laboratories.

The last result is referred to the unit of electric current maintained at the

N.P.L., rather than the absolute ampere, and on correction agrees with the

measurement of Driscoll and Bender within 1-1 p.p.m. The values quoted

do not include the diamagnetic correction

Method yp (in. units of (gauss-sec)-1)

N.M.R. (Thomas, Driscoll, and Hippie, 1950)

Free precession (Driscoll and Bender, 1958)

Free precession (Vigoureux, 1962) ....
26 752-3 (±22 p.p.m.)

26 751-3 (±7 p.p.m.)

26 751-71 (±2p.p.m.)

A plan view of the circuit used by Vigoureux (1962) of the United

Kingdom National Physical Laboratory is shown in Fig. 23.10. The
current / through the field coils (solenoid) is equal to V/B, where V is

a standard cell and B a standard resistor; to obtain I in terms of the

absolute ampere the ratio V/B must be determined by means of a

current balance. The results of three independent determinations of yp
(in liquid water) are given in Table 23.2, together with the estimated

error in parts per million (p.p.m.). The two more recent results quoted

agree within about 1 p.p.m.

The absolute determination of yp is important not only because of

its use in determining nuclear moments, but also because nuclear

resonance offers a simple and accurate laboratory method of measuring

a magnetic field. Only a frequency measurement is required, which can

readily achieve an accuracy of 1 part in 104 if a simple frequency meter

with a quartz crystal oscillator check is used, or higher if a frequency

standard is available. The main requirement is that the magnetic field

must be uniform over the proton sample in order to avoid broadening

the resonance, but this is not often a serious limitation. The free pre-

cession method can be used for very small fields, such as the earth 's field,

which can be measured to about 1 part in 105
. This accuracy is com-

parable with other methods such as the earth inductor which have the

disadvantage of measuring only a component of the earth's field, so
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be

opposite i

error

field

that the orientation of the sensing element must be

(the advantage in this respect of a 'proton magnetometi

earth's field at the bottom of, say, the Atlantic Ocean
appreciated).

In computing a nuclear magnetic moment from

quency in an external field B a correction must
magnetic shielding'. This effect is closely allied to

arises from the precession of the closed shells of

which sets up a small field at the nucleus with the

thus making the actual field acting at the nucleus sli

the external field. The apparent value of y, if no

therefore less than the true value by a fractional

2-8 X 10-5 for hydrogen, rising to 10~2 for the heaviest

correction has been computed, with a probable

5 per cent (which is greater than the experimental

elements. This shielding effect, which makes the

an atom different from that outside, must be distiiji:

'demagnetizing field' (§ 5.4) and the 'local field', whica.

sufficiently accurately for this purpose by the methpd
(cf. § 17.2). Each of these fields is proportional to the

of the sample, and in a spherical sample the demagne

Lorentz field just cancel, so that the average local

the external field, apart from the diamagnetic

The shift due to diamagnetic shielding depends

of electrons, and may thus vary from compound
addition there may be shifts due to the induced

in compounds which have temperature-independent

such as K3Co(CN)6 ; these effects are known as

diamagnetic shielding may also vary between different

the same compound; for example, in CH3CH2OH
protons in the CH3 , CH2 , and OH groups are

by about 1 part in 106 . In very high resolution n.

may be obtained by special methods) further s

actions between neighbouring protons can also be

with important chemical applications.

Such possibilities arise because the frequency of

resonance is a measure ofthe magnetic field at the

occupied by the nucleus whose resonance is being

are observed in strongly magnetic solids, making

resonance an important tool in the investigation ofmai

[23.5
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applied for 'dia-
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,

htly smaller than

correction is made, is

amount of about

elements. This

rising to about

e(rror) in the heavy

in the interior of

guished from the

can be evaluated

due to Lorentz

bulk diamagnetism

sizing field and the

field is the same as

correction.

the local density

to compound; in

paramagnetic moment
paramagnetism

cheknical shifts'. The

nuclear sites in

resonances from

separated in frequency

.r. (1 part in 108

gs due to inter-

rssolved in liquids,

m.:

nuclear magnetic

in the compound
observed. Large shifts

nuclear magnetic

gnetic compounds.
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In general the electronic magnetic dipoles change their orientation very

rapidly, either through relaxation effects due to the thermal fluctuations

ofthe lattice or through interaction with neighbouring spins, and so long

as this reorientation occurs many times in a time T2
= (yn A-B)

-1 charac-

teristic of the nuclear resonance line width A5, relatively narrow n.m.r.

lines are obtained, shifted in frequency by a local field which is pro-

portional to the time average of the electronic magnetic moment. Thus

the shift is temperature dependent and proportional to the average

electronic magnetization; in a paramagnetic substance we can write for

the nuclear precession frequency

u> = —

y

n(B +aM) = —yaB (l+axlfi )>

showing that the fractional change in frequency is proportional to the

susceptibility. In an ordered magnetic substance, where the magnetiza-

tion is finite in the absence of an external field, nuclear magnetic reso-

nance can be observed at a frequency which is very nearly proportional

to the magnetization in a ferromagnetic substance, or to the sub-lattice

magnetization in an anti-ferromagnetic or ferrimagnetic compound.

The nuclear magnetic moment of 19F is quite large, and signals of

high intensity have been observed from nuclear magnetic resonance of

this nucleus in a number of magnetic compounds. It was found by

Shulman and Jaccarino (1956) that in MnF2 in the paramagnetic state,

the 19F resonance was shifted by an amount proportional to the electronic

paramagnetic susceptibility. However, the magnitude of the shift was

greater than would be expected from the dipolar magnetic field at the

fluorine site due to the electronic magnetic moments, assuming them to

be localized on the Mn2+ ions; the larger field is consistent with a spread

of the wave functions of the magnetic electrons onto the F_
ions, due

to a small amount of covalent bonding. In the anti-ferromagnetic state

the electronic moments are fixed in orientation, and the field which

they produce at the F~ nucleus is quite high even when B = 0. At
0° K in MnF2 the precession frequency of 19F in this electronic field is

159-99 Mc/s falling, as the temperature rises, to zero at the Neel point,

67*3° K. A comparison of the nuclear resonance frequency, which

should be proportional to the sub-lattice magnetization, with the

magnetization calculated from the molecular field theory, is shown in

Fig. 23.11.

23.6. Electron magnetic resonance in atomic beams
Magnetic resonance experiments involving electronic magnetic

moments can be carried out in analogous ways to experiments with



698 MAGNETIC BESONANCE

nuclear magnetic moments. In general, experiments

moments are easier, because the moments are so

netic resonance is correspondingly easier to detect,

Rabi's experiments (§ 23.2), beams of atoms with 6.

dipole moments are used, for which appreciable

inhomogeneous magnetic fields A, B (see Fig. 23.

using relatively short magnets. The main interest

[23.6

with electronic

mu<ih larger and mag-
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can be achieved

such experiments
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of

120

F" nuclear renonance frequency
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Fio. 23.11. Temperature dependence of the 19F nuclear magneti
in MnF2 between 52° K and the Neel point, 67-3° K. The lower cur
expected if the sub-lattice magnetization, relative to that at
computed from molecular field theory for S = f . (Heller and

and other substances the resonance frequency varies near

arises from the high precision which can be obtained

length ofthe C-field, since from equation (23.6) the

curve depends on the time t during which the atom
radio-frequency field. If the velocity of atoms in the

and the length of the C-field is 3 cm, the value of t ik 3 X 10~5 sec, and
the corresponding fine width 2Av is about 30 kc/s. To
narrow line the C-field would have to be very homogi

67 68

resonance frequency
b shows the variation

.K., followed the curve
BJmedek, 1962.) In this

'
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by increasing the

width ofthe resonance
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beam is 105 cm/sec,

achieve such a

;eneous, since a



23.6] MAGNETIC RESONANCE 699

variation ofthe field by as little as 1
0~2 gauss would change the electronic

magnetic resonance frequency of an atom with g — 2 by 30 kc/s. The
requirement of such high homogeneity is avoided by use of the two sep-

arated oscillatory fields method ofRamsey (1949), as mentioned in § 23.2.

For an atom with an electronic magnetic moment but no nuclear

moment the magnetic resonance transitions occur at a frequency

(cf. equation (23.5))

v = (yl2-n)B = fc,(e/47rt»)B (23.10)

and determination of v in a known field B gives a precise measurement
ofgj. As mentioned in § 20.2, there are corrections to equation (20. 1 1 ) for

gj due to diamagnetic shielding (cf. § 23.5) by other electrons and the

relativistic increase in the mass ofthe electron, which amount to between

10 and 100 p.p.m. A more fundamental correction is due to the intrinsic

magnetic moment of the electron spin being slightly greater than one

Bohr magneton. First indications of this were obtained from atomic

beam measurements of the hyperfine structure of hydrogen (see below),

and from measurements of the ratio of the values of g$ for two states of

the same atom with the same s, I but different,/ (see Problem 23.6). The
accepted value of ga is in agreement with that calculated using quantum
electrodynamics by Sommerfield (1957):

g8 = 2(l+a/27r— 0-328<x2/7r2 +...) = 2(1-0011596), (23.11)

where a is the fine structure constant.

An important application of atomic beam magnetic resonance is the

precise measurement of hyperfine structure in atoms. As pointed out

in § 20.10, in an atom with both electronic and nuclear moments the

nuclear magnetic moment precesses in the electronic magnetic field Be>

and the electronic moment in the nuclear magnetic field Bn , the result

being a precession of each moment about the resultant angular momen-
tum vector F. This gives rise to a set of hyperfine energy levels, as

illustrated in Fig. 20.20, where the effect of a nuclear electric quadrupole

interaction is also shown. In magnetic resonance the transitions for

which AF = ± 1 have an intensity associated with an electronic mag-
netic dipole moment, and can readily be observed; from measurements

of the frequencies of two such transitions the values of the hyperfine

constants A and BQ can be determined. These require no magnetic

field in the C-magnet, but in practice a small field B is generally used,

whose effect (see Fig. 23.12) is to split each set of states with a given

value ofF into 2F-\-l levels, provided that the Zeeman energy gj /?(J . B
)

is small compared with the hyperfine energies. This corresponds to a
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precession of the vector F about B at a rate slow c

precession of J, I about F. The allowed transitions

which AF = 0, ±1; Amp = 0, ±1, but the Am =
only ifthe oscillatory field has a component parallel to

transitions require a component Bx perpendicular to J$

[23.6

ampared with the

are then those for

transitions occur

B (theAm = ±1
, as in Fig. 23.1).

energy, W

magnetic field

v, ks 9192 Mc/s

a transitions

AF = ±1,
Aroj. =

ir transitions

AF = ±1,
AmF = ±1

Fig. 23.12. The hyperfine structure of 1S3Cs, S = i, I
in a small field (note the difference in scale between the Zeeman sj

splitting) and the allowed transitions (after Essen and

showing the Zeeman effect

{Sittings and the overall

Parry, 1957).

few

can

The atomic beam magnetic resonance techniqu

applied to measure the constants A, BQ , and in a

very weak interaction between a nuclear magnetic

and the second derivative of the electronic field B
(

It can also be used with radioactive isotopes, which

means of their radioactive emission after being collected

Only two examples will be discussed here; the hyperfine

caesium, which gives an atomic standard of frequency,

structure of hydrogen, because of its fundamental

The ground state of the caesium atom is 2S
t , arid

isotope 133Cs has nuclear spin I — \. Since the

is 8 = \, there is no electric quadrupole interaction,

field there are two sets of hyperfine levels correspondi:

J350 kc/s

per Gauss

has been widely

atoms a further

octupole moment
has been detected.

be measured by
at the detector.

structure of

, and the hyperfine

importance.

the only stable

electronic ground state

in zero magnetic

ng to F = 3 and

and
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F — 4, as in Fig. 23.12. Caesium is fairly volatile, so that an atomic

beam of sufficient intensity can be emitted from an oven at 200° C, and

this combined with the rather high atomic mass gives a low thermal

velocity and increases the time required to traverse the G-field, where

a distance of about 50 cm is used between the separated oscillatory

fields (see Essen and Parry (1957)). A small field of 0-05 gauss (this

requires cancellation of the earth's field, which is about 0-5 gauss) is

maintained as the C-field, and the resonance observed is the transition

(F,mF) = (4, 0) <-> (3, 0), which has only a second-order Zeeman effect

v = v +426£g c/s (B in gauss).

Following collaboration between the Standards laboratories of the U.K.

and the U.S., the value of v is found to be (see Markowitz, Hall, Essen,

and Barry (1958))

v = 9 192 631 770±20 c/s (Ephemeris time) at 1957-0.

The atomic frequency standards in the two countries have been found

to agree within 1 part in 1010 in comparisons made over several years,

and this accuracy (1 c/s) is higher than that which can be obtained in

determining the mean rate of rotation of the earth. The variation in the

length of the day, as measured at the National Physical Laboratory over

a period of seven years against a caesium 'atomic clock', is shown in

Fig. 23.13; the annual variation is about 1 millisecond per day (about

1 part in 108) and there is a suggestion of a longer term change also.

An international recommendation in 1964 makes the caesium 'clock' the

new standard of frequency, the second being denned as the time inter-

val containing exactly 9 192 631 770 cycles of the caesium hyperfine fre-

quency in zero magnetic field.

The ground state of a hydrogen or alkali metal atom is 2St , so that the

electronic field at the nucleus is due only to the electron spin of the

odd electron, which is in an s-state. The electron density in such a state

is spherically symmetric, with a maximum at the nucleus and falling

exponentially with distance. The magnetic moment due to the electron

spin is similarly distributed, and we can regard the atom as possessing

a magnetization which (because of the negative electronic charge) is

anti-parallel to the spin, and distributed in a spherically symmetric

fashion. This is equivalent to a ferromagnetic sphere which is every-

where magnetized in the same direction but with a varying intensity

where i/> is the wave function for the s-state. The nuclear magnetic
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moment is then due to a small current loop

magnetic medium at the centre. The interaction

an energy W = —mn .Be . In calculating Be at

spherical distribution we note that the field at

a uniformly magnetized spherical shell is zero (see

that the whole contribution to Be comes from the

Fia. 23.13. Variation in the length of the day, as measured by
clock (courtesy of the Director, National Physical Laboratory).

at the centre. From equation (5.34), in the absence of an external field

we have H = —JM , so that Be = /* (H+M )

W=-ma .Be
= 2

)

where a„

-fon&i)-(-!/*ote0SM9)l

For atomic hydrogen in the ls-state, |^(0)|
2 = l/wag,

radius, being the fraction of the electron to be found
the nucleus. After inserting small relativistic and reduced
tions, the best value of A[h obtained from the Cohen
(1955) values of the atomic constants is (assuming

A/h = 1418-90±2 p.p.m. Mc/s

and since 8 = £, I = \ this should be equal to the:

single transition between the two states F = ajnd

9,s

[23.6

immeijsed in this ferro-

between the two gives

the centre of the

the centre due to

Problem 5.9), so

magnetization M

the caesium atomic

|yu M . Hence

(23.12)

= Bohr
per unit volume at

mass correc-

, Dumond, et. al.

2 exactly)

frequency of the

F = 1 of the
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hyperfine structure. The best experimental values are

1420-40573±0-035 p.p.m. Mc/s (Kusch, 1955),

1420-40580±0-04 p.p.m. Mc/s (Wittke and Dicke, 1956),

where the first result was obtained by an atomic beam method and the

second by another method. The discrepancy with the theoretical value

is well outside the experimental error, and it was the first discovery of

this discrepancy in 1947-8 that led to the suggestion that gs is greater

than 2.

A detailed theoretical treatment shows that some other small correc-

tions besides that for gs are required in the formula for A, and the

discrepancy with experiment has been removed. At almost the same
time as this discrepancy was discovered an anomaly in the separation

of the electronic 2s and 2p states of atomic hydrogen was established

by the experiment of Lamb and Retherford (1947). This has also been

explained by quantum electrodynamics. Experiments of the kind men-
tioned above and others are discussed in The Spectrum of Atomic

Hydrogen, by G. W. Series.

23.7. Electron magnetic resonance in solids

Magnetic resonance experiments on substances containing permanent

magnetic dipole moments due to electrons can be carried out in a

manner analogous to those on nuclear dipoles, but there are a number
of significant differences. If fields of a few kilogauss are used, the

resonance frequency for electrons is in the vicinity of 1010 c/s, corre-

sponding to wavelengths of a few centimetres. Frequencies of this order

and higher are in fact used for a number of reasons:

(a) the sensitivity is high; this is partly through equation (23.7), and
partly because a better filling factor can be obtained from a small

sample by using it in a tuned circuit (a cavity resonator) which

has similar dimensions;

(6) the electronic levels may have splittings of order 0- 1 cm-1 or more
due to crystal field effects (see § 20.7);

(c) fine widths in the solid due to magnetic fields of neighbouring ions

are of order 102-103 gauss, and to achieve reasonable accuracy in

determining the centre of a line measurements must be made
using external fields as large as possible. Line width and shape

are also affected by exchange interaction between the ions; this

can be avoided by making measurements on 'diluted' crystals

—

crystals in which most of the paramagnetic ions have been
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replaced by diamagnetic ions. For exam

K2Zn(S04)2,6H2 containing a few tenths of

(3d9) ions replacing Zn++ (3d10) ions gives a

10 gauss; this residual width is due mainly to

moments of the protons in the water of ci

be further reduced by growing crystals with D
because of the smaller nuclear moment of the

pie, a crystal of

per cent of Cu++

width of about

nuclear magnetic

iryst^illization, and can

2 instead ofH2

deuteron.

line

the

i resonance

tie i

than

Another important feature ofelectron spin

substances is that spin-lattice relaxation times may
Obviously the electron, with its larger magnetic

more intimate contact with the lattice vibrations

but a much more important effect is that the lattice

the local surroundings ofa paramagnetic ion, and so

modulation of the crystal electric field or the ligand

to which this affects the magnetic dipole depends

'quenching' of the orbital moment: for an ion in

Mn++ (3d5, «£,) or Gd3+ (4/
7

,
8
£j), there is no

through small departures from Russell-Saunders

spin-lattice relaxation time Tr varies from « 10~6

ture to 10~3 sec at liquid helium temperatures,

values of Tx are very much smaller, and in many i

Tx is so short and the lines so broad (Ato = Tf x
) that

is unobservable, except at liquid helium or liquid

tures. The value of Tx always increases as the

the lattice vibrations die out, the variation being in

an

orbital

see

temperature

21
= aT+bTn +cexv{1ia>lkT).

The first term aT is due to 'direct transitions' in which

are exchanged with lattice vibrations of the same:

magnetic resonance frequency; the second term bT

or 9 according to the type of magnetic ion involved)

or 'Raman' processes in which any two lattice

whose frequency difference is equal to the magnetic

(lattice = wiattice±a>reSonance); the exponential ternji

vibrations whose quanta hoi coincide with the

between the ground state and an excited state of the

second two processes are weaker than the first,

temperatures the first term almost always predomnk;

A spin-lattice relaxation time Tx will produce a

and

[23.7
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between the half-intensity points of a line, where 2nAv = Aoj = Tf x
,

and measurements of line width can be used to find 2\ when this is the

dominant effect in the line width. For other purposes the need for high

resolution in order to obtain accurate measurements makes it desirable,

however, to work at temperatures where broadening due to spin lattice

relaxation is negligible, and a typical apparatus for low temperature

work is outlined in Fig. 23.14. Power from a microwave oscillator

Klystron
oscillator

Monitor
and
frequency
meter

Dewar vessel

.Silicon

diode
detector

Amplifier

Phase
sensitive

detector

pen
recorder

Single crystal sample—

'

x refrigerant

Fig. 23.14. Outline diagram of an electron spin resonance apparatus. Power from a
klystron oscillator is fed through a waveguide to a loosely coupled resonant cavity

containing the paramagnetic sample and immersed in a refrigerant between the poles

of an electromagnet. A small fraction of the cavity signal is fed through a second

waveguide to a silicon diode detector. The modulation due to the absorption is amplified

and displayed on an oscilloscope or fed through a phase-sensitive detector to a pen
recorder.

(usually a klystron) is carried by a waveguide or co-axial cable to a

cavity resonator contained in a dewar vessel and placed between the

poles of an electromagnet. When the latter is adjusted to resonance,

power is absorbed in the paramagnetic sample, which is placed inside

the cavity in a position of maximum oscillatory magnetic field. This

additional power loss in the cavity produces a change in the signal

reflected from the cavity, or in the signal transmitted through the

cavity to another waveguide or co-axial line, which is detected by a

silicon crystal rectifier. Normally the field of the electromagnet is

851110 z z
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modulated at an audio frequency, giving a corres;

of the signal when the field for magnetic resonance

detection, this modulation is amplified and displayed

or a recorder. The sensitivity achieved is quite high,

as few as 1013 electronic dipoles can be seen if the lines

[23.7
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may be observed, as in Fig. 23.16. A number of nuclear spins and
moments have been determined from hyperfine structure in electron

magnetic resonance, and the degree to which the wave functions of the

magnetic electrons overlap onto the ligand ions because of covalent

bonding effects (see § 20.8) can be estimated from the hyperfine struc-

ture due to interaction with the dipole moment of the ligand nucleus.

In more concentrated salts the effect of magnetic dipole and exchange

interaction between neighbouring dipoles can be studied, giving one of

the few direct measurements of exchange interaction.

Fig. 23.16. Hyperfine structure ofthe 56Mn (J = f) nucleus in the electron spin resonance

spectrum of a Mn++ ion (S = §, transition Sz = $ «-> — $). The resonance condition is

hv = gf}(B +Bn), whereBn is the magnetic field due to the nucleus. In first approxima-
tionBn is proportional to the nuclear magnetic quantum number Iz ; this gives a pattern

of 21+ 1 = 6 lines, equally spaced and of equal intensity, since all nuclear orientations

are equally probable at the temperature of the observation. The line shape is the

derivative of the absorption curve ; it is obtained by a sinusoidal modulation ofB with

amplitude small compared with the line width. This gives a corresponding modulation

of the signal (measured by a phase sensitive detector) whose amplitude is proportional

to the slope of the absorption curve.

Ferromagnetic resonance

In substances where the exchange forces are strong magnetic resonance

may be observed in the co-operative state below the transition tempera-

ture. Since all the dipoles are coupled together by the exchange forces

it is convenient to work in terms of the magnetization M, which is the

vector sum of the individual dipole moments m. By performing this

vector sum over both sides of equation (23.1) we obtain the equation

of motion for the magnetization

dM/<ft = yMAB, (23.14)

where we have assumed that all dipoles have the same value of y. Here

we have written, not B the external field, but B the field within the

sample, since in a ferromagnetic substance demagnetizing fields may
be quite important. We shall assume that B is along the z-axis, and

confine ourselves to certain sample shapes such that we can write for

the components of B:

Bx = -^DXMX ; By
= -p DyMy ; Bz

= B -p DsMe.

(23.15)
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On substituting into equation (23.14) we obtain

dMJdt = ymB +nt
JK.(Dv-D.)}

dMJdt = -YMx{B +[i Mz(Dx-Dg)}

dMJdt = yfr MxMy(Dx-Dy)}

which are no longer linear inM. However, the equat;

in the limit of small amplitudes of precession, when
becomes vanishingly small and can be neglected.

and Mz is constant, its value being equal to the static

this is large in a ferromagnetic substance, and the corrections

important in determining the resonance frequency.

equations forMx, My it is easily shown that the

»z = -yi{B +^Mz{Dy-Dz)){B +^Mz{D,,

There are three simple cases of interest:

(a) a sphere, for which Dx = Dy = Dz ; the precession velocity is

">l = —yB , the same as if there were no demagnetizing fields;

(b) a thin plane film normal to B , for whichDx
— Dy

= — 1, Dz
= 0,

gmng
<oL = -y{B -[i j

[23.7

(23.16)

|ons can be solved

product MxMy

iThen dMJdt = 0,

magnetization;

to B are

By solving the

precession frequency is

-2),)}]*. (23.17)

(c) a thin plane film parallel to B , for whichDx — Dz
= — 1, D =

(assuming the film to be normal to the y-axis), giving

Oi = -y{B (B +p Me)}K

This treatment assumes that the magnetization (including the pro-
cessing components) is uniform throughout the sample; this requires

that the dimensions be small compared with the wavelength in the
sample, and in a conducting sample this means small compared with the
skin-depth. Hence spherical samples of metal must be very small, and
colloidal samples (where the particles are assumed to be spherical

because of surface tension effects in formation) have been used.
Most work has been done on thin plane samples, which are attached to
(but insulated from) one wall of the microwave cavity. The equations
show that the magnetization must be known in order to determine y;
for simplicity it isusual to work at such high fields that the magnetization
is equal to the saturation value. The phenomenon of ferromagnetic
resonance was discovered experimentally by Griffiths (1946); the theory
given above is due to Kittel (1948). Some values of g measured by
ferromagnetic resonance are given in Table 21.2.
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Spin wave resonance in ferromagnetic films

The uniform precession mode assumed above corresponds to a spin

wave with ks = 0. It is possible to excite spin waves for which ks ^ 0;

since each spin wave corresponds to a unit change H in angular momen-
tum, and hence to a change of grj8 in magnetization, the energy required

to excite a spin wave in a field B (in the sample) is

tiw = gPB+Dk*, (23.18)

where the constant D is the same as that in equation (21.25). In a thin

film of thickness Z, the boundary conditions (assumed identical at the

two faces of the film) limit the allowed values of ks to those for which

the film thickness is an integral number of half-wavelengths; that is,

ks
= pir[l, where p is an integer. If magnetic resonance is observed at

constant frequency, the value of the resonance field B is found from

equation (23.18) above to be

b = b~-I®t\* (23 - 19)

so that a series of resonances corresponding to different values of p
should be observed on the low field side of the ordinary ferromagnetic

resonance fieldBki=0 . A spin wave resonance curve is shown in Fig. 23.17

for a thin film of cobalt metal, of thickness approximately equal to

6000 A. This is small compared with the skin depth, so that the oscilla-

tory field is uniform within the sample, and the resonance intensity

depends on the net magnetic moment in the direction of the oscillatory

field. This is proportional to

i i

j
aiakxdx =

j
sm{pirxll) dx = (Z/p7r)(l— cospir).

o o

This vanishes for even values ofp, and decreases as 1/p for odd values,

giving the intensity change shown in Fig. 23.17. The resonance field

decreases accurately as p 2 (see Fig. 23.18), and the value of D can be

found if the thickness I is known.

Ferrimognetic and anti-ferromagnetic resonance

The presence of two sub-lattices in these substances makes the

magnetic resonance phenomena in general much more complicated.

One simple case occurs in ferrimagnetic substances with strongly

coupled sub-lattices; the two sub-lattices can then precess together in

such a way that the relative orientation of their two magnetic moments
remains unaltered. This occurs at an angular velocity w = —yeaB;
here B is the field in the substance and yefl is an average value obtained
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from the relation

M = 2M, = 2*0, = YettlG, = r<jfl
G,

i

where the summation is over all the individual ions. In both ferri- and

anti-ferromagnetics more complicated modes of precession occur in

4)

se

(6000 A thickness) of
(3-2 em wavelength).

absorption curve. The
(higher values of p)

Sips and Rosenberg,
alues ofB are needed

(Hull]

17 18

Magnetic field (kilogauss)

Fig. 23.17. Ferromagnetic spin wave resonance in a thin film

cobalt metal at room temperature and a frequency of 9370 Mc/s
The line shape is that corresponding to the differential of the
intensity of resonance decreases towards lower field strength
irregularly because of lack of uniformity in the film thickness
1964). B is normal to the surface of the film, so that rather high v
to satisfy the resonance condition

<»L = -yW>-jUo M,}.

which the relative orientation of the sub-lattice maj^ietic moments is

not preserved; the frequency of precession then depends on a number
of parameters, including the exchange and anisotropy energies.

23.8. Cyclotron resonance with free charged particles

When a charged particle of mass M and charge q is moving in a
uniform magnetic field B, its equation of motion is

F = yvAB.



23.8] MAGNETIC BESONANCE 711

Since this force is always normal to its instantaneous velocity v, the

particle will move in a circle of radius r in the plane normal to B with

angular velocity given by the equation

Mui\r = qcoc rB,

i.e. coc = (qlM)B.

Thus if it is possible to determine the angular velocity to in a known
field B, the ratio of charge to mass of the particle may be found. The

Fig. 23.18. Plot showing the linear relation between magnetic field and p% for ferro-

magnetic spin wave resonance in a thin film of cobalt (after Phillips and Rosenberg, 1964).

frequency <ocl2n is often called the 'cyclotron frequency' since it is the

frequency ofthe r.f. electric field required to accelerate charged particles

in the cyclotron. The success of this device, which depends on resonance

between the frequency of the oscillating electric field and the frequency

of rotation ofthe particles in the field B, suggests that a similar principle

may be used to determine the ratio of q toM

.

We begin by investigating the motion of a charged particle starting

from rest under the action of a uniform induction B (whose direction

we take to be the z-axis of a system of cartesian coordinates) and an

oscillating electric field of frequency oi\%Tt polarized so that the lines of

electric field are parallel to the a;-axis. Then the equations of motion are

Mx = qE cos <at-\-qyB
'

My = —qxB . (23.20)

Mz =
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The last of these equations shows that the z-component of the motion

will be independent of E and B, and does not appear in the other

equations. The second equation can be integrated once giving

My = —qxB,

where the constant ofintegration has been equated to zero, corresponding

to the assumption that the particle starts at rest from 1

now be eliminated from the first equation giving

x+w*x = (qjM)E cos cot,

where wc
= (qjM)B. The general solution of this equation is

{qEjM)coscot
x = -f C cos coc t-\-D sin coc t.

Ifthe initial conditions are x = 0, x = at t = 0, the upknown constants

are determined and we have

x ==
{qE/M)(oos cot — cos coc t)

2(qE[M)am. \{toc -\-co)t sin |(wc—

w

qE= -^—. sin co
M,

(wc+w)(wc—w)

, /sinJAwA

where co' = J(wc+w), Aw = coc
— co. If Aw <^ wc , the factor sin JAwf

varies very slowly with respect to time compared with sin co't, and to' is

very close to wc, so that using the relation y = —coc '.c we find approxi-

mately

y =
qE
Mto1

cosw
,7shv|AwA

I Aw /"

Examination of the equations for x and y shows that the path of the

particle is a spiral with angular velocity w' and radius

I qE \/sin|Aw£

\Mco~j\ Aw
;

)'

If Aw = (i.e. co = coc) then the value of the factor (s

showing that the radius increases linearly with t. On the other hand,

if Aw ^ 0, the radius has a maximum value r (when, the sine is unity)

equal to qEIMco'\Aco\, which is very nearly equal to qEjMcoc \kco\

when Aw is small. Hence, if a collector is placed at a, distance R from

the origin, only those ions will reach it for which r .^ B , or

|
Aw

| < qEjMcoe R = EjBR .

This is a measure of the precision with which we, and hence qjM, can

[23.8

the origin, y may

(23.21)

(23.22)

sin |Aw£)/Aw is \t,
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be determined. The 'resolving power' will be

we/|Aai| = (qBfM)HEIBB ) = qB*B /ME. (23.23)

Hence, for a given ion and a given field B, the precision is increased by-

using a small amplitude of oscillating electric field E and a large value

of B . It can be shown that our expression for the resolving power is

equal to Lj2B (see Problem 23.4), where L is the total path traversed

O^r.f. voltage

Fig. 23.19. Apparatus for measuring the cyclotron resonance frequency of the proton.

B is normal to the plane of the paper.

I ion collector.

V is a steady voltage of about 0-1 volt for focusing the ion beam.
R potentiometer system for guard rings.

G guard rings.

P, P plates.

E oscillatory electric field.

by the ion in its spiral journey from the origin to the collector. Thus

the resolving power primarily depends on the number of revolutions

which the ions make on their journey to the collector.

The apparatus used by Sommer, Thomas, and Hippie (1951) is shown

in Fig. 23.19. An oscillatory voltage is applied between two parallel

plates P, P of size 3 cm X 5 cm, and separation 2 cm, with a number of

parallel guard rings. These rings are equally spaced, and by means of a

potentiometer system B a fraction of the voltage proportional to the

distance from one end plate is applied to them so that a uniform r.f.

field is obtained. A small steady positive voltage of about 0*1 V is
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applied to the guard rings relative to the end plates so as to retard the

drift of positive ions in the direction parallel to the field B. The magni-

tude of B is determined by a nuclear magnetic resonance experiment,

using an r.f. coil containing a sample of oil. Ions are produced along the

axis of the apparatus by firing in a narrow beam of electrons of about

70 V energy, which cause ionization by collision wijth the residual gas.

The pressure must be kept low (w 10~6 mm Hg) in order to prevent

scattering of the ions by collision. The whole assembly is enclosed in a

glass tube of 4-7 cm diameter, which fits between th^ poles of an electro

magnet.

In a typical experiment B = 4700 gauss, and the oscillatory field E
is about 0-1 V/cm at a frequency of about 7 Mc/s for the H+ ion. With
B = 1 cm, the ions make about 7000 revolutions and attain an energy

of about 1000 eV before reaching the ion collector! which is connected

to an electrometer. The ion current at the peak of a resonance is about

3X10-14 A while the background fluctuations are about 4xl0~16 A.

Owing to the small positive voltage on the guarq. rings, and to space

charge, a small radial electric field exists which

frequency slightly. In a radial field E' the equat:

Mw2r+qE' — qwrB,

splaces the resonant

n of motion is

whence approximately u> = <"„[l
E'Ml

rqB*\'
(23.24)

In practice it turns out that W increases linearly with r, and hence the

shift in the resonance is independent of r, but proportional to M. Thus
by making measurements both with H+ and H^ ions (H+ and D^ ions

were also compared) the size of the shift can be determined.

Similar experiments have been carried out using an 'inverted' cyclo-

tron, in which use is made ofthe ions which are retarded by the oscillatory

field across the 'dees', rather than those which are accelerated, in order
to obtain longer path lengths and higher resolution. These ions lose

energy and spiral inwards until they reach a detector. This method, first

used by Jeffries (1951), has been improved by the use of a modified

system of decelerating electrodes in which the ions approach an asymp-
totic orbit in which the energy loss becomes zero (Sanders and Turber-
field, 1963). The high resolving power thus obtained is further improved
by using oscillatory fields at the eighth or sixteenth harmonic of the
cyclotron frequency.

An alternative approach, used by Boyne ind Franken (1961), is

to detect the power absorbed by the ions from the oscillatory field,
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as in a nuclear resonance experiment. This has the advantage that low

values of the oscillatory field can be used, so that the ion cloud is not

appreciably disturbed by the power absorption. Boyne and Franken

made measurements on H^" ions at fields between 8 and 12-5 kilogauss,

and corrected for electrostatic fields by using equation (23.24) and

plotting co back to ljB2 — 0.

Cyclotron resonance for free electrons

Analogous experiments can be carried out with electrons, the main
difference in technique being due to the fact that in a field of a few

kilogauss the resonance frequency is now at about 1010 c/s instead of

about 107 c/s. The first precise experiment (Gardner, 1951) was based on

the fact that electrons moving in a narrow beam parallel to the magnetic

field may gain energy from the cyclotron resonance effect and spiral

outwards so that they fail to pass through a narrow slit guarding the

collector. Thus the collector current should fall at resonance, but it

was found that superimposed on this dip in current was a much sharper

maximum, associated with space charge effects. In later experiments

cyclotron resonance has been detected through the absorption of energy

by free electrons from the oscillatory magnetic field, in a cavity resonator.

Sanders, Tittel, and Ward (1963) used a current ofabout 1 ju,A accelerated

through about 1 V from a tungsten filament at one end of the cavity.

Frequency shifts due to radial electric fields arising from space charge

were eliminated by extrapolating the resonance frequency to zero

current. Liebes and Franken (1959) carried out a similar experiment

using some 104-105 free electrons of about 1 eV energy, produced by
photo-emission from a thin layer of potassium ; they worked at field

strengths between 750 and 1700 gauss, and extrapolated the resonance

frequency to infinite field, as in the corresponding proton experiment.

Results

In all such experiments the ratio of two frequencies in the same mag-
netic field is determined—the cyclotron resonance frequency of the

electron (ve ) or proton (vc), and the nuclear magnetic resonance frequency

(vp ) ofprotons in water or a mineral oil. The main results are summarized

in Table 23.3, which gives the ratios measured for protons and electrons,

together with the quantity (ve/v ) obtained by combining a pair of these

ratios, which should be equal toMjm, the ratio of masses of the proton

and electron. If a correction of 28 p.p.m. is applied for diamagnetic

shielding of the protons in the water or mineral oil sample, the measure-

ments give the value of the nuclear magnetic moment of the proton in
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nuclear magnetons, since

i9n

[23.8

(efM)B

and the nuclear spin of the proton is \. If the cyclotron resonance of

the electron is used instead of that of the proton, the nuclear moment
of the proton is found in terms of the Bohr magneton. Apart from the

Table 23.3

Measurements of: column 1, ratio ofproton magnetic

vp (in H20) to proton cyclotron resonance frequency v
c

electron cyclotron frequency ve to vp ; column 3, ratio of ve to v = ratio of

masses of proton and, electron, obtained from preceding ratios on the same

line.

resonance frequency

; column 2, ratio of

V"o

2-792 65(10) J 1951
2-792 68(6) STH 1951

2-792 83(6) BF 1961
2-792 68(5) ST 1963

"./»»

657-475(8) G 1951

657-462(3) LF 1959

657-462(2) STW 1963

Mjm

1836-12(5)

1836-22(4)

1836-08(3)

J 1951

STH 1951

G 1951

BF 1961

LF 1959

ST 1963

STW 1963

The number in parentheses gives the probable error in the last digit

;

e.g. 1836-12(5) = 1836-12±0-05 (the accepted value \s 183612(2)).

References :

Jeffries, 1951.

Sommer, Thomas, and Hippie (1951).

Gardner (1951).

Boyne and Franken (1961).

Liebes and Franken (1959).

Sanders and Turberfield (1963).

Sanders, Tittel, and Ward (1963).

cyclotron resonance experiment of Boyne and Franken, which gives a

rather high value, the results agree closely, the mean value being

magnetic moment of proton = 2-79276(7)^ = 1 521043(6) X 10-3
j8.

The ratios determined above may be written as

w e\M tue ejm

wp 7p
' wp rP

'

showing that by using the absolute value ofyp measured at the Standards

laboratories (see § 23.5) they give the specific charge of the proton (e/Jf

)

and electron (ejm) respectively. Multiplication of the former by the

isotopic mass (1-00728) of the proton also gives the value of the Faraday,

the charge required to liberate unit mass ofan ion whose isotopic weight

is unity. The results are all in good agreement with the accepted values.
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23.9. Cyclotron resonance of charge carriers in semiconductors

It was pointed out in Chapters 18 and 1 9 that the equations of motion
of electrons (and holes) in the periodic potential of a crystal lattice are

similar to those of a free particle, provided that an effective mass m*
is used instead ofthe true mass. This holds also for motion in a magnetic
field, and the cyclotron resonance frequency therefore becomes

coe = {qJm*)B,

if the effective mass is isotropic. Determination of this frequency is

thus of great importance since it gives a direct measurement of m*.
In principle, the experiment is similar to those described in the previous

section: an oscillatory electric field is applied normal to the steady

magnetic field, and either its frequency or the strength of the magnetic
field is varied while the power absorbed is measured. However, the

charge carriers in a solid make collisions at a rate which is usually

comparable with (and often much higher than) the cyclotron resonance

frequency; this gives a very important damping term, and the equation

of motion may be written as (cf. Problem 3.9)

1^+^
V
}

= g{E+VAB} ' (23 '25)

where q = — e for electrons and -\-e for holes.

To solve this equation we assume that B is along the 2-axis of a
Cartesian coordinate system, and E is an oscillatory field along the

z-axis. We therefore write Ex = E exp(jwt), and look for the steady

state solution corresponding to the driven motion at angular frequency

w; we can then replace dfdt by jcj, and the equations become

rrv

(23.26)

The last equation shows that any momentary current in the z-direction

dies away exponentially through collisions, and we may eliminate vy
between the first two equations in order to find the oscillatory velocity

vx in the direction of the applied electric field. This gives

*^(;+>)>
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wherewe have written coc for (q[m*)B, the cyclotron resonance frequency.

The conductivity of the solid at angular frequency a> in the ^-direction

is ax = nqvx/Ex , where n is the number of charge carriers per unit volume

of mass m*, and is given by the relation

x m*

1 -\-ja>r

°o[j
+2ja>T+T*(a>l=^)}'

(23.27)

<ot = 0-2

<o cJo>

Fig. 23.20. Plot of the ratio of the r.f. conductivity to the d.c. con-

ductivity against (u>Jm). Cyclotron resonance measurements are

usuallymade at constant to and variable field ; since cu,. is proportional

to B, the curves show the conductivity against i? (on a reduced scale).

Well resolved resonance curves are obtained when wt is rathor greater

than unity.

where a = n{q2jm*)r is the ordinary conductivity of the substance at

zero frequency in the absence of a magnetic field. This equation shows

that the high-frequency conductivity is complex ; on solving for the real

part o'x of the conductivity, we find

The power absorption per unit volume of the sample is \a'x E%; since it

is usual to work at fixed frequency m and measure the power absorption

as B (i.e. ojc) is varied, it is useful to plot the quantity {a'xja ) as a function
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of (cojco) for various values of the parameter cot. This is shown in

Fig. 23.20. When cot is appreciably less than unity, the mean time
between collisions is a small fraction of an r.f. period, and little change

occurs until cor approaches unity. However, when cot is rather greater

than unity, a distinct resonance effect is observed, with maximum power
absorption at a point close to the cyclotron resonance frequency.

In a semiconductor or metal at room temperature the value of t is

about 10-12 to 10~14 seconds, so that even at a wavelength of 1 cm,

Modulated light

rectangular wave-guide

coupling iris

sample mounted on insulating

support at centre of cavity.

Fig. 23.21. Waveguide cavity resonator used in cyclotron resonance experi-
ments, showing the sample mounted at the centre of the cavity where the
oscillatory electric field is a maximum. Carriers can be excited in the sample
by light passed down the waveguide and through the coupling iris linking the

cavity to the guide.

where a magnetic field at resonance of about 10* gauss would be needed
if m* = m, the value of cot is about 2 x 10_1 to 2 X 10-3 . However, the

electron scattering is mainly due to phonons, and is reduced at low
temperatures. In a semiconductor (see § 19.5) t should vary as T-i, and
a factor of 103 is gained in going from 300° to 3° K, making cot ~ 2 to

200. As can be seen from Fig. 23.20, this is sufficient for a fairly accurate

determination of the resonance frequency. However, the number of

charge carriers n, which (see § 19.5) varies as 7*exp(—Wg\2kT) for a
pure semiconductor, becomes vanishingly small at helium tempera-
tures. Dexter, Zeiger, and Lax (1956) overcame this difficulty by
irradiating the sample with light of sufficiently short wavelength to lift

electrons across the energy gap from the valence to the conduction band,
thus creating both holes and conduction electrons. The main features

of their apparatus are shown in Fig. 23.21. The sample, in the form of

a thin disk some 3 mm in diameter and 0-5 mm thick, is mounted at

a point in a waveguide cavity where the oscillatory electric field is as
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large as possible without producing serious carrier heating effects

through acceleration of the carriers. This cavity terminates a wave-

guide, and the change in the signal reflected by the cavity is a measure

ofthe increased power absorption in the sample. The cavity is immersed

in liquid helium in a dewar vessel placed between the poles of an

electromagnet.

The most satisfactory method of detection is to modulate the light

beam by passing it through a rotating disk pierced by a large number

of holes. The lifetime of the carriers is short and they are present only

for the duration of a light pulse; the reflected microwave signal is there-

fore modulated at the same frequency (usually 100 to 1000 c/s). Instead

ofusing irradiation by light, carriers can also be created through ioniza-

tion of impurity levels by application of an electric field across the

sample, or by the oscillatory microwave electric field. The latter method

gives distorted line-shapes, however, since the number of secondary

carriers created depends on the carrier energy and this is a maximum
at resonance. It has the advantage that only electrons are created in

n-type material, and holes in^-type, since the microwave energy is only

sufficient to cause ionization across the small gap (~ 001 eV in Ge)

of impurity levels, and not across the main gap Wg.

In many substances the effective mass is anisotropic (see § 18.2), and

the ratio of cyclotron resonance frequency to magnetic field is a function

ofthe orientation ofthe field relative to the crystal axes. For this reason

a single crystal must be used, with either a special device for rotating

it in the cavity, or for rotating the external magnetic field, so that a

whole plane of directions relative to the external magnetic field can be

explored. An absorption curve for a given orientation of germanium is

given in Kg. 23.22; it is due to Dresselhaus, Kip, and Kittel (1955), who
made the first observations of cyclotron resonance in semiconductors in

1953. When anisotropy is present, the equations of motion are modified

and must be solved to find the relation between the cyclotron resonance

frequency and the effective mass parameters; the following method for

this is due to Shockley (1953).

When the energy surfaces are not spherical in &-space, they can be

approximated near the band edges (see § 18.2) by the relation

W = p4—+—+—) = \{—
\mx mv mj 2[mx m,, m„

provided that the directions of the x-, y-, z-axes are chosen correctly.

Along these axes the components of the equation of motion have their
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usual form, so that in a magnetic field with components Bx , By , Bz we

have ™>x(dvJdt) = q{v
y Bs-vz By), etc.

To find the cyclotron resonance frequency we assume that the motion
is sinusoidal with angular frequency <oc . We can then replace the

1000 2000 3000
Magnetic field in gauss

4000

Fig. 23.22. Absorption curve for cyclotron resonance in a single
crystal ofgermanium, at 24 000 Mc/s and 4° K. The static field is in
a (110) plane at 60° from a [100] axis (after Dresselhaus, Kip, and

Kittel, 1955).

differential operator d/dt by j<oc , giving the set of linear equations

jwemx vx—qvyBs+qvzBy
= 0,

jwemy vy-qvzBx+qvxBz
= 0,

j<*c™z vz-qvxBy+qvyBx = 0,

which have an allowed solution only if the determinant

ju>emx -qBs qBy
qBz jcocmy —qBx

—qBy qBx ju>cmz

This condition gives either wc
== 0, or

{mxB%+my Bl+mz Bl). (23.29)

This equation shows that the cyclotron resonance frequency depends on
3a851110
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the orientation of the magnetic field with respect to the crystal axes;

in any given plane a plot of u>\ against angle gives a (cosine) 2 variation

between the maximum and minimum values. When B is directed along

one of the principal axes, such as the z-axis, the resonance frequency is

simply (a)c )s = qBl(mxmy )
i

; thus by measurement along each axis in

turn, the principal values mx , my , ms of the effective mass can be deter-

mined. The results for the elemental semiconductors Si, Ge, together

with those for indium antimonide are shown in Table 23.4. For silicon

Table 23.4

Effective masses in some semiconductors determined by cyclotron

resonance, relative to the free electron mass

Electrons Holes

Svbstance m*L m$ 'light' 'heavy'

Si

Ge
InSb

0-98

1-64

0-014 (is

019
0-082

otropic)

016
0-044

002

0-5

0-3

0-4

Beferenoes :

Si, Ge R. N. Dexter, H. J. Zeiger, and B. Lax, 1956, Phys. Rev. 104, 637.
Electrons—various authors.

Holes—D. M. S. Bagguley, M. L. A. Robinson, and R. A. Stradling, 1963,
Phys. Letters 6, 143.

InSb

and germanium two of the principal values of the effective mass at the

bottom of the conduction band are equal; this is known as the 'trans-

verse mass', m%, while the third (unequal) mass is called the longitudinal

mass, m%. In InSb the minimum of the conduction band occurs at k =
(see § 19.4), and the effective mass is isotropic.

The position at the top of the valence band is more complicated. Two
energy surfaces coincide at k = 0, and at points near-by in i-space the

energy surfaces for Si, Ge are given by the relation

W = Ak*±{BW+C^kl+klkl+k*kl)}i, (23.30)

which is also approximately correct for III-V semiconductors. If C is

small the two surfaces are nearly spherical, but with different curvature,

corresponding to two different effective masses known as the 'light' and
'heavy' holes respectively. These masses are shown also in Table 23.4.

23.10. Azbel-Kaner resonance in metals

When a spectral line due tomovingparticles is observed, it is broadened
through the Doppler effect, by an amount which is proportional to the

random particle velocity. In a semiconductor at low temperatures, the
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electrons or holes have ordinary thermal velocities corresponding to

energies of order kT, and broadening by the Doppler effect is not
important. In a metal, on the other hand, the electron velocity is that
at the Fermi surface; in copper, assuming m*jm =1-5 andWF = 4-7 eV,

this velocity is about 106 m/sec, while the phase velocity in the metal
of an electromagnetic wave with a free-space wavelength of 1 cm is

only about 4x10* m/sec (from equation (10.30) it is equal to co8, where 8

is the skin depth). Broadening through the Doppler effect thus makes it

impossible to observe cyclotron resonance in metals by methods similar

to those used for semiconductors. It can, however, be detected by a
different method, originally due to Azbel and Kaner (1957, 1958).

As before, a reasonable degree ofresolution is obtained only if cot > 1.

This makes it essential to work at liquid helium temperatures, using

very pure samples in which the residual resistivity due to electron

scattering by impurities and imperfections is as small as possible (10~3

to 10~5 of the room temperature resistivity). In copper the radius of

the electron orbit in the magnetic field required to make the cyclotron

resonance frequency equal to 3x 1010 c/s is about 5x 10~6 metres, and
the mean path length of the electrons must be of this order in order to

make cot > 1. This requires a conductivity of order 4xl010 (ohm-
metre)-1 , and the 'classical' skin depth given by equation (10.31) is

about 5 x 10~9 metres, which is small compared with the mean path
length. This is the region of the 'anomalous skin effect', where the

conductivity is effectively reduced because only those electrons moving
at a small angle to the surface such that their free paths he wholly

within the skin depth contribute fully to the oscillatory current. How-
ever, even allowing for this, the 'anomalous' skin depth (see Problem
18.5) is about 2xl0~7 metre, which is still small compared with the

radius of the cyclotron orbit. If then a magnetic field B is applied

parallel to the surface ofthe metal, a certain number of electrons moving
in helical orbits about B will enter the skin-depth region once per cycle,

and while in this region they can be accelerated by the oscillatory electric

field component normal or parallel to B. The latter geometry is

illustrated in Fig. 23.23 ; an important difference from the conventional

cyclotron is that acceleration occurs only once per revolution instead

of twice. Electrons will gain energy steadily if the frequency of the

electromagnetic wave incident on the surface ofthe metal is synchronous
with the cyclotron resonance frequency, or is an integral multiple of it.

Hence the resonance condition is

co = ptoc = p(q/m*)B, (23.31)
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where p = 1, 2, 3, etc. It is usually convenient to work at a fixed

frequency, making the metal sample one end of a cavity resonator as

in ferromagnetic resonance (but with B normal or parallel to the oscilla-

tory electric field instead of normal to the oscillatory magnetic field),

anomalous skin depth/
JTJ 1 1 1 / 1 1 1 J 1 1 / I IT I 1 1

,

E (oscillatory field) optically flat surface

Fig. 23.23. Geometry of the steady magnetic field B, the oscillatory electric field and
the cyclotron orbits in a metal for Azbel-Kaner resonance. The electrons are accelerated

by the electric field only when their orbits take them into the skin depth.
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Fig. 23.24. Azbel-Kaner resonance at 4° K in a single crystal of copper (after Koch,
Stradling, and Kip, 1964). The magnetic field is parallel to the surface and along a

[100] direotion; the frequency is 67 kMc/s (4-5 mm wavelength).

and maxima in the absorption of energy then occur at values of B
given by the relation \lm *f,t\

The absorption is largest for p = 1, and decreases as p increases, since

the electrons are only accelerated every ^>th cycle, giving a curve of the

form shown in Fig. 23.24.
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Samples of high purity are needed to give good resolution; ideally

they must be so flat that surface irregularities are small compared with
the anomalous skin depth. If the effective mass is anisotropic, single

crystals must be used, cut in special orientations so that cyclotron

resonance can be observed in all the principal directions. The steady

magnetic field B must be accurately parallel to the surface, or electrons

will move away from the surface because of their velocity components
parallel to B. Grimes and Kip (1963) have found that the effective mass
is isotropic in sodium and potassium, with values of m*\m equal to

l-24±0-02 and l-21±0-02 respectively. In copper (Koch, Stradling, and
Kip, 1964) the predominant absorption is due to electrons with m*\m
about equal to 1 -4, with only slight anisotropy, but other very anisotropic

values ranging from 0-4 to 6 are also observed, showing that the Fermi
surface is rather complicated.
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PROBLEMS
23.1. In a substance where the susceptibility is small and the Lorentz internal

field can be neglected, show that equation (17.12) can be written in the form

y^jY =^ - •* JJi mea (tu|-co2)+2j'toA6o

If Xo is the static susceptibility, and xv is the imaginary part of the susceptibility

when to = cup, prove that

XvlXo = <V(2A">) = v
3)
/(2Av),

where vp is the frequency at the centre of the absorption line, and Av = Aa>/27r.

Although this formula was derived for electric susceptibility it is equally valid

for the magnetic case.

23.2. The work done per unit volume to increase the magnetization ofa substance

by dM in a field B is dW = B dM. If B is an alternating field

Bx <soB<Dt = &{BX exp(ycot)},

the magnetization may be written as

M = ^{(xWx")(£i/fio)expOw<)},

where (\'—Jx") m the complex susceptibility. Show that the rate of doing work
per unit volume is

B-T7- =dW/dt = — <ox'(Bl/[io)co&wtsmc0t+ojx"(Bl/iJL o)<ios*wt

and the mean power dissipated per unit volume is ia>x"Bllf*o-

Use the definition (/) for Q given in § 9.3 to show that 1/Q = x'/^+X') for

a coil containing a magnetic substance in a tuned circuit with no other losses.
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23.3. Adapt the results of Problem 10.6 to the case of the magnetic substance of
the last problem (note that x*/(l+x') » equivalent to e"/e% and show that the
power in an electromagnetic wave passing through such a medium would fall

according to the law
w/w<> = exp(_2w^a;/A)

Verify the figures given in § 23.3, that for A = 35 metres and x" = 10~5
> the

power will fall by about 1-8 per cent in a distance of 10 km.

23.4. Show, from equations (23.21) and (23.22) that the instantaneous velocity of
the charged particle in its spiral orbit is {qE/MAo})aia(JAco«). Hence show that the
total length of path traversed by the particle in reaching its maximum radius
R„ when Aoj =^= is L = 2qE/M(Aai)\ and verify that L/2RB is equal to the
resolving power toJAco.

23.5. Adapt the formula of Problem 20.4 to find the value of gF when J and I
are coupled to form a resultant F, assuming that the nuclear magnetic moment
can be neglected. Show that in the Zeeman splitting of Fig. 23.12,

23.6. Kusch and Foley (1948), using the atomic beam method, determined the
ratio of the value of gj in the 2P

#
and *Pt states of the gallium atom, and found

it to be 2(1-00172±0-00006). Show, by writing gr, = 1+8, and g, = 2(1 +8„),
that the ratio is equal to 2{l+f(8,— 8j)}, and hence that their result agrees within
the experimental error with the accepted value 8, = 0-001160 if 8; is assumed to
be zero.

23.7. A thin spherical shell of radius r, thickness dr of electric charge density p
rotates with angular velocity <> about a diameter. Show that the magnetic field

dB at the centre is —
$fj,

p(ardr.

Use this result to show that the correction at the nucleus of a hydrogen atom
in a magnetic field B due to diamagnetic shielding (see § 23.5) is

SB fi e2

B ~ l2Tima
'

given that the charge density at distance r is

P = (— e/irag)exp(— 2r/a ).

23.8. Show from equation (23.28) that the conductivity at zero frequency in the
direction normal to a magnetic field B varies as

a> = 1/(1 +aB*),

where a = (er/wi*)8 . This is the magneto-resistance effect, which becomes appre-
ciable only at low temperatures where r increases. (When only one type of carrier
is present, the effect vanishes because the sideways force due to the magnetic
field is exactly nullified by that due to the Hall voltage; when more than one type
of charge carrier is present this cancellation does not occur.)
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23.9. Show that in a cyclotron resonance experiment where cot p- 1, the value
of <j'

x at resonance (cojco = 1) approaches Jct„, and that the loss tangent of the
specimen is then (writing Aco„ for t-1 )

tan8e = 5—j —

.

Use the result of Problem 23.1 to show that in an electron spin resonance experi-

ment the magnetic loss tangent at resonance for a system of n electrons with
S — i, g = 2 is „ n,

tanS - & ~ l*"P<»

and hence prove that (taking m* = m, &coe = Atom )

tanSe _ 4mc2kT
tanSm

—
elfiw)*

'

Hence verify that the inherent sensitivity of a cyclotron resonance experiment is

very much higher than that ofa spin resonance experiment, so that fewer electrons
are needed.

Discuss whether the imaginary part of the conductivity (see equation (23.27))

can justifiably be neglected in the formula for tan Se.
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UNITS

24.1. Unrationalized c.g.s. systems

In mechanics three quantities are required to define a system of units

:

standards of length, mass, and time. In the c.g.s. system these standards

are the centimetre, the gramme, and the second respectively. Many
alternative non-metric systems are in everyday use, but not in scientific

use; it is obviously possible, however, to use different metric units as the

standards, and the m.k.s. system is based on the metre, the kilogramme,

and the second. For mechanical purposes either system will do, and units

in one system are readily converted into those of the other system (they

differ only by powers of 10). In electricity, a fourth standard quantity

must be defined, and the multiplicity of systems of units is due to the

varying choices of this standard which are in general use. Two alter-

native systems have survived, one based on theJaw of force between

electric charges, andthe other on the correspondinglawbetween magnetic

poles. Both ofthese systems are c.g.s. systems, since their units oflength,

mass, and time are the same, centimetre, gramme, and second respec-

tively. All mechanical quantities, such as force or work, have the same

units in either system, but the electrical units are quite different. Many
ofthe units are ofunsuitable size for ordinary work, and so another set of

units, the practical system, has also come into common use. This is not

a c.g.s. system, since mechanical quantities such as power, obtained from

the product of current and voltage measured in practical units, are not

in c.g.s. units. The basis of these three systems of units is outlined

below.

Unrationalized electrostatic units (e.s.u.)

In this system the c.g.s. units of length, mass, and time are used, and

a fourth unit, that of electrical charge, is defined by means of Coulomb's

law (tn vacuo) F = frqjr*, (24.1)

where the unknown constant C which appears in equation (1.1) has been

set equal to unity. From equation (24.1) the electrostatic unit of charge

is defined as that charge which, placed a distance ofone centimetre away
in vacuo from an exactly equal charge, repels it with a force of one dyne.
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The unit of electric field is then defined by the equation

F = qE (24.2)

as that field which exerts a force of one dyne on one unit of charge.

Again, the potential at a point B is one electrostatic unit higher than

that at a point A if one erg of work must be done to move unit charge

from A to B. Since the capacitance of a capacitor is the ratio of the

charge on it to the potential difference between the plates, it follows

that a capacitor has unit capacitance if, when unit charge is placed on it,

unit potential difference is set up between the plates. Since potential

has the dimensions of (work/charge), capacitance has the dimensions of

(charge)2/work, and from equation (24.1) this reduces simply to a length.

Hence the e.s.u. of capacitance is the centimetre.

The e.s.u. of electric dipole moment is defined as unit charge times
unit distance (centimetre), and the potential which a dipole p produces

at a distance r is V = p cos 0/r2. Polarization P is the dipole moment
per unit volume, and hence has the dimensions (charge)/(length)2

, which
are the same as those of electric field. In the absence of any polarizable

medium, Gauss's theorem (equation (1.7 b)) becomes in e.s.u.

jE.dS = 47r2?, (24.3)

or in differential form divE = 4i7p, (24.4)

where 2 <? is the total charge in the volume over which the integral

is taken, and p is the charge density. When a polarizable medium is

present, the volume charge density becomes, on including the polariza-

tion charge, p—divP, and hence Gauss's theorem takes the form

jE.dS = 477(/)-divP),

or
J"
(E+4ttP) . dS = | D . dS = Amp, (24.5)

so that the electric displacement D is defined as

D = E+4»rP. (24.6)

We see that the factor {An), which does not appear in Coulomb's law,

now appears in Gauss's theorem, and in the relation between D, E,
and P. Also, the units of D, E, and P all appear to be the same; this

is true only in e.s.u. and is not true, for example, in e.m.u. The electric

susceptibility Xe an(* dielectric constant e are defined by the relations

P = XeE, (24.7)

D = eE, (24.8)
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so that the relation between them is

c = l+47rXe . (24.9)

The dielectric constant is the same as in the m.k.s. system (it is simply

the ratio ofthe capacitance ofa capacitor filledwith the dielectric to that

of the same capacitor in vacuo), but the susceptibility differs by the

factor Am. In the m.k.s. system the susceptibility of a substance (per

unit volume = per metre3
) is a number a factor (4m) larger than the

corresponding number in e.s.u. (per unit volume = per cm3
).

Since electric current is the rate at which charge flows past a given

point, the e.s.u. of current is equal to a flow of one e.s.u. of charge per

second. In current electricity and magnetism it is customary to work
in e.m.u. instead of e.s.u., and we shall now discuss this second c.g.s.

system.

Unrationalized electromagnetic units (e.m.u.)

Originally the electromagnetic system ofunitswas based on Coulomb 's

law for the force between two magnetic charges (or magnetic poles) and

the unit of pole strength was defined by setting the constant in the

equation equal to unity, so that (in vacuo)

F = m1mjr2
. (24.10)

Thus unit magnetic pole is that which exerts a force of 1 dyne on a similar

pole a distance of one centimetre away in vacuo. The laws of magneto-

statics are then developed formally in the same way as those of electro-

statics, the quantities B, H, M, m, xm , and ju. playing similar roles to

those of D, E, P, p, xe> an(i e- ^or example

B = H+4ttM (24.11)

and fi=l+4mXm. (24.12)

Hence the magnetic volume susceptibility of a substance in the m.k.s.

system is a number larger by a factor (4m) than the corresponding

number for the volume susceptibility in the e.m.u. system.

The connexion with electric current is made either by means of the

magnetic field produced by the current, or by defining the equivalent

magnetic dipole moment ofa small coil ofarea dS carrying a current / as

m = /dS. (24.13)

Since the units ofm and dS are already defined, this fixes the unit of

current. Alternatively, the electromagnetic system of units could be

developed from the same starting-point as used in Chapter 5, the experi-

ments of Ampere. Then the equivalent of equation (5.2) for the force
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between two current elements would be

dFi = I
1 I2{ds1 A (ds2 A r)}/r» (24.14)

and the unit of current could be defined by means of the force between

two equal currents in parallel conductors, as in § 5.1.

We have now two alternative units of current, the e.s.u. and the e.m.u.,

which we have no reason to suppose bear any simple relation to one

another. If we assume that there are no dimensional constants in

equations (24.1) or (24.10), we can work out the dimensions of electrical

quantities in terms of length, mass, and time (they appear rather queer,

involving (mass)1 for example), and the dimensions of current in the two

systems will also be different. The ratio of current in e.s.u. to current in

e.m.u. has the dimensions of a velocity, and it turns out that the ratio of

the quantities in the two systems is just the velocity of electromagnetic

waves in vacuo, c (in c.g.s. units). Hence

number specifying current in e.s.u. = c = 3>< 1Q10
number specifying same current in e.m.u.

In both e.s.u. and e.m.u. the product of current and potential is power

in erg/second, and hence

number specifying potential in e.s.u. _ .

number specifying same potential in e.m.u.
~

Hence the derived units, resistance, inductance, and (capacitance) -1 , all

of which have the ratio of potential to current (apart from a dimension

of time) all change in the same way; that is, as

number specifying resistance in e.s.u. _ .

2

number specifying same resistance in e.m.u.
~~

Unrationalized mixed or Gaussian units

In electromagnetic theory Maxwell's equations involve both electrical

and magnetic units, and in the c.g.s. system they are generally written

in mixed or Gaussian units. Electrical quantities E, D, p, and conduc-

tivity a are in e.s.u., while magnetic quantities H, B and current density

J are in e.m.u. Thus we must write J = (aE)/c, and the fundamental

equations are

divD = 4tj7>, divB = ^

curlE = , curlH = 4:7tJ-1—

—

c tt ^c 8t ). (24.15)

= 1
-l^*E+

8
-
D

)
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Elimination of either the electric or magnetic field leads to a wave
equation „2

V»(E,H) = ^iL(E,H), (24.16)

showing that the velocity of electromagnetic waves in vacuo is c.

24.2. Practical units

The electrostatic units of charge and current and the electromagnetic

unit of potential are inconveniently small for practical use, and the

coulomb, ampere, and volt are used instead. Originally these were

defined in an arbitrary manner like the metre and the kilogramme (the

coulomb was defined in terms of the mass deposited in electrolysis of

Table 24.1

To convert a quantity in practical units to a quantity in e.s.u. (or e.m.u.) multiply
by the corresponding factor given in column I (or II)

Practical (I) (II)

Quantity unit e.s.u. e.m.u.

Charge coulomb 3xl0» io-1

Current ampere 3xl0» 10-1

Potential volt 1/300 10 8

Power watt 10' 10'

Resistance ohm 1/(9x10") 10»

Inductance henry 1/(9 XlO11
) 109

Capacitance farad 9x10" 10-»

In this table the ratios are exact where they are simple powers of 10, but elsewhere

the factor c has been taken as 3 X 1010 ; more accurate values are obtained by taking c

as the velocity of light (in c.g.s. units) given in Appendix C.

a certain solution), but these old 'international units' have now been

replaced by 'absolute units', related by powers of 10 to the electro-

magnetic units, which differ from the international units by amounts

insignificant except in very accurate work. The factors required to

convert a quantity given in practical units to the equivalent quantity in

e.s.u. or e.m.u. are fisted in Table 24.1. These can all be derived from

the fundamental relations

one coulomb of charge = 10-1 e.m.u. of charge,

one volt of potential = 108 e.m.u. of potential,

together with the fact that the ratios of these quantities in e.s.u. to

e.m.u. are c and 1/c respectively.

24.3. The rationalized m.k.s. system

Since the practical units are those in everyday use, it is convenient

to make them the basis of a single consistent system. This is achieved
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in the m.k.s. system by adopting the metre, kilogramme, and second as

the fundamental mechanical units, together with a fourth unit to define

the electrical quantities. The definition of units of other mechanical

quantities follows the usual rules. The units of velocity and acceleration

are the metre/second and metre/second2 respectively; unit force is that

force which gives unit mass (1 kg) unit acceleration (1 m/sec2
). It is

called the newton, and in magnitude is equal to (103 X 102
) = 105 dynes.

Unit power is developed by unit force moving its point of application

with unit velocity; hence the unit is newton-metre/second with magni-

tude (10s X 102) = 107 erg/sec. Hence it is identical with the watt, and

the unit of work is the watt-second or joule.

As the theory of electricity and magnetism has been developed in this

book in rationalized m.k.s. units, it is unnecessary to do more than point

out the difference between this system and the unrationalized m.k.s.

system. The equations expressing Coulomb's law in electricity and

magnetism, in our units, are

F = MtH^r*), (24-17)

l, =
J
« m1m2/(477r

2
) ) (24.18)

while Ampere's law of force between two current elements is

dFx
=

A
i /1 ^{d81 A(d8,Ar)}/(4«*). (24.19)

These equations differ from the corresponding equations in unrational-

ized c.g.s. units (equations (24.1), (24.10), and (24.14)) not only in the

introduction of unknown constants e , ju. but also in the presence of the

factors 47T. The introduction of this factor in these equations, which

makes it disappear from other equations such as the equivalents of

equations (24.6), (24.9), (24.11), and (24.12), constitutes the process of

'rationalization'. (It can be applied also to c.g.s. units, but as rational-

ized c.g.s. units are not in common use we shall not discuss them.) We
cannot just lump the factor 4w into the constants e , n since the

constants e and fi appear without any factor 4ir accompanying them

in equations such as (in vacuo)

D = e E, (24.20)

B = yx H. (24.21)

Rationalization gives a greater simplicity to various equations, notably

those in electromagnetic theory, but it has the drawback of making the

defining equations different from those in an unrationalized system, and

hence the factors required to convert a quantity in the rationalized m.k.s.

system to the equivalent quantity in an unrationalized c.g.s. system are
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not just simple powers of 10. The conversion factors required, together

with two illustrations, are given in Table 24.2 and § 24.4.

A second important difference between the m.k.s. system and the

older c.g.s. systems is that the constants c , /x are allowed to have

dimensions. The reason for this is that a fourth unit (the coulomb (or

ampere)) is introduced, which retains the dimension of charge (or cur-

rent), whereas the absence of any dimensional constant in equations

(24.1) and (24.10) made it possible to derive apparent dimensions for

any electrical quantity in terms ofmass, length, and time. Such deriva-

tions are not very illuminating, since they involve half integral powers,

and the dimensions of any given electrical quantity are different inthe

two c.g.s. systems. Dimensions are very useful in checking any physical

formula, and in electricity it is simpler to employ a system of four

dimensions, such as the metre, kilogramme, second, and coulomb, than

a three-dimensional system. Thus if we wish to check the equation

U = JD.E

by verifying that the product (DE) has the dimensions ofenergy/volume,

we proceed as follows: from equation (1.19) (Gauss's theorem) D has the

dimensions of charge/area, while from the force equation (1.3) E has

the dimensions force/charge. Hence (DE) has the dimensions

force/area = energy/volume

and its units are joule/metre3 .

The dimensions of the quantity e are readily found from the fact

that it is equal to the ratio (D/E). Using the alternative dimensions

of (potential/length) for E, we have

(D/E) = (charge/area)-^- (potential/length)

= (charge/potential)/length = capacitance/length.

Hence e is measured in units of farad/metre.

If we treated the coulomb as a standard of charge arbitrarily defined

like the metre, kilogramme, and second, then both e and fi would be

constants to be determined by experiment, though they would still

be linked (from electromagnetic theory) by the relation

e*H-o = 1/c2

so that once one is measured the velocity of electromagnetic waves can

be used to deduce the other. In practice we wish our units to be simply

related to the older units, and we therefore take

fi = 4ir 10~7 henry/metre (exactly).
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The size of the coulomb (or ampere) is then found by means of experi-

ment. In fact all the quantities in everyday use are then measured in

the practical units listed in Table 24.1.

The fact that the unit of energy in the m.k.s. system is the joule does

not mean that an energy should never be quoted in ergs. Similarly there

is no reason why a magnetic field should not be quoted in gauss,

instead of weber/metre2, in a book in m.k.s. units. This is only practical

where the quantities in the two units bear a simple ratio to one another,

and we have avoided doing this where the conversion involves a factor

(4tt) as well as a power of 10. As far as possible we have endeavoured to

make the text simple to follow for a person previously conversant only

with the c.g.s. systems, and in the following sections additional tables

are given for assistance.

24.4. Conversion factors from rationalized m.k.s. system

Since quantities such as susceptibility are generally given in tables

in terms of the unrationalized c.g.s. systems, a list of conversion factors

is given in Table 24.2 by means of which the value of a quantity given

in the rationalized m.k.s. system can be multiplied to find the equivalent

quantity in an unrationalized c.g.s. system, and vice versa. Because of

the change in the defining equations consequent upon rationalization

we cannot simply employ a 'ratio of the units', and we give two simple

examples showing how the conversion between quantities in the different

systems can be accomplished.

(a) In the rationalized m.k.s. system the formula for the magnetic

field H at the centre of a circular coil of radius a with one turn is

H = //2a.

Hence a field of 1 A/metre is produced by a current of 1 A flowing in such
a coil of radius £ metre.

In the unrationalized e.m.u. system, the corresponding formula is

With the same current and radius as before, we have / = 10_1 e.m.u.,

a — 50 cm, and hence the same field in e.m.u. has the value

(2w lO^jSO) = 4tt 10-3 e.m.u.

Thus the unit of current has increased by a factor 10, and the unit of
length by 10~2

; but owing to the difference in the defining equation the
factor by whichwe must convert the quantity is given by the equivalence

a field of 1 A/metre = a field of 4tt 10~3 e.m.u.
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(6) An experiment is performed with Gouy's apparatus (§ 8.7) to
measure the difference in the volume susceptibility ofaluminium and air.

In the e.m.u. system, the force F ona, rod of cross-section A with one
end in a field H and the other end in zero field is

In a field H = 4000 oersted, a force F of 4-92 dyne is measured on a
rod for which ,4 = 1 cm2

. Hence

X1—X2 = 0-615 X 10-6 e.m.u.

In our rationalized m.k.s. system, the expression for the force is

F = iUXi-X^HK
In the experiment (using the conversion factors of Table 24.2), the force

F = 4-92 x 10-5 newton, A = 10-* metre2
, H = 4000/(4ir 10-3) = lO6/*-

A/metre. Hence the difference of susceptibility is

2(4-Q2 * 1
-5

\*-* = (4,10-i)(10-«)(10W = M0-615X 10-e) m.k.s.

Thus we obtain a quantity in the m.k.s. system which is greater by a
factor (47t) than the corresponding quantity in the e.m.u. system. These

are volume susceptibilities, and the unit of volume is the metre3 in the

m.k.s. system and the centimetre3 in the c.g.s. system. The conversion

factor for mass susceptibility is not just (4?r), because the conversion

factor for density in the two systems is involved. Since

Xmass
'= Xvotame/density,

the conversion factor for Xmasa g°mg from e.m.u. to m.k.s. is

(4ir)/(103) = 47rl0-3
,

or 103/4n- going from m.k.s. to e.m.u.

24.5. Equivalent equations in unrationalized c.g.s. systems

Rationalization is the main difficulty which prevents simple rules

being given for obtaining the equivalent equations in cg.s. units to

replace those in the text. In the following tables methods for effecting

the transition are given for each chapter. These apply only to the

numbered equations, but other expressions in the text may readily

be modified by their help.

861110 3 B
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Table 24.2

[24.5

Factor by which

quantity in m.k.s.

system must be

multiplied to

Unit in m.k.s. Unit in c.g.s. convert to c.g.s.

Quantity system system system

Length . . Metre Centimetre 102

Mass ..... Kilogramme Gramme 10s

Time Second Second 1

Density .... kg/metre8 g/cm3 10~8

Force Newton or kg-

metre-sec-2
Dyne 106

Couple Newton-metre Dyne-cm 10'

Work .... Joule or newton-
metre

Erg 10'

Power .... Watt, joule-sec
-"1

or volt-ampere

Erg-second-1 10'

Charge q Coulomb e.m.u. To"

Current i . Ampere e.m.u. To

Potential V Volt e.m.u. 10 s

Electric displacement D Coulomb-metre-2 e.s.u. 12irXlO«

Electric intensity E Volt-metre""1 or

newton-coulomb-1
e.s.u. Jxl0~»

Electric polarization P . Coulomb-metre-3 e.s.u. 3xl05

Inductance L . . . Henry e.m.u. 10»

Resistance ii Ohm e.m.u. Z0»

Capacitance . . . Farad e.s.u. 9X1011

Magnetic field B . Weber-metre-2 e.m.u. 10»

Magnetic field H . Ampere-metre-1 e.m.u. 4ttX10-8

Magnetomotive force . Ampere e.m.u. 4tt/10

Magnetic flux N . Weber e.m.u. 10s

Intensity of magnetization M Ampere-metre-1 e.m.u. 10-3

Magnetic moment m . Ampere-metre2 e.m.u. 103

Volume susceptibility x m.k.s./metre3 e.m.u./cm3 l/4j7

Mass susceptibility m.k.s./kg e.m.u./g Kyiin

Gramme-molar susceptibility m.k.s./g-mole e.m.u./g-mole 106/4tt

Where a factor 3 appears in the table, it involves the approximation c = 3 X 1010 em/sec.

To the same approximation, since by definition

we have

fi„ = 4?7 10-7 henry metre-1,

10-» farad metre-1,

36tt

Zn (free space) = 120tt ohm.

Chapter 1

To obtain the equivalent equations in e.s.u. replace e by 1/4tt in:

2,^4,5,7^ 7b, 7c, 8,9, 10a, 10b, 11a, lib, 12, 17, 24,25, 29, 30,

31, 37.

The following equations are unchanged in e.s.u.:

3, 6, 13, 14, 15, 26, 27, 32, 33, 34, 35.
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The other equations, expressed in e.s.u., become

P = *E (1.16)

D = E+4itP = eE (1.18, 1.22)

|D.dS = j divD dr = 4n j p dr (1.19)

divD = 47T/J (1.20)

€=1+4ttx (1.21)

€E = D = (g/r^r (1.23)

D = eE = 4tt<7 (1.28)

and the right-hand sides of equations 36, 38, 39, and 40 must be

multiplied by (47r)
-1

.

Chapter 2

To obtain the equivalent equations in e.s.u. replace e by l/4n- in:

1, 3, 4, 5, 6, 29, 30, 31, 47, 48, 49, 50, 51, 52, 53, 54, 55.

All other numbered equations are unchanged.

Chapter 3

All numbered equations are unchanged except

D = eE, J = ctE

ediv(gradF) = 0, crdiv(gradF) = (3.10)

JT>.dS = 4nQ, Jj.dS=-7,

and R = ejinoC. (3.11)

Chapter 4

All numbered equations unchanged except: replace e by l/47r in

22, 43, 45, 46, 47, 48.

Chapter 5

The equations in e.m.u. depend on the way the theory is developed.

Using a parallel treatment to that in Chapter 5, to obtain the equiva-

lent equations in e.m.u. replace /*„ by 4ur in the following equations:

2, 3, 4, 5, 16, 17, 19, 23, 39, 46, 47, 49, 50, 53, 54, 58;

replace /z by 1 in:

10, 11, 15;

replace In by 1 in:

11, 12, 13, 14, 35, 36, 37, 38, 48, 59;

multiply by 4w on the right-hand side in:

21, 22, 26, 33, 55, 56, 57.
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The following equations are unchanged in e.m.u.:

I, 6, 7, 8, 9, 18, 24, 25, 27, 28, 29, 32, 40, 41, 42, 43, 44, 45, 51, 52,

60, 61, 62, 63.

The remaining equations become:

B = H+4ttM (5.20)

B = fiK (5.30)

li = 1+4ttX (5.31)

Hx
= H —4nMl3 (5.34)

Chapter 6

The numbered equations are unchanged in e.m.u. except

:

II, 12, 15, 16, 17, 18 (replace /*„ by 4tt).

Also U =~ ((U.B)dr (6.44)
OTT J

W=
f
J.SAdr^^- (u.hBdr (6.45)

Chapter 7

All numbered equations unchanged in e.m.u. except:

13 (replace /n by 1).

Chapter 8

To obtain the equivalent equations in e.m.u.

:

replace fi by 1 in:

7, 13, 24, 25;

replace 4n by 1 in:

21, 22.

The following equations are unchanged in e.m.u.

:

1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 14, 15, 16, 17.

The remaining numbered equations in e.m.u. become:

X = —2-83 X 1010 J 2
> (8.8)

47m/ = JH.ds = Hda+Hm dm (8.18)

W-l^+jy (8.l 9)

B = H = 4nMs sin2<£ cos <f>
log

e
(b[a) (8.20)

TF = i- ftfdtf (8.26)
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Chapter 10

The transition to c.g.s. units in this chapter is very complex because

of the use of mixed units. The quantities D, E, p (charge density or

resistivity) and a (conductivity) are then in e.s.u., while B, H, and J are

in e.m.u. We will deal with the various sections separately.

§§ 10.1 to 10.5 inclusive. Where different from the text, the fundamental

equations become

divD = 4irp (10.1)

curlE = — -{dBfdt) (10.3)

curlH = 4ttJ' (10.4)

div J= —-(dpjdt) (10.5)

J' = J_lJL(8D/8«) (10.6)
477C

curlH = - (4noE+dD/8t) (10.7)
c

curlE = — ~(dBj8t) = —^(dn/et) (10.10)
c c

curlH = - {8T>jdt) = - {SEjdt) ( 10. 1 1)
c c

N = -(EaH) (10.23)
47T

W = JeVJ Sp = cW%p132ttz8 (10.34 a)

Of the other equations which are different, the equivalent equations

can be found as follows:

replace e ,
/x by 1 in:

8, 9, 19;

replace (e ,fi ) by 1/c2 in:

12, 13, 14, 15, 17;

replace c by 1/47T, p, by 4tt/c2 in:

24, 26, 28, 29, 31, 33.

The following equations remain unaltered:

2, 16, 18, 22, 27, 30, 34.

The modifications required in equations (10.25), (10.25 a) are readily

found from equations (10.3), (10.7) above.
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The situation as regards Z is rather complex, since this quantity

is not usually denned in the c.g.s. systems. In view of the equations

V =
J"
E. ds, / = (47r)

-1
J H. ds, it would be natural to define Z as

Z — 4m{Ey\Hz)
(all quantities in e.s.u. or all in e.m.u.).

In mixed units Z (like p, a) should be in e.s.u., and then

Z = (4Trlc)(EyIHz) (Z , Ey in e.s.u.; Hz in e.m.u.).

For a plane wave in a non-conducting medium, Ey
— (/*/e)*2^ in

mixed units, and hence

Z = (4w/c)(/t/e)* (Z in e.s.u.). (10.20)

Then in equation (10.21) Z must be replaced by (/*/e)* in mixed units,

but equation (10.32) gives Z in e.s.u. if p, a are in e.s.u.

§ 10.6. All equations can be used in mixed units by replacing Z by

§ 10.7. If the conductivity and resistivity are given in e.s.u., it is

simplest to work in e.s.u., when only the modifications

Zx = 4tt/c, t = 4waS/c

are required. Thus equation (10.56) becomes

1 (a m e.s.u.).

§ 10.8. Unaltered.

§ 10.9. The significant alterations are

E=—-2p—gradF (10.61)
c at

divA = — €-t— (10.62)
c 8t

H = (a/o/r
2)sin0cosw(«—r/c)— (277-s/o/rA)sin0sinw(«--r/c). (10.68)

Replace c by 1/4^, fi by 4w in:

63, 64, 65, 66, 67, 73, 74.

Replace Z by 4knc to obtain equation in c.g.s.u. (I in e.m.u.) in:

69, 70.

Replace Z by 47t/c, e by 1/4^, fi by 47r/c2 to obtain equation in

e.s.u. (Br, p in e.s.u.) in:

71, 72.
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Chapters 9, 13, 14, 15, 16, 18

The numbered equations are valid in e.m.u. or practical units, except:

valid only in e.m.u. (mechanical quantities in c.g.s.u.):

Chapter 14 9, 10;

Chapter 16 10, 11, 12, 13, 14, 15;

Chapter 18 21, 25;

valid in e.s.u. (writing Za = ^njc):

Chapter 16 19, 20;

replace /x by 1 to obtain equations in e.m.u. in

:

Chapter 18 27, 28, 29, 30.

Chapter 11

In equations 29, 30, 31 replace e and y, by 1/c to convert to mixed

units.

In equation 40 replace Zt by (jw/e)* to convert to mixed units. Other

numbered equations are unchanged.

Chapter 12

All numbered equations unchanged, except that eQ should be replaced

by 1/4tt in 3 and 7.

Chapter 17

All numbered equations are unchanged in e.s.u. except that where it

occurs e should be replacedby 1/47T, and the following equation becomes

:

D = E +4t7P = eE (17.2)

and in equations 33 and 34 the equivalent expressions in e.s.u. are found

by replacing Z by (4tt/c).

Chapter 19

Replace e by 1/47T to obtain equations in e.s.u. in:

32, 33, 34, 35, 36.

Chapters 20, 21, 22, 23

Replace /x by 1 to obtain equations in e.m.u. (except in 20.6: replace

Replace c by l/47r to obtain equations in e.s.u.



APPENDIX A

VECTORS
A.l. Definition of scalar and vector quantities

Many physical quantities are completely defined by magnitude alone . Examples
are temperature, time, or length. These are called scalar quantities. They obey
the ordinary laws of algebra, and are represented in the text by a symbol printed
in italic type.

Other physical quantities, such as velocity, force, or acceleration are not com-
pletely defined unless the direction as well as the magnitude is given. Such
quantities are called vectors. "Vector quantities are printed in bold-face type in
the text; a brief summary follows of the vector properties which are necessary
for the understanding of the text.

Fig. A.l

A.2. Vector addition and subtraction

A vectormay be represented graphically byan arrow pointing in the direction of
the vector and of length equal to its magnitude. In Pig. A.l (a), P andQ are two

vectors. The addition of P and is effected by
drawing them as in Fig. A.l (6), in which the

vectors form two sides of a parallelogram. The
vector R denned by the equation P+Q = R is

the diagonal of this parallelogram, and its magni-
tude and direction can be found by trigonometry

if P and Q are known. Similarly, the vector

D = P—O is obtained from Fig. A.l (c). In the

special case only, that the vectors P, Q are

parallel, then R is equal to the scalar sum of P
and O, and D is equal to the scalar difference, andR andD are parallel to P and Q.
The converse process is often useful. That is, a vector P (Fig. A.2) can be

resolved into two vectors Q and R such that P is the diagonal of a parallelogram,

Fig. A.2. IfQ, Rare at right angles

then Q = P cos 0, B = P sin 0.
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and Q and R are two adjacent sides. Generally, Q and R are chosen to be at
right angles, so that the parallelogram is then a rectangle. Q and R are called

the components of P. P may be resolved into three components parallel to the

axes of Cartesian coordinates x, y, and z.

A.3. Multiplication of vectors

(a) Multiplication of a vector P by a scalar quantity m changes the magnitude
ofthe vector by the factor m, but the direction is unaltered. Multiplication by —m
gives a vector of magnitude rriP in the opposite direction, that is the vector

—mP. If i, j, and k are vectors of unit length parallel to the axes x, y, and z, we
can write P = IP^+jP^-t-kP,

Fig. A.3

where Px, Pv, and Pe are scalar quantities giving the magnitude of the components
of P parallel to the three axes (see Fig. A.3). SinceQ = lQx+jQy+'kQz it follows

that P+0 = i(Px+Qx)+i(Py+Qv)+HPl+Qz ).

(b) The scalar product. The scalar product of two vectors P and Q is written

P . Q and is a scalar quantity numerically equal to the magnitude of one vector

multiplied by the component of the other parallel to the direction of the first one.

If the angle between P andQ is

P.Q = P#cos0 = Q.P
and P.(Q+R+S+...) = P.Q+P.R+P.S+....

The scalar product oftwo perpendicular vectors is zero. Therefore, for the unit

vectors i, j, and k, we have

i.j = j.k = k.i =
and i.i = j.j = k.k = 1.

An example of a scalar product is the work dW done on a charge q in moving
a distance ds in a region where the electric field is E, which is

dW= -qE.ds. (A.l)



746 APPENDIX A [A.3

PAO

Via. A.4. The VectorPAQ
is normal to the plane con-

taining P and 0-

(c) The vector product. The vector product of two vectors P and Q is defined

68 a, vector perpendicular to both P and of magnitude PQ sin0, where 6 is the

angle between P and Q. IfP is perpendicular to 0> the

vector product is PQ but if P and Q are parallel the

vector product is zero.

The direction of the vector product (P AQ) is that

in which a right-handed screw would move if turned

from the first vector P towards the second vector Or,

as shown in Fig. A.4. Hence we have

(PAO) = -(OAP).
Also,

PA(0+R+S+...) = (PAQ)+(PAR)+(PAS)+....

The formula for a vector product in terms of the

vector components may be conveniently expressed as

a determinent. For the unit vectors along a set of

right-handed Cartesian coordinates, we have

iAi = jAj=kAk = 0,

iAJ = k= -JAL etc.

Hence PAO = (lPe+iPv+*P,)A(lQx+iQ 1
,+lLQ,)

-i(P,Q.-F.
!

Oli)+j(P,«1
,-P ,

e «,)+kfF-e«f-P,Q»). .

which can be written as i j k

PAO = Px Pv P,

Qx Qy Qz

An example ofthe use of a vector product is the equation for the force dF on an

element ds ofawire carrying a current 7 in a magnetic fieldB . The force is normal

to ds and to B, and of magnitude Ids B sin#. It is specified both in magnitude

and direction by the vector equation

dF = J(dsAB).

Products of three vectors are occasionally met with, and can be evaluated from

the foregoing rules. The scalar triple product

P
. (0A R) = scalar product of P and (OAR)

is a scalar quantity equal in magnitude to the volume of the parallelepiped whose
sides are constructed from the three vectors P, O, R (see Fig. A. 5). Clearly,

P.(QAR) = (PAO)-R

and this is often written simply as PQR. We have

PQR = QRP•= RPQ = -PRQ = -OPR = -RQP.

The change of sign on inverting the order of any two of the vectors follows also

from the determinantal form

PQR

The formula for the vector triple product may be expressed in the form

PA(0AR) = 0(PR)-R(P.O).

p* P* P*

Q* Qv Q.

Bx Rv R,
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This may be verified by expressing the vectors in terms of their components along
three Cartesian axes.

A.4. Differentiation and integration of vectors

Vector quantities are often expressed as functions of scalar variables. For
example, the electric field E can be expressed as a function of the position coordi-
nates x, y, and z. The vector may be differentiated and integrated with respect

Oar

Fig. A.5. The BcaJar triple product P.(Q AR) is numerically equal to the volume of
the parallelepiped whose sides are the vectors P, Q, and R.

to these variables. The differential of P with respect to a scalar variable w is

denned as
<*P ,. P(«-fA«)-P(u)
du Au-»o Am

When a force F acts for a small distance ds, the work done is dW = F . ds and
if the total work done over a finite distance is required, we can write

W = jF.ds = j Fooadda,

where ds is the component of ds parallel to F at any point.
This integral occurs frequently and is called the line integral of F along the

curve. The line integral along the curveAB
is illustrated in Fig. A.6. If the integration

is carried out round a closed path, returning

to the original point A, it is written
<J>
F . ds.

The surface integral J F . dS is also im-
portant. F. dS is the flux through the ele-

ment of area dS due to the field F, and the
integral over a surface gives the total flux

through that surface. If the vector F = v
represents the velocity of flow of a fluid, J v. dS gives the total volume of fluid

passing through the area S in unit time. If F is the electric displacement D, the
integral gives the number of lines of displacement crossing the surface S.

Fra. A.6
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In many problems in physics a scalar quantity is used which is a single-valued

function of the position coordinates of the system. For example, in electrostatics

the electric potential V is a function of a;, y, and z in a Cartesian coordinate system.
The change in potential corresponding to an infinitesimal displacement ds is given

by Taylor's theorem, that is

dV = (8V/8x)dx+(8VI8y)dy+(8V/8z)dz

and ds = idx+jdy+kdz.

The rate of change of V with the displacement s is expressed in terms of a new
quantity grad V which is defined by the equation

dV= (gradF).ds, (A.2)

where gradF = i(8VJ8x)+}(8V/&y)+Js.(8VJ8z).

grad V is a vector quantity and is an abbreviation for 'the gradient of V\ When
grad V is parallel to ds, dV is a maximum, so that grad V is in the direction of

the greatest rate of change ofV with respect to the coordinates, and is normal to an
equipotential surface. From equation (A. 1 ) thework doneon unit charge in moving
a distance ds in a field E is —E . ds and this is equal to — dV. Therefore we have
E = —gradF and the electric field is equal to the gradient of the potential at

any point, and is in the direction of the maximum rate of change of potential

with respect to the space coordinates.

The operator i(8/dx)+i(,8J8y)+'k(8j8z) is often denoted by the symbol V (pro-

nounced 'del'), so that gradF = VV. (A.3)

The operator V canbe regarded as a vector operator, which operates on both scalar

and vector quantities, and forms scalar and vector products. Thus equation

(A.2) can be written dv = (VF) . ds. (A.4)

In general, any scalar potential function
<f>,

which is finite, single-valued, and
free from discontinuities (these conditions must apply also to the first and second
derivatives of $ w.r.t. the space coordinates), can be related to a field of force F,

where F = -grad^,

so that once
<f>

is everywhere determined, F is known at all points. Also, the

line integral of F between any two points A and B is independent of the path
taken between those points since

B B B
JF.ds = - J(grad^).ds = - j cUf, = <f>A -<f>B

by analogy with equation (A.2). Similarly, the line integral round a closed path
is zero.

A.5. The divergence of a vector

The divergence of a vector P is written div P. It is an operator used to describe

the excess flux leaving an element of volume in space. The flux may be flow of

liquid in hydrodynamics, heat in a thermal field ofvarying temperature, or electric

flux. In the latter case, the excess flux leaving the volume element is related to

the total charge enclosed by Gauss's theorem. In Fig. A.7 there is a varying

electric charge density p throughout space. Gauss's theorem is applied to a
volume element dxdydz at the point (x,y,z) in a Cartesian coordinate system.
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The total charge enclosed is pdxdydz. The total flux through the faces normal
to the x-axis is

,

[[Dx+^(Dx)dx)-Dx]dydz = pdxdydz,

where Dx is the component of the electric displacement parallel to the x-axis at
the point (x, y, z). Writing similar expressions for the flux through the other two

•*

+»

Fig. A.7

pairs of faces, Gauss's theorem becomes

6DX 8Dy BDZ

~ + ~8y +~^T ~ P>dx dz

where Dx , Dv, and jDs are the components of the electric displacement along the
three axes at (x,y,z).

The expression on the left-hand side of this equation is written div D, and is

the divergence of the vector D at this point.

Now using the operator V, we have

VD = {
iiB+^+kFz)-^+^+kD^'8y

8D, SD«

dx T dy ^ dz

Therefore V.D = divD. (A.5)

The divergence ofa vector is a scalar quantity, since it represents the net amount
of flux, or the number of lines of induction, coming out of a volume element. If
divD = 0, the total flux entering the element dxdydz is balanced by that leaving
it. A vector satisfying this condition is said to be solenoidal.
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A.6. The curl of a vector

The curl (or rotation) of a vector P is -written curlP (or rotP). It arises in

problems where a line integral of a vector round a closed path is related to the
flux through the surface enclosed by the path of the line integral. For example,
Ampere's law for the magnetic field due to a current is

^H.ds = Jj.dS.

Let us apply this equation to an element dydz at the point (x,y,z) in. a, Cartesian
coordinate system (Fig. A.8). For the a;-component of the current, Jx, the line

->il

Fig. A.8. Application of Ampere's law in Cartesian coordinates.

integral of H in the y,z plane is positive in an anti-clockwise direction, and we
have

*** - K-
8

#fM-wf*M«WT?*l*-h-£f1*
-<f-f)**'

whereHy and^ are the components ofH parallel to the y- and 2-axes respectively.
Therefore

. _ SH, BHy
Jx ~ By ~~8z~'

and similarly Jv=
8z

and Jz = —-*—--S.
8x dy8x

These equations are written

Jx = curl^H, Jy = curlj,H, Jz = curl,.H

or simply curlH = J,

where curlH is a vector quantity whose components are expressed by means of
the determinant

curlH

i J k
8 £ a

dx dy 8z

Hx Hy Hg

(A.6)
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Also VAH-(i|;+jl+k|)A(iff^Hy+kH,)

~ \8y dzJ^^dz dxT \dx dy 1

= curlH. (A.7)

A.7. Laplace's operator

Another operator which occurs in Laplace's and Poisson's equations in electro-

statics is the operator divgrad.

If V is a scalar function, divgradF = V.(VF), and from equations (A.3) and

(A.5)

Id 8 d\ I &V .dV . 8V\ dW 8*V 8*V
V.(VF) - (4+j-+k-).(i-+j^+k-) = ^+^+^.

But V. (VF) = V . V(V) = VW, treating V as a vector. The operator divgrad is

therefore equivalent to aj ga gs

which is called Laplace's operator (pronounced 'del squared').

By expressing the operators div, grad, and curl in terms of the operator V,

a number of useful relations can be established. The reader should verify for

himselfthose listed below (remember that the order ofan operator and its operand

must not be altered).

'. ourlgradF = vA(VT) = 0.

graddivP s= V(V.P).

div curlP = V.(VaP) = (cf. the scalar triple product is zero if two of the

vectors are identical).

curlcurlP == VA(VAP) = graddivP— V»P.

divwiP = mdivP+P.gradw* where m is a scalar.

curlwP = m curlP—PA gradm.

div(PAO) ss V.(PAO) = O.curlP-P.curlO.

A.8. Stokes's theorem

In Fig. A.9 the line integral of the vector H is taken round a closed path
bounding an unclosed surface S. This integral is |H.ds. If the surface is

divided up into small elements of area dS, then from § A.6

£H.dl = curlH.dS,

where § H . dl is the line integral of H round one small element of area dS. If

this equation is now summed over all the elementary areas, all the boundaries

within the surface will cancel out on the left-hand side, and the result is the line

integral round the circuit bounding the surface. Therefore

|H.ds = JcurlH.dS. (A.8)

This is Stokes's theorem. It is necessary for H and its derivatives to be well-
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behaved continuous functions, but in the cases normally arising in electro-

magnetism, these conditions are satisfied.

Conversely, if the line integral ofH round a closed curve is equal to the surface

integral of P over a surface bounded by the curve, irrespective of what curve or

surface are used, then P = curl H.

curl H

Fig. A.9. Illustrating Stokes's theorem.

A.9. The divergence theorem

S in Fig. A.10 is a closed surface in a region where there exists a vector field F.

The flux through an element of area dS is F. dS, and the total flux through the

surface is J F . dS. The total flux diverging from an element of volume dr inside

S is, from § A.5 above, divF<ir, where F is the value of the force field at this

Fid. A.10. Illustrating the divergence theorem.

point. The integral J divFdh- throughout the whole volume enclosed by S must

give the total flux through the surface, since for anytwo adjacent volume elements

the flux through a common face gives equal positive and negative contributions.

Hence
JdivFdr = /F.dS, (A.9)

which is the theorem of divergence. Again, the vector field F must be a well-

behaved function. Conversely if the surface integral of a vector F is equal to the
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volume integral of a scalar function P over the volume enclosed by the surface,

whatever the surface, then we may conclude that

P = divF.

A. 10. Transformation from a rotating coordinate system

When dealing with the effect of an applied magnetic field on an atomic system

it is often convenient to transform to a rotating coordinate system. Vector

methods make this transformation simple, as can be seen from the following

treatment.

Suppose we are concerned with some vector quantity A, which to start with

we will suppose to be fixed in the rotating coordinate system (a line on a spinning

top is an example, but we do not have to restrict A to

be simply a radius vector). The angular motion of the

coordinate system is represented by a vector to, whose
magnitude is equal to the angular velocity and whose
direction is parallel to the axis of rotation. Its sense

is that in which a right-handed screw would advance
if rotated in the same sense as the angular motion. If

A is fixed in the rotating system, then in a time St the

end point of the vector is displaced by an amount 8A
relative to a fixed coordinate system, as shown in Fig.

A.ll. It is clear that the motion of the end point is a
simple rotation about the axis defined by to. Hence

5A = (<aSt)Aaind = (wAA)S*.

Hence the velocity of A relative to the fixed system is

(dA/dt) = (wAA). (A.10)lim(8A/8«)
S<->0

Fig. A.ll. Change 8A in

time St of a vector A rota-

ting with velocity co.

If we now suppose that A is not fixed in the rotating system, but has a velocity

(DAJDt) relative to that system, then we have, from the vector addition of the

two velocities dA/dt = (£>A/Ztt)+ (toA A). (A. 1 1

)

This relation may be applied to any vector A, and hence it may be applied to

the vector (dA/dt) to find the second differential of A. Retaining the notation

that (d/dt) refers to rate of change in the fixed coordinate system, and {D/Dt)

to rate of change relative to the rotating system, we have (since to is a constant)

daA d [dA\ ID
A
\/<*A\ ID

A
\/DA A \

dt*

dldA\
dt\dt

,

\Dt

D3A
Dt*

+ 2(,

Dt

DA\
&>A -j^A +toA (wA A). (A.12)

A.ll. Larmor's theorem

Suppose that a charge q is moving in a field of force (such as the attraction of

a positively-charged nucleus) whose value at any moment is described by the

vector F. When a magnetic field is applied, the equation of motion is

d2r

dt*
F+gvAB, (A.13)

wherem is the mass associated with the charge, and v is the instantaneous velocity

(= dr/dt). This is the equation of motion in vector form in a set of axes at rest

851110 3 C
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with respect to the observer. Let us now change to a set of axes rotating with
angular velocity <o about the direction of B. In transforming to rotating axes (see

§ A. 10) we have the relation

d2r
*»*

£>2r T £>rl= m
D~F+2w L

wA
2)jJ+™[

w A(wAr)], (A.14)

where D2r/Dt2
, Dr/Dt are the acceleration and velocity in the rotating coordinate

frame, and to is the angular velocity expressed as a vector parallel to the axis of
rotation, the direction of B. The second term on the right-hand side is the 'Coriolis

force' which appears if the particle is moving in the rotating system, and the last

term is the centrifugal force normal to the axis of rotation. If (o> /\r) is small
compared with Dr/Dt (as we shall show below to be the case), the centrifugal force

will be small compared with the Coriolis force, and in the first approximation
equations (A.13) and (A.14) give

D2r Dr
fn-jyp = F+gvAB— 2mtoA-g- = F+gvAB+2wvAio, (A.15)

where we have neglected the small difference between v and (Dr/Dt) (the velocity

in the rotating frame) since they differ only by the quantity («oA r) which we have
already assumed to be small in comparison. It is apparent that if we choose the
rate of rotation of the axes such that

w = — (q/2m)B (A.16)

the last two terms in (A.15) will vanish and the equation of motion is the same as

if the magnetic field were absent. Thus to an observer rotating with the angular
velocity given by (A.16) the motion of the charge appears to be the same as it

would to a stationary observer in the absence of a magnetic field. Hence we may
regard the motion of an electron of charge — e in the field B as unchanged except
for a precession with angular velocity w = + (e/2m)B about the axis of B. This
is commonly known as the 'Larmor precession'.

The fact that it is justifiable to neglect the last term in equation (A.14) can be
seen as follows. When the electron is bound in the atom, it executes a periodic

motion in its orbit whose frequency is of the same order as that of visible light.

This corresponds to an angular frequency w of the order of 1015 radians/sec. The
termsD2r/Dt2 and Dr/Dt are then of order ofmagnitude a>

3 r and a> r respectively,

so that successive terms in equation (A.14) decrease in magnitude by the ratio

(<o/a> ). Since to is only about 10u radians/sec even in a field of 1 weber/metre2

(10 000 gauss), the centrifugal force term is an order of magnitude smaller than
the Coriolis force. In other words, the force on the electron due to the field B is

small compared with the force exerted by the positively-charged nucleus; if it

were not, it would tear the atom apart.

The central force assumed above is that responsible for the orbital motion of
an electron in an atom, and the angular velocity given by equation (A.16) is

identical with the angular velocity ofprecession (see § 20.1) ofan electronic orbital

magnetic moment in a magnetic field B.
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THE UNIQUENESS THEOREM

The uniqueness theorem states that if a potential function Vx is a solution of

Laplace's equation which satisfies the boundary conditions, then it is the only-

solution.

If this were not so, then there exists another solution V2 and we write

V = V1—

V

2 , where, since Vt and V2 are each a solution, V also satisfies Laplace's

equation. If V can be shown to be zero, then V1
= Va and is a unique solution.

Consider the relation (cf. § A.7)

-div(FE) = V. (VVV) = {VV)*+ FV*F
in the form

f (ee grad V . grad V) cfr =
J"
div(Vee grad V) ck — j V div(ee grad V) dr,

where the integral is taken over all space outside the conductors where there are

no free charges. Then the second integral on the right-hand side is zero by

equation (2.1). The first integral is equal to J (Fee,, grad F).dS taken over the

surfaces of the conductors and the limiting sphere at infinity. On the conductors

either V = or J ee {dV/8r) .dS = 0, since either the potential or the charge on

each conductor must be fixed. For a set of finite conductors, V -* as r -> oo;

thus V must vary as »—n where n > 1, and grad V as r-"-1, so that J Fgrad F.dS

varies as r_2n+1 and vanishes at r = oo.

This shows that
J"

(ee grad V. grad V)dr = 0, so that gradF = since the

integrand is always positive, Hence V = constant = V1—Vi . But V1 = Va =
at r = oo ; whence V = and Fx

= V2 everywhere, showing that Vx is a unique

solution of Laplace's equation.

p,



APPENDIX C

NUMERICAL VALUES OF THE FUNDAMENTAL
CONSTANTS (TO FOUR SIGNIFICANT FIGURES)

As recommended by the Committee on Fundamental Constants of the National
Academy of Sciences—National Research Council, U.S.A. (1964)

velocity of light in vacuoo

N

e

m
M

Avogadro's number

electronic charge

electron rest mass
proton rest mass

Mjm ratio of proton to electron mass
h
h
F
ejm

e^jm,

a

Re
R

k

P

Pn
a

«o

4ire

Planck's constant

Planck's constant/27r

Faraday's constant (Ne)

charge/mass for electron

Bohr radius

Rydberg constant X c

Rydberg constant

Boltzmann's constant

Bohr magneton

nuclear magneton
fine structure constant

permittivity of free space = (/i c2)~

Mo permeability of free space (by definition)

intrinsic impedance of free space
eV electron volt

kT energy for T = 290° K
1 electron volt is equivalent to:

wavelength A = 1-240 X lO-6m
frequency v = 2-416 1014 sec-1

wave number v = 8-066 103 cm-1
temperature T = 1-161 X 104 °K
energy W — 1-602 10-" joule

1 cm-1 is equivalent to

:

wavelength A = 1 cm
temperature T = 1-439° K

2-998 X 10s m/sec

6-023 102« (kg mole)-1

= 6-023 1023
(g mole)"1

1-602 10-19 coulomb

9109 10-31 kg
1-673 10-" kg
1-836 103

6-626 10-s* joule sec

1-055 10-34 joule see

9-649 107 coulomb/kg
1-759 1011 coulomb/kg
2-819 10-8 coulomb 2/kg

5-292 10-" m
3-290 1015 sec"1

1-097 10' m-1

= 1097 105 cm-1

1-380 10-23 joule/deg

9-273 10-24 A m2

= 9-273 10-21 e.m.u.

5051 10-27 A m2

(137-0)-1

8-854 10-12 farad/m

107/c2 = 10_B/9 approximately

4ttX lO-7 henry/m exactly

3-767 102 ohm
1-602 10-19 joule

4-003 10-21 joule
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SOME ATOMIC FORMULAE IN M.K.S. UNITS

Rydberg's constant X c Re

Bohr radius aa =

Fine structure constant

Bohr magneton

Nuclear magneton j8„ =

Se%h3 Un^h3

4:TT€ fic

R — —P ~ 2m

eh
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A, magnetic vector potential, 143, 161, 281.

Absorption, non-resonant, 497.— resonant, 486.

Acceptor level, 537.

Admittance, 234.

Ammeter, 181.

Ampere, 130.

Ampere's law, 135, 137.

— theory of magnetism, 195.

Amplification factor of vacuum tube, 340,

342.

Amplifier, audio-frequency, 351.— efficiency of, 357.— power, 355.
— push-pull, 356.— radio-frequency, 359.

Amplitude modulation, 375.

Anderson bridge, 428.

Anisotropy energy, 628.

Anode resistance of vacuum tube, 342.

Anti-ferromagnetism, 657.

Atomic beam, 681.
— clock, 701.

Attenuation on filter, 294.
— on transmission line, 312.

— in waveguide, 318.

Azbel-Kaner resonance, 722.

B, magnetic field, 126-30.

Band theory, 606-10.

Barn, 43.

Barnett effect, 634.

Base electrode, 571.

Biot and Savart's law, 142.

Bitter magnet, 213.
— patterns, 631.

Block wall, 628.

Bohr magneton, 577.

Bolometer, 420.

Boundary conditions for D and E, 20.— for B and H, 138.

Brewster's angle, 273.

Bridge, alternating current, 424.— Anderson, 428.
— Hartshorn mutual inductance, 429.— Schering, 426.
— Wien, 435.

Brillouin function, 593, 623.

— zone, 513.

Brownian motion, 452.

Capacitance, 22.

— of sphere, 23.

Capacitance of two infinite cylinders, 54.

Capacitor, 22.

Cathode-follower, 388.

Cathode, oxide-coated, 330.

Cathode ray oscillograph, 415.

Cavity resonator, 325.

Characteristic of vacuum tube, 340, 348,
349.

Charge, electric, 4.

Child's law, 333.

Clausius-Mossotti formula, 479.

Coefficient of coupling k, 163, 246.

Coercive force, 205.

Collective electron model in ferromag-
netism, 644.

Collector junction, 570.

Conductance, 234.

— input, for tube, 390.

Conduction band, 537.

Conduction current, 257.

Conductivity, electrical, 521—8.
— extrinsic, 538.
— intrinsic, 536.
— specific, 64.

— thermal, 521-8.

Contact potential, 95.

Continuity, equation of, 63, 257.

Coriolis force, 754.

Correlation energy, 514, 647.

Corresponding states, law of, 625.

Coulomb, unit of charge, 4.

Coulomb's law of inverse squares, 3, 19.

experimental proof of, 10.

Coupled circuits, 243.

Coupling coefficient k, 163, 246.
— Russell-Saunders, 582.

Crystal diode, 411.

Curie, method of measuring xm, 217.

Curie's law, 201, 593.

Curie-Weiss law, 203, 620.

Curl of a vector, 750.

Current balance, 192.

— generator circuit, 354.

Cyclotron resonance, 710.

for electrons, 715.

for protons, 713.

in semi-conductors, 717.

Cylindrical harmonic functions, 47.

Damping, of galvanometer, 184.

Daniell cell, 113.

de Broglie relation, 89, 505.

Debye absorption, 497.
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Debye unit, 476.

de Haas-van Alphen effect, 532.
Demagnetizing factor, 141.— field, 209.

Detection, 376.

Detector, crystal diode, 411.— diode, 375.

— standing-wave, 432.

Diamagnetism, 195, 198-201.
— of conduction electrons, 529.
Dielectric constant e, 19.

measurement of, 442.—— theory of, 16, 475.

variation with frequency, 483.— — — temperature, 480.

Diffusion length, in semi-conductor, 560.
Diode, thermionic, 331,— transistor, 565-9.

Dip, angle of, 223.

Dipole, electronic, 13, 39.— magnetic, 196.

— radiation, 281.

Discriminator, 385.

Dispersion, 483-8.

Displacement current, 257.— electric D, 18, 19.

Divergence of a vector, 748.

Domain, ferromagnetic, 206, 626.

Donor level, 537.

Drude's theory, 85.

Dynamometer, 183, 419.

ejm measurement for current carriers, 62.— for electrons, 71f>.

ejM measurement for proton, 716.
Earnshaw's theorem, 31.

Effective mass, 510.

measurement of, 717, 722.

Einstein-de Haas effect, 635.

Electrical conductivity, 521-8.

Electrochemical equivalent, 110.

Electrolyte, 110.

Electromagnet, 210.

Electromagnetic balance, 215.—-units, 731.

— waves, 256-87.
— — impedance of, 262.

propagation of, in conductors, 265.—-in dielectrics, 260.
— —

- reflection and refraction of, 269.—— velocity of, 259, 445.

Electrometer, 32.

Electromotive force, 66.

Electron, 1.

— ejm, 62.
•— in metals, classical theory, 85.— quantum theory, 88.

— magnetic resonance, 698, 703.

Electron optics, 75-81.

— volt, 89.

Electrostatic units, 3, 729.

Emitter junction, 570.

Energy bands, 506-10, 516.
—

• of current circuit, 143, 144, 172.

— of electromagnetic wave, 263.
— of electrostatic field, 26.

system of charges, 25, 42.

— —-magnetic dipole, 143.— field, 175.

Equipartition of energy, 452.

Equivalent circuit, 343.

Exchange interaction, 582, 609, 618, 630,

650.

Exciton, 550.

Exhaustion range, 538.

Farad, 23.

Faraday constant, 111.
—-laws of electrolysis, 110.

of electromagnetic induction, 158.

Feedback, negative, 354.
•— positive, 364.

Fermi energy, 91, 94.
—

- surface, 513.
— level, of metal, 94.

of semiconductor, 545.

Ferrimagnetic resonance, 709.

Ferrimagnetism, 664.

Ferrites, 665.

Ferromagnetic resonance, 707.

Ferromagnetism, 195, 618-55.
—

• classical theory, 204—7.

Field, electric, 4, 19.— emission, 99.

— magnetic, 137.

measurement of, 214, 695.
•— •— production of, 207.

'

Filters, 289-301.
•— band-pass, 299.

— high-pass, 298.

— low-pass, 297.

— m-derived, 301.

Flip-flop circuit, 389.

Flux, electric, 19.

— magnetic, 143.

Fluxmeter, 186.

Foner's magnetometer, 219.

Force, on moving charge, 152.— between current circuits, 174.

Frequency, changing, 380.

— measurement, 441.

— modulation, 383.

— resonant, 229, 236, 240.
•— standard, 701.

Fresnel's formulae, 275.
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Galvanometer, 179.— ballistic, 186.

— damping, 184, 454-6.

Garnets, 666.

Gauss' theorem, in free space, 8.

in dielectrics, 18.

in e.s.u., 730.

g, Lande factor, 588.

gs for electron, 579, 699.

gn for nucleus, 611.

Gouy, method of measuring Xm' 218.

Gradient of a vector, 748.

Grid, 339, 347.

Gruneisen's formula, 523.

Guided waves, 315-26.

Gyromagnetic, ratio, 575.— effect, 634.

H, magnetic field, 136.

Half-power points, 237, 495.

Hall effect, 528, 552.

Harmonic generator, 375.

Hartley oscillator, 369.

Heisenberg model in ferromagnetism, 618,

644.

Helmholtz coils, 156.

Henry, 162.

Hole, positive, 512, 529, 536.

Hund's rules, 582, 652.

Hyperfine structure, 612.

Hysteresis, 205, 221-3.

Images, electrical, 48.

Impedance, 229.

— characteristic, 297, 304.
— of free space, 262.

— of a metal, 267.

— input, for transmission line, 309.— -— for triode, 344.

Impurity level, 537.

Inductance, mutual, 161, 429.

— self, 161, 428.

Intensity of magnetization, M, 135.

Ionization potential, 121.

Isotope, 1.

Iterative impedance, 296.

Johnson noise, 454.

Junction transistor, 569.

k, space, 513.

— wave vector, 89.

Kelvin's bridge, 83.

Kipp relay, 370.

Kirchhoff's laws, 68.

Klystron oscillator, 400.

— reflex, 405.

Kramers' theorem, 598.

Lande ^-factor, 588.

Langevin, theory of paramagnetism, 201.

Lanthanide metals, magnetic properties

of, 670.

Laplace's equation, 33, 66, 140.

Larmor's theorem, 199, 576, 753.

Lecher wire oscillator, 396.

Legendre, equation of, 35.

— associated functions, 36.

Lenz's law, 158.

Limiter, 385.

Line charges, 52.— of force, 7.

Logarithmic decrement, 171, 187.

Lorentz, theory of local field, 478.

Lorenz force, 152, 529.
— number, 524.

Loss tangent, tan S, 236.

Magnetic field, due to current circuits, 148.

—— measurement of, 214-16, 695.

production of, 207.—
• focusing of ions, 153.— induction, 126.

— moment, 131, 195, 574.
•— — of free atoms, 585, 593.— — nuclear, 610.—-permeability, 139.—

• resonance, 677.
— shell, 130.

— susceptibility, 139.
•— vector potential, 143.

Magnetism, terrestrial, 223.

Magnetization, M, 139.

Magneto-caloric effect, 639.

Magnetogyric ratio, 196.

Magnetometer, Foner's, 219.

Magnetomotive force, 134.

Magneton, Bohr, 577.

— nuclear, 611.

Magnetron, 405.

Mass spectrometer, 154.

Maximum power theorem, 66, 356.

Maxwell stress tensor, 28.

Maxwell's equations, 256.

Metal-semiconductor junctions, 560.

Mho, 235.

m.k.s. units, 4.

Mobility, 65.

— of electrons in metals, 86.

in semiconductors, 553.— of gaseous ion, 118.

— measurement of, 555.— variation with temperature, 556.

Modulation, amplitude, 375.
•—-frequency, 383.
— index, 384.

Molecular beam, 681.

J
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Momentum space, 90.

Mossbauer effect, 641.

Multipole expansions, 39.

Multivibrator, 372.

Mutual conductance of vacuum tube, 342.

Mutual inductance, 162.

bridge, 429.

n-type semiconductor, 537.

Neel temperature, 658.

Negative feed-back, 354.
— resistance, 366.

Neumann's formula, 162.

Neutron, 1.

— diffraction, 673.

— magnetic moment, 611, 684.

Noise figure, 462.

— Johnson, 454.

— measurement of, 470.
— shot, 462.

Nuclear induction, 689.

— magnetic moments, 610, 616.

— resonance, 685.

Ohm's law, 64.

Onsager, local field theory, 491.

Orbital quantum number, 577.

Oscillator, Hartley, 369.
— power, 368.

— quartz crystal, 437.

— strength, 486.

— tuned-anode, 364.

— tuned-grid, 367.

p-n junction, 565.

p-type semiconductor, 537.

Paramagnetism, 195.

— classical theory, 201-4.
— of conduction electrons, 529.— Pauli, 532. ^^
Paramagnetic resonance, 705.

Parity, 40.

Partition function, 615.

Paschen's law, 122.

Pascheo—Back effect, 590.

Pauli exclusion principle, 88, 90, 680.

— paramagnetism, 532.

Peltier effect, 103.

Pentode, 349.

Permeability, of free space, /*„, 129.

— magnetic, n 139.

Permittivity of free space « , 4.

Phase-shifter, 254.

Phonon, 522.

Photo-conductivity, 551.

Photoelectric emission, 97, 99.

Piezo-electric effect, 437.

Planck's constant, h, 89.

Plane wave in conductors, 265.

in dielectrics, 259.

reflection and refraction of, 269-278.

Plasma oscillations, 123.

— frequency, 124.

Poisson's equation, 33.

Polar gases, 480.

— liquids, 491.

radio-frequency dispersion in, 493.
— molecule, 109, 480.

Polarizability, 17, 478.

Polarization, electric, 17, 478.

— magnetic, 135.

Positive hole, 512.

Potential, electric, 4-6.

— magnetic vector, 143-9, 161, 175, 281.

— magnetostatic, 134.

Potentiometer, 73.

Power factor, 230.

— amplifier, 355.

— oscillator, 368.

Poynting vector, 263.

Practical units, 733.

Precession, 199, 574, 677, 708.

Pressure of electromagnetic radiation, 278.

Proton, 1.

— ejM, 716.

— magnetic moment, 611.

Quadrupole, electric, 14, 30, 43.

— nuclear, 612.

Quality factor Q, 171, 237, 242.

of transmission lino, 315.

of waveguide, 325.

Quantum number, 577.

Quarter-wave line, 310.

Quartz crystal oscillator, 437.

Quenching of orbital momentum, 600, 609.

Quincke, method of measuring xm , 219.

Rabi, molecular beam apparatus, 681.

Badiation resistance, 285.

Radio receiver, 386.

Raman effect, 502.

Rare earth metals, magnetic properties of,

670.

Rationalized units, 733.

Rayleigh scattering, 500.

Reactance, 232.

Reciprocity theorem, 70.

Rectifier, diode, 336, 338.

— p-?» junction, 568.
— semiconductor-metal, 564.

Reflecting film, 311, 327.

— power, 275, 277.

Reflection coefficient for transmission line,

307.

of plane wave, 269-78.
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Reflection coefficient, total internal, 276.

Refraction at dielectric boundary, 21.

— of plane wave, 269-78.

Refractive index, 260.

variation with frequency, 487.

Relaxation time of electrons in metals, 84.

— in paramagnetic solids, 703.

of nuclei, 690.

Reluctance, magnetic, 210.

Remanence, 205.

Resistance, absolute measurement of, 190.

— high frequency, of wire, 269.

— negative, 366.
— of radiating dipole, 285.

— residual, 523.
— specific, 64.

— temperature coefficient of, 64.

Resonant frequency, 229, 236, 240.

Resonance potential, 119.

Ripple voltage, 337.

Rotating cordinate system, 753.

Russell-Saunders coupling, 582.

Scalar product, 745.

Scattering of electromagnetic waves,
498-^501.

— of electrons in metals, 522.

Schering bridge, 426.

Screen grid, 347.

Secondary emission, 101.

Seebeck effect, 103.

Selectivity Q, 171.

— of transmission line, 315.

— of cavity resonator, 325.

Semiconductor, 65, 536.

— absorption edge, 548.

— degenerate, 547.
— Fermi level, 545.

— n-type, 537.

— non-degenerate, 547.

— 2>-type, 537.

Shot noise, 462.

Sidebands, 384.

Skin depth 8, 267.

anomalous, 528, 534.

Snell's law, 270.

Space charge, 332.

smoothing factor, 464.

Specific heat of conduction electrons, 517.

of a ferromagnet, 637.

Spherical harmonic functions, 36, 38.

expansion of, 40.

Spin-orbit interaction, 583.

Spin quantum number, electronic, 579.

nuclear, 610.

Spin-waves, 648, 709.

Stern-Gerlach experiment, 590.

Stokes's theorem, 751.

Stress, at surface of dielectric, 26.

— tensor, 28.

Superconducting magnet, 214.

Superconductivity, 527.

Susceptance, 234.

Susceptibility, electric, x«> l'i 19-

— magnetic, Xm> 1^9, 200.
— — of conduction electrons, 529.

— measurement of xm > 216-21.

Terrestrial magnetism, 223.

Tetrode, 347.

Thermal conductivity, 521-8.

Thermionic emission, 97.

Thermocouple, 107.

Thermoelectricity, 103-9.

Thevenin's theorem, 83.

Thomson effect, 103.

measurement of, 108.

Three-halves power law, 332.

Time-base, 417.

Townsend discharge, 121.

Transformer, 163.

— high frequency, 243.

— low frequency, 247.

— quarter-wave, 311.

— transmission line, 310.

Transients, 165-72.

Transistor, 569-72.

Transit time, 393.

Transmission line, 302-15.

Travelling wave tubes, 412.

Triode, 339.

Tuned circuits, 236-42.

Uniqueness theorem, 34, 755.

Units, 729-43.

Vacuum-tube voltmeter, 336, 422.

Valence band, 537.

Van Leeuwen's theorem, 592.

Vector model of atom, 576, 586.

— product, 746.

Velocity of electromagnetic waves, 259.

— of wave on transmission line, 304, 312.

— measurement of, 445.

— of wave in waveguide, 318.

Volt, 7.

Voltage amplification, 343.

Voltage standing wave ratio, 308, 431.

Voltmeter, 181.— vacuum-tube, 336, 422.

Watt, 67.

Wattmeter, 183, 420.

Wave equation, 259.

— vector, k, 89.

— velocity, 259.
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Wave-guides, 321-6. Wiedemann's law, 86, 200, 524.

Wave-meter, 437. Wien's bridge, 435.

Weber, 143. Work function, 92, 95.

Weiss constant, 203, 620, 661.

Wheatstone's bridge, 71. Zeeman effect, 588.
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